
Manuscript review amt-2020-166 « Improvement of numerical weather prediction model
analysis during fog conditions through the assimilation of ground-based microwave

radiometer observations: a 1D-Var study ».

First of all, the authors thank the two anonymous reviewers for their positive feedback and helpful 
comments to improve the manuscript. All modifications have been taken into account ; most 
relevant are highlighted in red in the new version. We hope this new version will be suitable for 
publication.

Reviewer 1 :

Abstract: The authors should mention already in the abstract that the brightness tem-
peratures are assimilated directly over a forward operator (RTTOVgb)

→ Has been clarified in the abstract :
To that end, temperature, humidity and liquid water path (LWP) retrievals have been performed by
directly assimilating brighness temperatures using a one-dimensional  variational technique (1D-
Var).

Line 31-33: This formulation is not exact: it is true that satellite data provide limited
information on the ABL, but not because of the complexity of data assimilation over
lands, to be exact this issue makes the use of the data for NWP more difficult. Please
rephrase.

→ Thanks for pointing this inconsistency. This has been modified :
Even if satellite data provide a global coverage all over the world, they provide
limited information on the ABL due to the attenuation by clouds and degraded vertical resolution in
the ABL. Additionally, uncertainties in surface properties (such as skin temperature and emissivity ,
Guedj et al. (2011)) limit the assimilation of surface-sensitive channels over lands.

Line 44: it could be emphasized here that the study by Otkin and Hartung et al. (2011)
with 140 MWRs was an OSSE ( in contrast to your study using real data)

→ In order to highlight this aspect we used the term « simulated network of 140 MWRs » but to
make it more clear we added :
The impact of a simulated network of 140 MWRs through an OSSE was also investigated by Otkin
et al. (2011) and Hartung et al. (2011) on a winter storm case.

Line 123: For clarification for readers not familiar with (MW) remote sensing you could
add half a sentence why transparent channels are omitted at low elevation angles

→ this explanation which was given in the initial manuscript line 174 in section 3.2 has been moved
to line 125 :
Transparent channels are not used at low elevation angles due to the violation of the assumption of
horizontal homogeneity

Line 134: The authors could add a sentence, why it is inadequate for fog areas

→ this has been clarified :
As demonstrated by Ménétrier and Montmerle (2011), climatological covariances are inadequate for
fog areas which exhibit a much stronger positive coupling between temperature and humidity and
attenuated vertical correlations above the fog layer.



Line 150-151: This is not clear. What kind of tests?

The quality of the fog B matrix (which is fixed for all fog events through the 6 month period) can
depend on how many grid points in fog conditions are found within the domain (to avoid sub-
sampling problem). It will also depend on how much variability in the different fog cases were
taken into account.  The quality of this B matrix can thus depend on the assimilation cycle which is
used for its calculation. This is why we first calculated fog B matrices at different assimilation
cycles. Then we run the 1D-Var algorithms and chose the fog B matrix which was giving the best
RMSE with respect to radiosounding. The sentence has been rephrased to clarify.

Several fog B matrices have been computed using different assimilation cycles. The fog B matrix
showing  the  best  results  in  terms  of  root-mean-square-errors  (RMSE)  with  respect  to
radiosoundings has then been selected for this study.

Section 3.2: This section is not structured well. First it is about obs errors, then bias
correction, then obs errors, then both. .

We tried our best to make this section better structured. To that end we sub-divided this section into
section 3.2.1 commenting only the results in line with the B matrix and section 3.2.2 commenting
only the results in line with the bias correction. Table 4 and figure3 are used in both sections but
only to comment the corresponding results.

Line 176: what do the authors mean by the “individual errors which were added in
quadrature”? Not really clear to me.

→ it has been clarified in the manuscript :

σ tot = sqrt(σnoise² + σ calib² + σ F M²)
with σ tot  the total  observation errors,  σ noise the uncertainty due to noise,  σ calib calibration
uncertainties and σ F M the uncertainty due to spectroscopic errors in the radiative transfer model.

Line 214-215: not fully clear. . . So the authors want to say the dataset consists of
stratus clouds, profiles with fog, and some clear-sky profiles?

→ Correct, we just want to highlight that the RS profiles were launched during IOPs when we were
expecting fog or stratus lowering. Thus, some of them are clear-sky, a few are under fog conditions
and others in stratus-cloud. We clarified the sentence :
Radiosondes were launched during IOPs in different atmospheric conditions: the majority are under
stratus-cloud and fog conditions and a few of them in clear-sky

Line 251-256: Please give more explanations in this paragraph, why the underestima-
tion of specific humidity at nighttime is due to an overestimation of saturation, ...

→ As explained at the beginning of section 4, the AROME model predicts a thick fog layer whereas
the observations (in-situ tower measurements) show fog no more than 10 m thick. Thus, we know
the AROME model overestimates the saturation. The true temperature should be higher and  should
not reach  saturation. , water  would stay in its gas phase instead of being converted into liquid .
What we observe is that the model converts too much water vapour into liquid (erroneously). The
specific humidity is thus underestimated. One sentence has been added in the manuscript :



Indeed, as the fog layer was thicker in AROME than in the observations, we believe the model
converts  too much water  vapour into liquid erroneously,  which makes it  underestimate specific
humidity

...and why most of the model increments are produced by the B matrix cross-covariances ?

→ As concluded in section 3.2, the configuration 3 is used in the next sections. It means a block-
diagonal B matrix is used under no fog conditions and a fog B matrix with cross-covariances is used
when there is fog in the observation.  From the visibility measurement of figure 4, we see that fog is
only observed at 0 UTC and then between 5 and 9 UTC.
It means that a fog B matrix with cross-covariances is used at 0 UTC and then between 5 and 9
UTC. Outside of this time period, a diagonal B matrix is used.  In figure 6, we can see that the
specific humidity after 1D-Var is almost identical to the background every time a diagonal B matrix
is used.
The larger increments observed during the fog events are thus attributed to the cross-covariances
between temperature and humidity. We clarified this point :
This is likely due to the use of the cross correlated fog B matrix under these conditions, as opposite
to the use of a block diagonal B matrix when fog is not observed.

L264: For clarification his could be rephrased to “. . . During the period where the model
fails to simulate the stratus cloud, the LWP is significantly increased in the 1D analysis
with values between. . .”

→ Agree, it has been modified

L279: The authors could add one sentence on what the visibility diagnosis is based.

A new sentence has been added to the manuscript to be a bit more explicative. The full explanation
about this visibility diagnosis will be discussed in the manuscript of Dombrowski-Etchevers et al.
(2020) :

In this new diagnosis, the visibility is directly deduced from the liquid water
content at ground. It was computed through a statistical regression between hourly maximum of
liquid  water  content  forecast  by  AROME  and  observed  minimum  of  visibility  on  100  ground
stations during five months.

L317-318: This is not clear. Does it mean the profiles used are not forecasts but taken
from an analysis with conventional data already assimilated?

→ Currently in the Météo-France 3D-Var scheme control variables are : temperature and surface
pressure, specific humidity, wind. Thus at each assimilation cycle only these variables are updated
to match all the observations assimilated. However, the hydrometeors are kept unchanged.
It  means  that  the analysis  state  of  the AROME model  for  the hydrometeors  correspond to  the
previous background, which is a 1 hour forecast. The hydrometeors are then balanced with the other
fields in the first time steps of the forecast through the model physics. 
This has been clarified in the manuscript :
In fact, as hydrometeors are currently not included in the control variables of most operational
variational data assimilation schemes, these fields are kept unchanged during the analysis. Thus,
the  analyzed   hydrometeor  fields  correspond to the  previous  background.  Consequently,  in  the
following statistics, the background values of LWP correspond in fact to the LWP in the operational
AROME  analysis.  These  fields  are  then  modified  according  to  the  updated  temperature  and
humidity analyses in the first time steps of the forecast through the model physics.



Technical corrections

L31: Better: “. . . wich is undersampled by observations. "Even though satellite data
provide a global coverage. . .“

→ Agree and modified

L48: Better: impact of this network was found to be neutral..”
→ Agree and modified

L51: Better: “AROME model with a one-dimensional..”
→ Agree and modified

L55: correct to: “. . . and evaluates the impact. . ..”
→ Agree and modified

L122: correct to: “. . . consists of..”
→ Agree and modified

L129: replace “spatially” by “horizontally” (because spatially comprises vertical and
horizontal directions)
→ Agree and modified

L144: Better: “...with a horizontal resolution set to 3.2km and . . .” (“finally” should be
omitted)
→ Agree and modified

L167: no comma here
→ Agree and modified

L167: better: “but also on an adequate specification of. . .”
→ Agree and modified

Line 201: do you mean Config1 here?
→ Correct, thanks for pointing this error

General: References to figures in the text should be with capital “F”. “Figure X” instead
of “figure X”.
→ modified

L222: Typo: “almost”
->This sentence has been removed in the new version but thanks for pointing the error

L229: Typo: cloud base height
→ agree modified

L232: better: “. . . fog is observed at 10m altitude during 40 minutes at midnight and. . .”
→ agree modified

L257: better: “. . . by night leads to the effect that the fog layer is not saturated any
more in agreement. . .”



→ agree modified

L262-64: Better: “. . . with a maximum reaching 90gm-2 at 7UTC. This value, however,
decreased down to. . .”
→ agree modified

L269: Better: “While the previous focuses on an extreme. . .”
→ has been modified into :  While the previous section focuses on an extreme

L382: Better: “. . . has been investigated with. . .”
→ agree and modified

L429: Better: “. . . on temperature and LWP and small but. . .”
→ agree and modified

Figure 8 Caption: should be re-phrased to: “. . . differences compared to tower
measurements. . .”
→ agree and modified

Figure 13: The axes are difficult to read. Maybe the figure could be enlarged to improve
this.
→ The figure has been made again to make it more readable



Manuscript review amt-2020-166 « Improvement of numerical weather prediction model
analysis during fog conditions through the assimilation of ground-based microwave

radiometer observations: a 1D-Var study ».

First of all, the authors thank the two anonymous reviewers for their positive feedback and helpful
comments  to  improve  the  manuscript.  All  modifications  have  been  taken  into  account ;  most
relevant are highlighted in red in the new version. We hope this new version will be suitable for
publication.

Reviewer 2 :

Major comment:
I understand the discussion about optimal estimation in section 2.3 and 3.1, however I am a
little bit perplexed by the discussion of the background covariance in section 3.2.
From what I could understand the a priori vector Xb = (T, Q, LWP) used in the convergence
scheme specified in line 110 is provided by 1 hr AROME forecast profiles.
The corresponding background covariance B associated with this a priori estimate was
estimated as described in line 145-150 for all cases and for a subset of fog cases and the
diagonal terms were multiplied by 0.7. Where I get lost is the next section (3.2) where the
background covariance is modified in a seemingly arbitrary fashion by removing the cross-
correlation terms from the climatology. I entirely understand using a fog covariance for the fog
cases and a climatology covariance for the non-fog case. However, to “choose” the background
covariance that optimizes the retrieval results seems a little bit unorthodox.
My point is that the covariance should be an “objective” way (as far as possible) to quantify the
uncertainty associated with the a priori information. It seems that if the background covariance
associated with the Xb is not good enough for the retrieval perhaps a different choice for the a
priori Xb should be made (i.e. not from the model but perhaps from a radiosonde ensemble).
Alternatively, the convergence could be controlled with a multiplicative factor to B (usually
called g) that is reduced at each iteration based on the behavior of the cost function. This
approach is mostly used for infrared retrievals, but, in this case, it may prove beneficial as well.
So perhaps I am not entirely understanding this part, in which case this procedure of “choosing”
B based on the retrieval results could be better justified or may be the straight optimal
estimation approach should be modified the way mentioned above.

We would like to thank the reviewer for this very interesting question. It seems that our original
paper  did  not  justify  enough  the  approach  of  possibly  zeroing  the  cross-correlations  between
temperature and humidity, and this is an important point. We shall first remind that the treatment of
humidity in 3Dvar has received a long attention in the NWP community (see e.g., Dee and Da Silva
MWR 2003). In many operational schemes, the treatment of humidity has long been univariate (e.g.
zeroing or not computing the cross-covariance between humidity and the other variables). This is
for instance still the case in global ARPEGE 4DVar and in various 3DVars (eg., Barker et al MWR
2004 for the WRF model). One explanation is that the cross-covariances between humidity and
temperature is flow-dependent. To be more specific, Holm et al (2002) have shown with the global
IFS model  that  even  the  sign  of  t-q  correlations  was  changing,  being  negative  in  average  but
positive in saturated conditions.  Dee et al (2002) also confirmed that, if observations are not as
abundant for temperature and humidity,  it  is more accurate to neglect mixing ratio–temperature
error  covariances.  Whatever  the  used  background  profile  (from  a  NWP  model  or  from
radiosounding climatology), if the analysis increment is mainly driven by the coupling, using fixed
covariances for different types of weather conditions will potentially degrade the analysis. In our
case, keeping cross-covariances between temperature and humidity in the climatological B-matrix is
therefore  suboptimal  and  possibly  not  as  good  as  using  a  univariate  approach  for  humidity,



depending  on  the  prevalence  of  saturated  conditions.  Therefore,  we  consider  the  zeroing  of
temperature-humidity covariances  in  the climatology as  a  natural  approach,  which  is  of  course
outperformed by the  use of  the  ensemble  that  brings  this  lacking information  about  saturation
during fog conditions. A clean way to make the B matrix flow dependent through the 6-month
study, would have been to use the AROME ensemble data assimilation (EDA) to extract hourly B
matrices depending on the weather conditions  for each new retrieval. Unfortunately, the AROME
EDA was still in development at the beginning of the study. Only a few days were post-processed
and the choice has been made to select the IOP1 with interesting fog events in the observations in
order to focus on the impact of an optimal B matrix during fog conditions.  As this paper mainly
focuses on fog retrievals, optimizing the B matrix for all other weather conditions is beyond the
scope of the paper. As an alternative approach, for non fog conditions, we decided to follow the
approach still used operationally in our 4D-Var scheme by zeroing the cross-correlations between
temperature and humidity to avoid the degradation in the retrievals of specific humidity.

In order to clarify this aspect ,section 3.2 has been modified introducing the explanation on why
different B matrices are evaluated :
As cross-covariances highly depend on the weather conditions (Hólm et al. (2002), Michel et al.
(2011)) and the use of fixed covariances is not optimal when dealing with different atmospheric
scenario, Config1 aims at evaluating the impact of the cross-correlations between temperature and
humidity on the retrievals. To that end Config1 corresponds to the same configuration but removing
the cross-correlations between temperature and specific humidity. It can be noted that this approach
is still used in various 3D/4D-Var operational schemes (Barker et al. (2004)).

We also included an additional paragraph at the end of the section to clarify the conclusion :

Figure 3 confirms that the best configuration in terms of B matrix corresponds to Config2 compared
to the CTRL configuration. In fact, the use of a "climatological" B matrix with cross-correlations
degrades both temperature and humidity retrievals but more significantly specific humidity up to 4
km. Overall, these results confirm that, for MWRs, humidity increments in the lowest levels are
significantly driven by the cross-correlations between temperature and humidity. These correlations
(sign and amplitude) being highly dependent on the weather conditions, the B matrix should ideally
be updated for each profile. When it is not possible, the use of a block diagonal B matrix might be
preferable to avoid degradation in the retrievals due to inaccurate cross-correlations. This result is in
line with the study of Dee et al 2002 which showed that, when humidity is less adequately observed
than temperature, it is more accurate to neglect humidity – temperature error covariances. However,
when an adapted flow-dependent B matrix is used, the specific humidity analysis is improved. In
the future, the use of ensemble data assimilation schemes should enable deriving optimal B matrices
evolving in time and space to be consistent with the weather conditions.

Minor comments:
Abstract: There is terminology that is not defined for example, in lines 11, 12, 15, what are 1D-
var increments? I suggest either making the abstract less detailed about the results or defining
the terms used.

→ We have removed some details from the abstract and we do not use the word « increment »
anymore. We defined this term later in section 2.3 :
Through the manuscript, the atmospheric state minimizing the cost function is called the "analysis"
(xa ) and "increment" refers to the difference between the a priori xb  and the analysis.

Table 4 is not clear. The caption says “Error reduction (%)” over the background. It is not clear
what the negative number means. Does it mean that the retrieval is actually increasing the
RMSE with respect to the background?



RMSE are always computed with respect to in-situ measurements on the tower.
Then two RMSE are computed :
RMSE_xb : errors of the background with respect to the tower
RMSE_xa : errors of the analysis with respect to the tower
What is called error reduction in the manuscript is defined by :
ER=1-RMSExa/RMSExb

when this number is negative it means that the retrievals increase the errors with respect to the
tower  measurements  compared to  the  background (the  1D-Var  retrieval  is  thus  worse  than  the
background statistically). 

We modified the table 4 caption to clarify :
Reduction in the RMSE with respect to tower measurements after the 1D-Var analysis (RMSExa )
compared to the background (RMSExb) for all weather conditions (upper part) or only fog events
(lower part) : ER = 1− RMSExa/RMSExb (%)

Table 4: Just to make sure I understand correctly, this statistic is computed by taking one layer
of the retrieval profile grid corresponding to the tower height of 50 and one layer
corresponding to 120 m? I would imagine that the retrievals at these two layers are highly
correlated because the vertical resolution of the radiometer at this height is about 100 m.
Therefore, is there even a merit to look at two layers vs. averaging the tower and radiometer
measurements between 50 and 120m?

→ We agree with the reviewer that the two retrievals are potentially highly correlated. This is now
stated in the following sentence, reported at line 179 of the revised manuscript. However, we prefer
to keep the comparison at both levels, as it conveys some information, e.g., that the reduction in
T(K) is higher at the lower level. 

It  is  important  to  note  that  given  the  relative  low  vertical  resolution  of  MWR retrievals,  the
retrievals at 50 and 120 m are likely to be highly correlated.

Fig. 3 It is not clear what “closest GP B clim” mean in the labels.

→ We agree and have made labels consistent with the names of the different configurations defined
in table1.

However later on, in Fig. 5, I see that the background configuration reappears in the right panel.
Is this necessary? It has already been established that this configuration should not be used. In
addition, by just looking at the middle and right panels of Fig. 5 the differences appear to be
really minimal.

→ As the largest differences are limited in time (only when a correlated fog B matrix is used for
humidity between 4 and 9 UTC) and vertical spread (the first 500m), it is true that the differences
can appear minimal when looking globally at the figure. To avoid confusion, we decided to remove
the control configuration in the right panels and show only the optimal configuration 3. 

The discussion of Fig 5 is not clear. The text says at lines 240 “We can note the large
temperature warming by up to 5 K from 0 to 12 UTC during the whole fog event (in the model
space) in the 0-500 m vertical range.” By “model space” the authors mean the left panel (i.e.
forecast?). If I look at it is not clear what
is meant by the large warming from 0 to 12 UTC. Is this the sharp increase in the temperature



above ~100-200 m. Is this a visual product of the rainbow color scale used? I wonder if it would
be more realistic to use a continuous color scale for these plots.

→ « In the model space » means when the model simulates fog. It only refers to the time period 0 to
12 UTC which corresponds to fog only in the model simulation. In the observation fog is only
observed between 4 and 9 UTC. If we look at the temperature between 0 and 12 UTC in the first ~
200  meters,  we  can  see  that  the  temperature  is  much  colder  on  the  left  panel  (the  model
background)  compared  to  the  middle  planel  (1D-Var).  We just  wanted  to  stress  that  this  time
window corresponds to  the  simulated  fog  event  (and not  the  time where  the  fog  was  actually
observed). In order to make the figure more readable, we limited the y axis to the 0-1 km range and
we clarified the text :

We can note the large temperature increment,  up to 5 K from 0 to 12 UTC essentially in the first
250 m, after 1D-Var is applied ; this is the period where the model simulates a thick fog event not
confirmed by the observations.

Fig 6 Is there a reason why the 1D-var overestimates specific humidity between 4 and 9 UTC?
Are the brightness temperatures affected?

→ The most reasonable explanation is that the positive cross-correlations between temperature and
humidity are probably over-estimated. However, we are probably within the retrieval uncertainty.
One sentence has been added to the manuscript :

Though closer to the in-situ observations, 1D-Var retrievals slightly overestimate specific humidity
between 4 and 9 UTC. This is most likely due to over-estimated positive cross-correlations between
temperature and humidity in the B matrix

Fig 7 is time UTC?
→ Correct, this has been modified in the figure

Fig. 8 and related discussion. Does the introduction of the MWR data improved the statistics of
undetected and false alarm? I see that the temperature errors are reduced, but is the number of
false alarms and missed detections the same?

→ This is a very good question that we investigated. However, as the 1D-Var only deals with the
integrated  liquid water  (LWP) and does  not  have  enough information  with  the  MWR alone to
correctly localize several cloud layers, it is complicated to interpret new statistics based only on the
1D-Var analysis. In fact, if there is already a fog or a cloud layer, the 1D-Var will normalize the
vertical distribution so that the integrated path is closer to the observation. If the model initially
gives no fog or cloud whereas the observation is cloudy, the 1D-Var will add a new fog layer at the
level of maximum relative humidity (which may or may not be close to the ground). The scores to
determine false alarms, missed events and good detections are, on the other hand, based only on the
LWC at the ground.
It means that if there is a cloud layer on top of the fog, the LWP might be increased erroneously at
the ground due to the cloud aloft during false alarms.  If we look at the background profiles during
false alarms, only 33 % do not have cloud detected by the ceilometer. It means that in the remaining
67 %, the model simulates fog at the ground though it is not detected by the visibility sensor and a
cloud aloft is observed in the measurements.  For these cases, the 1D-Var cannot remove the liquid
water content at ground (as there is a cloud aloft) and might even increase the LWC. If we just
evaluate the 1D-Var retrievals based on the false alarms scores we will conclude that there is either
no impact or even a degradation. The only way to really make a conclusion would be to let the



model physics get the liquid water content profile balanced with the new temperature and humidity
profiles before recomputing the score.
The same problem occurs when evaluating missed fog events if there is not liquid water in the
background at the ground. However, for this specific study, most of the background profiles have a
small amount of liquid water at ground level, even though the visibility at ground is not reduced to
less than 1000 m. The rate of missed fog events is decreased from 27 % in the background to 19 %
in the 1D-Var analysis. Again this evaluation is only based on the LWC change at the ground and it
would be interesting to evaluate the impact of the new temperature and humidity fields on the LWC
after a few time steps of forecasts but this is beyond the scope of this paper. This investigation into
the forecast impact will be studied within the framework of the SOFOG3D experiment.

We included a discussion on this topic in the new version of the manuscript at the end of section 5 :
The next natural step of this study would be to calculate updated scores of fog detections with the
new 1D-Var analyses compared to the background profiles. However, forecast scores are only based
on the LWC at ground whereas the 1D-Var works on the liquid water path without information on
the cloud vertical structure. During false alarms, conclusions on the impact on forecast scores are
complexified by the presence of cloud layers above fog in a majority of false alarms which can
cause  an  increase  in  LWC at  ground.  As  for  the  hit  ratio,   it  is  increased  from 73  % in  the
background to 81 % in the analysis. The rate of missed fog events is also decreased from 27 % in
the background to 19 % in the 1D-Var analysis. However, as this evaluation is only based on the
LWC change at  the ground, it  is  necessary to  evaluate  the impact  of the new temperature and
humidity fields on the LWC after a few time steps of forecasts but this is beyond the scope of this
paper. This investigation into the forecast impact will be studied in the future within the framework
of the SOFOG3D experiment (section 6).

Fig. 12 x axis title is missing :
→Lables for x axis are now reported  in addition to the figure caption.

Fig 13 axis labels are missing, and fonts are very small
→ We have recomputed the figure with labels and titles increased.
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Abstract. This paper investigates the potential benefit of ground-based microwave radiometers (MWRs) to improve the ini-

tial state (analysis) of current numerical weather prediction (NWP) systems during fog conditions. To that end, temperature,

humidity and liquid water path (LWP) retrievals have been performed by directly assimilating brighness temperatures using a

one-dimensional variational technique (1D-Var). This study focuses on a fog dedicated field-experiment performed over win-

ter 2016-2017 in France. In-situ measurements from a 120 m tower and radiosoundings are used to assess the improvement5

brought by the 1D-Var analysis to the background. A sensitivity study demonstrates the importance of the cross-correlations

between temperature and specific humidity in the background-error-covariance matrix as well as the bias-correction applied on

MWR raw measurements. With the optimal 1D-Var configuration, a root-mean-square-error smaller than 1.5 K (resp. 0.8 K)

for temperature and 1 g.kg−1 (resp. 0.5 g.kg−1) for humidity is obtained up to 6 km altitude (resp. within the fog layer up to

250 m). A thin-radiative fog case study has shown that the assimilation of MWR observations was able to correct large temper-10

ature errors of the AROME model as well as vertical and temporal errors observed in the fog lifecycle. A statistical evaluation

through the whole period has demonstrated that the largest impact when assimilating MWR observations is obtained on the

temperature and LWP fields, while it is neutral to slightly positive for the specific humidity. Most of the temperature improve-

ment is observed during false alarms when the AROME forecasts tend to significantly overestimate the temperature cooling.

During missed fog profiles, 1D-Var analyses were found to increase the atmospheric stability within the 100 m compared15

to the initial background profile. Concerning the LWP, the RMSE with respect to MWR statistical regressions is decreased

from 101 g.m−2 in the background to 27 g.m−2 in the 1D-Var analysis. These encouraging results led to the deployment of

8 MWRs during the international SOFOG3D (SOuth FOGs 3D experiment for fog processes study) experiment conducted by

Météo-France.
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1 Introduction

Each year large human and economical losses are due to fog episodes, which, by the large reduction of visibility, affect aviation,

marine, and land transportation (Gultepe et al. (2007)). Fog forecasts remain quite inaccurate due to the complexity, non linear-

ities and fine scale of the physical processes taking part in the fog lifecycle. Fog results from a combination of radiative, turbu-

lent and microphysical processes as well as interactions with surface heterogeneities which will drive the relative importance25

of local and large-scale circulations. Recently, three dimensional models have replaced one-dimensional models to forecast

fog in most national weather services. Currently, convective-scale numerical weather prediction (NWP) models run with an

horizontal resolution of approximately one kilometre with frequent data assimilation cycles. While the importance of vertical

resolution (Philip et al. (2016)), aerosol activation (Mazoyer et al. (2019)) or water deposition (Tav et al. (2018)) have recently

been highlighted to improve fog forecasts, fog is also known to be highly sensitive to initial conditions (Bergot and Guedalia30

(1994), Bergot et al. (2005), Hu et al. (2014)). Therefore, accurate initial temperature, humidity and wind profiles are crucial

to successfully forecast fog. However, the atmospheric boundary layer (ABL) has also been identified as a part of the at-

mosphere which is undersampled by observations. Even though satellite data provide a global coverage all over the world,

they provide limited information on the ABL due to the attenuation by clouds and degraded vertical resolution in the ABL.

Additionally, uncertainties in surface properties (such as skin temperature and emissivity, Guedj et al. (2011)) limit the assim-35

ilation of surface-sensitive channels over lands. Recently, an Observing System Simulation Experiment (OSSE) by Hu et al.

(2017), has demonstrated that temperature and moisture at the surface have a larger impact on fog forecast than surface wind

observations concluding that temperature and humidity profilers could potentially play a major role in the improvement of fog

forecast initialization. Ground-based microwave radiometers (MWR) are robust instruments providing continuous observations

of temperature and humidity profiles as well as integrated liquid and water contents during all-sky weather conditions. Even40

if their vertical resolution degrades with altitude (Cimini et al. (2006)), most of their information content resides in the ABL

(Löhnert and Maier (2012)) and their high temporal resolution (few minutes) makes them suitable to monitor the evolution of

fog development. Despite the potential impact of MWRs in NWP models, assimilation experiments of their data have been lim-

ited to few attempts. The first preliminary study of Vandenberghe and Ware (2002) has demonstrated a positive impact of the

assimilation of a single MWR unit into the 10 km horizontal resolution MM5 (https://www2.mmm.ucar.edu/mm5/) mesoscale45

model in the context of a winter fog event. The impact of a simulated network of 140 MWRs through an OSSE was also

investigated by Otkin et al. (2011) and Hartung et al. (2011) on a winter storm case. This study confirmed a positive impact

on temperature and humidity analyses as well as up to 12 hour forecasts on moisture flux. More recently, a real network of 13

MWRs was assimilated by Caumont et al. (2016) into the 2.5 km horizontal resolution convective scale model AROME in the

context of heavy-precipitation events in the western Mediterranean. Impact of this network was found to be neutral on temper-50

ature and humidity fields but positive on quantitative precipitation forecasts up to 18 hours. In addition, Martinet et al. (2015)

and Martinet et al. (2017) have demonstrated the positive impact that could be expected on NWP temperature profile analyses

by the direct assimilation of MWR brightness temperatures into the AROME model with a one-dimensional variational frame-

work (1D-Var). All these studies showed an encouraging positive impact of the assimilation of MWRs observations into NWP,
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though they are limited to deep-convection, single case studies on low resolution limited area models, or restricted to tempera-55

ture analyses only. The purpose of this article is to evaluate the expected benefit of MWRs on km-scale NWP analyses during

fog events on an extended dataset over a six-month fog experiment. This expands the studies of Martinet et al. (2015) and

Martinet et al. (2017) to humidity and liquid water path retrievals and evaluates the impact of new tools developed to optimize

the assimilation of MWRs during COST actions TOPROF (Illingworth et al. (2019)) and PROBE (Cimini et al. (2020)). A fog

dedicated field experiment was carried out in the North-East of France during the winter 2016-2017 during which a 14-channel60

MWR has been operated. The impact of MWR brightness temperatures on temperature, humidity and liquid water content

profiles forecast by AROME has been evaluated during the six-month period against in-situ data collected during intensive

observation periods (IOPs) and continuous measurements deployed on a 120 m instrumented tower. This paper begins with an

overview of the dataset, the AROME model and a description of the 1D-Var settings in section 2. A sensitivity study of the

1D-Var retrievals to the background-error-covariance matrix and bias-correction to select the optimal configuration is presented65

in section 3. Section 4 presents a case study of the first IOP showing large AROME errors during a thin radiative fog event

well corrected by the 1D-Var. Section 5 generalizes the results obtained in section 4 through a statistical evaluation of 1D-Var

retrieval errors and expected impact on the AROME analyses. Section 6 presents the deployment of a regional-scale MWR

network for fog forecast improvement as continuity of this study, while finally section 7 summarises the main conclusions.

2 Dataset and methodology70

2.1 Instrumentation

Data sampled during a field experiment dedicated to fog process studies carried out at the ANDRA (the French National

Radioactive Waste Management Agency) atmospheric platform located in Houdelaincourt (48.5623N; 5.5055E) in the North-

East of France during the winter 2016-2017 are used in this study. The experimental site was chosen due to the high occurence

of fogs and the possibility to take advantage of a 120 m instrumented tower. A large range of in-situ instrumentation was75

deployed during the six-month experiment: visibility sensors, liquid water content and droplet size distribution measurements,

temperature and relative humidity measurements at different levels above ground (10 m, 50 m, 120 m). In addition to in-

situ measurements, a 14-channel HATPRO MWR (Rose et al. (2005)) manufactured by Radiometer Physics Gmbh (RPG)

was deployed on site during the experiment. The HATPRO MWR is a passive instrument measuring the naturally emitted

downwelling radiance in two spectral ranges: 22.24 to 31 GHz to retrieve humidity profiles with a low resolution but high80

accurate integrated water contents (IWV) and liquid water path (LWP). The 51 to 58 GHz range, located in the 60 GHz O2

absorption complex line, is used to retrieve temperature profiles. Elevation scans from 5.4◦ to 90◦ were used to improve the

vertical resolution of temperature profiles assuming that horizontal homogeneity in the vicinity of the instrument is respected.

A ceilometer Vaisala CL31 was deployed during October to December 2016 replaced by a Vaisala CT25K from January to

April 2017 to determine the cloud base altitude. In addition, 21 VAISALA RS92 radiosondes with an expected accuracy of 0.585

K in temperature and 5 % in relative humidity were launched during IOPs. Tethered balloon measurements were also carried

out with the deployment of a cloud particle probe and a turbulence probe.
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2.2 The AROME NWP model

In this study 1-hour forecasts from the French convective scale model AROME (Application of Research to Operations at

MEsoscale, Seity et al. (2011)) are used as a priori profiles or "backgrounds". AROME is a limited area model covering90

Western Europe with non-hydrostatic dynamical core. Since beginning 2015, the horizontal resolution of AROME has been

increased from 2.5 km to 1.3 km as well as the number of vertical levels from 60 to 90 (Brousseau et al. (2016)). Vertical

levels follow the terrain in the lowest layers and isobars in the upper atmosphere. The detailed physics of Arome are inherited

from the research Meso-NH model (Lafore et al. (1997)). Deep convection is assumed to be resolved explicitly, but shallow

convection is parameterized following Pergaud et al. (2009). A bulk one-moment microphysical scheme (Pinty and Jabouille95

(1998)) governs the equations of the specific contents of six water species (humidity, cloud liquid water, precipitating liquid

water, pristine ice, snow, and graupel). This new version also performs 3D-Var analyses every hour instead of every three hours

to optimize the use of frequent observations. All conventional observations are assimilated together with wind profilers, winds

from space-borne measurements (Atmospheric Motion Vectors and scatterometers), Doppler winds (Montmerle and Faccani

(2009)) and reflectivity (Wattrelot et al. (2014)) from ground-based weather radars, satellite radiances as well as ground-based100

GPS measurements (Mahfouf et al. (2015)).

2.3 1D-Var framework

To retrieve temperature and humidity profiles and evaluate the impact on AROME analyses, a 1D-Var framework similar to the

one described in Martinet et al. (2017) is used. Based on the optimal estimation theory by Rodgers (2000), MWR observations105

are optimally combined with an a priori estimation of the atmospheric state which, in this study, refers to 1-hour AROME

forecasts. To that end, the two sources of information are weighted by corresponding uncertainty called the background-error-

covariance matrix (B) for the a priori profile and the observation-error-covariance matrix (R) for the observation to find the

optimal state. In order to find the optimal state minimizing the distance to the observation, a radiative transfer model is needed

to compute the equivalent observation from the a priori. The method iteratively modifies the state vector x from the a priori110

xb to minimize the following cost function:

J(x) =
1

2
(x− xb)

TB−1(x− xb)+
1

2
(y−H(x))TR−1(y−H(x))

where H represents the observation operator (radiative transfer model and interpolations from model space to observation

space), T represents the transpose operator and −1 the inverse operator. The observation-error-covariance matrix R should take

into account representativeness and forward model errors as well as radiometric noise.Through the manuscript, the atmospheric115

state minimizing the cost function is called the "analysis" (xa) and "increment" refers to the difference between the a priori xb

and the analysis.

For the first time, the fast radiative transfer model RTTOV-gb (De Angelis et al. (2016), Cimini et al. (2019)), developed specif-

ically to simulate MWR observations for operational applications during the Cost action TOPROF, is used within the 1D-Var
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package maintained by the NWP Satellite Application Facility (https://www.nwpsaf.eu/site/software/1d-var/). To that end, the120

1D-Var has been adapted to the ground-based sensing configuration of MWRs and interfaced with RTTOV-gb. In this study

the control vector x consists in temperature and the natural logarithm of specific humidity on the same 90 levels as defined

in AROME. These levels cover the atmospheric range from the ground up to 30 km, the vertical resolution decreasing with

altitude: 20-100 m below 1 km, 100-200 m from 1 to 5 km, around 400 m at 10 km. Additionally to temperature and humidity,

the liquid water path is also included in the control vector. Following the current implementation of the NWPSAF 1D-Var, no125

correlation between the LWP and the other variables is assumed in the B matrix. The observation vector y consists of brightness

temperatures (BT) in all K-band and V-band channels (1) at zenith and only opaque channels (above 54 GHz) at low elevation

angles: 42◦, 30◦, 19.2◦, 10.2◦ and 5.4 ◦. Transparent channels are not used at low elevation angles due to the violation of the

assumption of horizontal homogeneity.

3 Evaluation of 1D-Var retrievals130

3.1 Background errors

In variational data assimilation (either 1D-Var or 3D/4D-Var), the accuracy of the analysis will depend on the background-

error covariance matrix B. This matrix specifies how much weight is given to the a priori profile compared to the observation,

how the information from the localized observation is spread in the model space both vertically and horizontally (for 3D/4D-

Var assimilation) and impose the balance between the model control variables. However, due to difficulties in measuring the135

"true" state, this B matrix has to be modelled. Currently, climatological, spatially homogeneous and isotropic background-

error covariances are used operationally in the AROME model (Brousseau et al. (2011)). They are computed from 3h range

forecast differences from an ensemble data assimilation over long time periods and the whole model domain. As demonstrated

by Ménétrier and Montmerle (2011), climatological covariances are inadequate for fog areas which exhibit a much stronger

positive coupling between temperature and humidity and attenuated vertical correlations above the fog layer.140

For this study, a similar approach as the one described in Ménétrier and Montmerle (2011) has thus been used to infer

background-error covariances adapted to fog layers and to the AROME configuration and the time period of the experiment.

To that end, the AROME ensemble data assimilation schemes (AROME EDA) that mimics in a variational context the approach

taken in the stochastic Ensemble Kalman Filter (Evensen (2003)) has been used. The EDA explicitly perturbs the observations,

the model and the boundary conditions, and gives in return estimates of analysis and background error covariance (Fisher145

(2003); Zagar et al. (2005)). The AROME EDA consists in running an ensemble of 3D-Vars in parallel, where the observations

are perturbed according to their prescribed error statistics. The model perturbations are represented by an online multiplicative

inflation scheme (Raynaud and Bouttier, 2015). The inflation factor is derived from the skill over spread ratio. The perturbed

boundary conditions are taken from the global EDA (Raynaud et al., 2011). The EDA configuration used for this study corre-

sponds to the operational implementation since July 2018 with a horizontal resolution set to 3.2km and an ensemble size of 25150

122.24, 23.04, 23.84, 25.44, 26.24, 27.84, 31.4, 51.26, 52.28, 53.86, 54.94, 56.66, 57.3 and 58 GHz
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members.

Firstly, using this AROME EDA, a so-called "climatological" B was obtained by computing the forecast differences ǫ
k,l

b =

xk
b − xl

b between members k,l for all grid points of the whole AROME domain and all assimilation cycles on the 28th of

October 2016 (IOP1). A specific fog B matrix was then computed by applying a fog mask in order to only select grid

points for which most of the EDA members forecast fog. According to the discussion on the fog-model predictor used in155

Ménétrier and Montmerle (2011), the fog mask was based on the presence of liquid water contents above 10−6 kg.kg−1 in the

first three layers of the model. Several fog B matrices have been computed using different assimilation cycles. The fog B matrix

showing the best results in terms of root-mean-square-errors (RMSE) with respect to radiosoundings has then been selected

for this study.

Similarly to Brousseau et al. (2016), background error standard deviations are multiplied by a factor α < 1 in order to take160

into account the forecast error reduction while the background range decreases from 3 to 1h (as the AROME EDA provides 3h

forecasts whereas the 1D-Var deals with 1h forecasts). Based on comparison with in-situ measurements, an optimal value of

α= 0.7 was found. This multiplicative factor is only applied on background error standard deviations while cross-correlations

are assumed to be the same at the 1 and 3h forecast ranges. Figure 1 compares background error standard deviations for

temperature and the natural logarithm of specific humidity computed for the "climatological" and "fog" B matrices. Similar165

shape and magnitude are observed between the two B matrices for the natural logarithm of specific humidity. However, in

the case of temperature, background errors in fog areas are found to be larger within the first 500 m with a maximum of 0.7

K at 250 m. On the other hand, the "climatological" B matrix shows values below 0.5 K within the whole fog layer. Figure

2 shows the cross-correlations between specific humidity and temperature. Similarly to Ménétrier and Montmerle (2011), a

strong positive coupling appears in the fog layer within the first 200 m. This coupling implies that a positive temperature error170

will be translated into a positive specific humidity error (and vice-versa) due to saturated conditions. This structure significantly

differs from the one observed in climatological conditions with almost no coupling between the two variables in the boundary

layer. The fog layer is also un-coupled with atmospheric layers above the fog top which exhibit a negative coupling between

temperature and humidity.

3.2 Optimal configuration of 1D-Var retrievals175

The accuracy of 1D-Var retrievals depends not only on the background-error-covariance matrix but also on an adequate speci-

fication of the observation-error-covariance matrix. Observation errors are assumed to follow Gaussian distributions with zero

mean. A similar method as described in Martinet et al. (2015), De Angelis et al. (2017) and Cimini et al. (2020) has been used

to implement a bias correction of BT measurements based on 6-month differences between MWR observations and BTs simu-

lated from AROME 1h forecasts with the use of RTTOV-gb (so-called "O-B monitoring"). Table 1 reports the biases obtained

for each channel at 90◦ and the most opaque channels at low elevation angles. The values are consistent with those reported in

De Angelis et al. (2017). A static bias-correction of all channels based on table 1 has been applied to the measurements.

Observation errors due to liquid nitrogen calibration and spectroscopic errors in radiative transfer models were updated accord-

ing to recent studies from Maschwitz et al. (2013) and Cimini et al. (2018). Therefore, in addition to commonly used values of
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Figure 1. Background error standard deviations for temperature (left pannel) and the natural logarithm of specific humidity (right panel) for

a "climatological" B matrix (red line) or a specific fog B matrix (blue line).
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Figure 2. Cross-correlations between the natural logarithm of specific humidity (y-axis) and temperature (x-axis) for a fog B matrix (left

panel) or a climatological B matrix (right panel). x-axis and y-axis are labelled according to altitude above ground in meter.

instrumental noise (0.5 K for transparents channels and 0.2 K for the most opaque channels), the individual errors defined by

Maschwitz et al. (2013) and Cimini et al. (2018) were added in quadrature:

σtot =
√

σnoise
2 + σcalib

2 + σFM
2

with σtot the total observation errors, σnoise the uncertainty due to noise, σcalib calibration uncertainties and σFM the un-

certainty due to spectroscopic errors in the radiative transfer model. It is important to note that calibration errors of modern

MWRs are lower than the ones used in this study due to new developments in the manufacturer software and liquid nitrogen

target used for the radiometer calibration. Table 2 summarizes the total observation uncertainty for each channel.
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Table 1. Bias of the observation minus background departures computed from AROME forecasts for all frequency at 90◦ elevation angle

and only the most opaque channels (54.94 to 58 GHz) at lower elevation angles.

22.24 23.04 23.84 25.44 26.24 27.84 31.4 51.26 52.28 53.86 54.94 56.66 57.3 58

90 ◦ 0.41 0.66 0.17 0.18 0.15 -0.43 0.31 -1.30 -4.72 -0.28 -0.04 0.06 0.16 0.20

42 ◦ - - - - - - - - - - 0.04 0.18 0.22 0.23

30 ◦ - - - - - - - - - - 0.07 0.24 0.27 0.27

19.2 ◦ - - - - - - - - - - 0.14 0.31 0.33 0.30

10.2 ◦ - - - - - - - - - - 0.23 0.37 0.35 0.32

5.4 ◦ - - - - - - - - - - 0.18 0.24 0.25 0.21

Table 2. Observation uncertainties (K) prescribed in the observation-error-covariance matrix for each channel.

Frequency (GHz): 22.24 23.04 23.84 25.44 26.24 27.84 31.4 51.26 52.28 53.86 54.94 56.66 57.3 58

σo (K): 1.34 1.71 1.16 1.08 1.25 1.17 1.19 3.21 3.29 1.30 0.37 0.42 0.42 0.36

In order to define the best configuration of 1D-Var retrievals in terms of background-error-covariance matrix and bias-

correction, statistics have been performed over the 6-month period by comparison with the 120-m tower measurements. For

each altitude instrumented with a weather station (50 and 120 m altitude) and each variable (temperature and specific humidity),

the error reduction brought by the analysis over the background is defined as:

ER = 1−
RMSExa

RMSExb

with RMSExa the root-mean-square-errors of the 1D-Var retrieved profiles with respect to the mast measurements, and180

RMSExb the root-mean-square-errors of the background profiles with respect to the mast measurements. It is important

to note that given the relative low vertical resolution of MWR retrievals, the retrievals at 50 and 120 m are likely to be highly

correlated.

Table 4 reports the calculated error reduction for each variable, each altitude and each 1D-Var configuration. The 1D-Var

configuration maximizing each ER will be selected as the best configuration. Statistics are divided between fog profiles only185

(lower part) or all weather-conditions except fog (upper part). In addition to tower measurements limited to only two levels, the

different 1D-Var configurations were also evaluated in terms of bias and RMSE against 21 radiosondes (Figure 3). Radiosondes

were launched during IOPs in different atmospheric conditions: the majority are under stratus-cloud and fog conditions and a

few of them in clear-sky. Table 3 gives a list of the different configurations evaluated in this section. The three first configu-

rations aim at evaluating the impact of the background-error-covariance matrix while the last two configurations focus on the190

bias-correction.
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3.2.1 Sensitivity to the background-error-covariance matrix

In order to evaluate the impact of the background-error-covariance matrix, three experiments have been designed. The CTRL

run mimics the configuration of the operational AROME 3D-Var data assimilation system with a "climatological" B matrix

taking into account cross-correlations between temperature and specific humidity. As cross-covariances highly depend on the195

weather conditions (Hólm et al. (2002), Michel et al. (2011)) and the use of fixed covariances is not optimal when dealing

with different atmospheric scenario, Config1 aims at evaluating the impact of the cross-correlations between temperature and

humidity on the retrievals. To that end Config1 corresponds to the same configuration but removing the cross-correlations

between temperature and specific humidity. It can be noted that this approach is still used in various 3D/4D-Var operational

schemes (Barker et al. (2004)). Config2 mimics the use of a flow dependent B matrix during fog conditions only with a full200

correlated fog-specific B matrix during fog events but a non-correlated climatological B matrix for all other weather conditions.

For these three configurations, the bias-correction based on clear-sky O-B monitoring is applied to the raw BT measurements.

Table 3. List of 1D-Var experiments.

Expt. Description Bias correction

CTRL Climatological Bclim matrix BC from AROME O-B monitoring

computed from the AROME EDA with

cross-covariances between T and Q

Config1: Climatological Bclim matrix BC from AROME O-B monitoring

Bclim NO CROSS CORR computed from the AROME EDA

without cross-covariances between T and Q

Config2: Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

Bflow dependent Bclim without cross-correlations for visi_10m>1000m

Config3: Bflow dependent Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

NO BC 54-58 GHz Bclim without cross-correlations for visi_10m>1000m for channels 22 GHz-53.86 GHz

NO BC for channels 54.54 to 58 GHz

Config4: Bflow dependent Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

BC δT < 5K Bclim without cross-correlations for visi_10m>1000m base on all clear-sky profiles with T500m-Tground < 5K

The worst results are obtained with the CTRL configuration, which considers a "climatological" B matrix taking into ac-

count cross-correlations between temperature and humidity. With this configuration, the specific humidity RMSE with respect

to tower measurements is degraded by up to 20 % (resp. 7 %) at 120 m altitude during fog conditions (resp. all weather condi-205

tions). This demonstrates the importance of the B matrix cross-correlations on 1D-Var accuracy and particularly in the case of

observations with low information content on the vertical structure (as MWRs are mainly sensitive to the total column water

vapor content due to vertically quasi-constant weighting functions). The humidity profile degradation is significantly reduced

to less than 3 % thanks to the use of a block diagonal B matrix in Config1. Humidity profiles are finally improved by up to 21

% in RMSE at 120 m during fog conditions with the use of a specific fog B matrix adapted to the meteorological conditions.210
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Table 4. Reduction in the RMSE with respect to tower measurements after the 1D-Var analysis (RMSExa) compared to the background

(RMSExb) for all weather conditions (upper part) or only fog events (lower part): ER = 1−
RMSExa

RMSExb

(%). Statistics performed on tem-

perature (T, (K)) and specific humidity (Qspec, kg.kg−1) at 50 and 120 m altitude.

ER

1DVAR
CTRL: Bclim Config 1: Bclim Config2: Bfog Bclim Config3: Bfog Bclim Config4: Bfog Bclim

Cross-corr no cross-corr NO BC 56-58 GHz BC ∆T < 5 K

All conditions except fog (statistics on 2534 profiles)

T 50m 42 42 42 57 54

T 120m 40 40 40 50 50

Qspec 50m -4 0.2 0.3 0.3 0.3

Qspec 120m -7 0.1 0.1 0.1 0.1

Fog cases (statistics on 351 profiles)

T 50m 37 37 34 50 44

T 120m 21 21 24 32 32

Qspec 50m -7 -1 -5 15 6

Qspec 120m -20 -3 21 20 21

Figure 3 confirms that the best configuration in terms of B matrix corresponds to Config2 compared to the CTRL configuration.

In fact, the use of a "climatological" B matrix with cross-correlations degrades both temperature and humidity retrievals but

more significantly specific humidity up to 4 km. Overall, these results confirm that, for MWRs, humidity increments in the

lowest levels are significantly driven by the cross-correlations between temperature and humidity. These correlations (sign and

amplitude) being highly dependent on the weather conditions, the B matrix should ideally be updated for each profile. When it215

is not possible, the use of a block diagonal B matrix might be preferable to avoid degradation in the retrievals due to inaccurate

cross-correlations. This result is in line with the study of Dee and Da Silva (2003) which showed that, when humidity is less

adequately observed than temperature, it is more accurate to neglect humidity - temperature error covariances. However, when

an adapted flow-dependent B matrix is used, the specific humidity analysis is improved. In the future, the use of ensemble data

assimilation schemes should enable deriving optimal B matrices evolving in time and space to be consistent with the weather220

conditions in order to optimize specific humidity retrievals.

3.2.2 Sensitivity to the bias correction applied on opaque channels

One other source of errors in the lowest levels could come from the bias correction applied on the most opaque channels. In

fact, the bias correction has been inferred from differences with respect to the AROME model which is known for larger errors

in the boundary layer below 2 km altitude (Martinet et al. (2015), Martinet et al. (2017)). Two additional configurations have225

thus been designed to evaluate the impact of the bias correction applied on raw measurements. Config3 is similar to config2

except that the bias-correction is not applied on the last four most opaque channels (54-58 GHz range). Config4 is similar
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to config2 except that the bias-correction applied to all channels is based on statistics of O-B departures made on clear-sky

profiles with a temperature gradient between 500 m altitude and surface smaller than 5 K. Table 4 shows that 1D-Var retrievals

are already improved with Config4 in fog conditions. Consequently, removing larger model errors during very stable conditions230

in the O-B monitoring leads to an improved estimation of the bias correction. The best scores are finally obtained with Config3

with improved temperature retrievals by 15 % at 50 m. Figure 3 confirms that if the bias-correction based on the AROME

monitoring is applied to the 54-58 GHz channels, a significant degradation in the temperature retrievals is observed in the first

500 m. Removing the bias correction applied to transparent channels causes a significant degradation of the specific humidity

retrievals above 2 km altitude.235

This result demonstrates that, even though the bias-correction of MWR BT measurements can be computed from AROME

short-term-forecasts for transparent channels, this method is not optimal for opaque channels without a thorough screening

of the O-B innovations. In fact, the bias-correction of opaque channels depends on the accuracy of the forecast model within

the boundary layer, which is known to be degraded during stable conditions. Similar conclusions are found in Martinet et al.

(2017), despite the larger period of O-B monitoring (6-months instead of 2-months) and a less complex terrain.240

Figure 3 finally shows that the best performance is obtained with Config3 through the whole atmospheric column both for

temperature and humidity. For temperature, with this best configuration, RMSE smaller than 0.6 K within the fog layer and

below 1.6 K considering the whole atmospheric profile up to 6 km altitude are obtained. The 1D-Var analysis outperforms the

background in the first 800 m with a maximum improvement observed within the fog layer (RMSE decreased from 2.2 K to245

0.6 K at 75 m). As expected, most of the information from the MWR observations are located below 2000 m and mainly below

1000 m. For humidity, RMSE accuracies are less than 1 g.kg−1 for the best scenario. Most of the improvement brought to the

background is located below 3000 m with a maximum RMSE decrease reaching 0.2 g.kg−1 at 75 m and 1800 m. Configuration

3 is used in the following sections.

4 Thin radiative fog case study250

This section focuses on a thin radiative fog case observed on the 28th of October 2016. Figure 4 shows the cloud base height

retrieved from a CL31 ceilometer (top panel), the visibility measurements on the instrumented tower at 10 m and 120 m altitude

(blue and green lines respectively, middle panel) as well as the 1-hour AROME forecasts of liquid water content (LWC) for the

same day (bottom panel). During the whole period, fog is only observed at 10 m altitude during 40 minutes at midnight and

then during 4 hours from 5 to 9 UTC. A stratus-cloud is then observed from 10 UTC until midnight with a cloud base height255

between 300 and 500 m. The AROME backgrounds simulate a continuous thick fog event from 0 to 13 UTC, which is then

lifted until 15 UTC into a stratus cloud at 500 m altitude. The stratus cloud is then dissipated to appear again after 20 UTC. In

this example, two main deficiencies in the AROME 1-hour forecasts are observed: a temporally longer and vertically thicker

fog event and the erroneous dissipation of the stratus cloud between 15 and 20 UTC.

Figure 5 compares the time series of temperature profiles (top panels) and specific humidity (bottom panels) forecast by260
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Figure 3. Vertical profiles of (left) temperature and (right) specific humidity bias (solid line) and root-mean-square-errors (dashed lines) of

1D-Var retrievals (coloured lines) and AROME backgrounds (black line) against 21 radiosondes launched during IOPs: 1DVAR retrievals

from AROME 1 h forecasts with bias-correction and a cross-correlated climatological B matrix (CTRL, magenta), with bias-correction and

a cross-correlated dedicated fog B matrix (Config2, blue), with bias-correction except channels 11-14 and a cross-correlated dedicated fog B

matrix (Config3, red), without any bias-correction and a cross-correlated dedicated fog B matrix (cyan).

AROME (left panels) and retrieved with the 1D-Var scheme using the optimal configuration. We can note the large tempera-

ture increment by up to 5 K from 0 to 12 UTC essentially in the first 250 m after 1D-Var is applied; this is the period where

the model simulates a thick fog event not confirmed by the observations. This is followed by a temperature cooling within 2

K during the stratus cloud (16 to 24 UTC). The specific humidity is only modified during the fog event (5 to 9 UTC) with an

increase of 1 g.kg−1 in the first 1500 m.265

In order to quantify the accuracy of the 1D-Var increments in this specific fog case, Figure 6 evaluates the corresponding

diurnal evolution of temperature, specific humidity and relative humidity at 50 and 120 m altitude. A large underestimation of

the temperature by 4 to 6 K is observed in the AROME forecasts by night until 13 UTC. AROME forecasts are also found to

be too warm by 2 K after 18 UTC. The assimilation of MWR brightness temperatures in a 1D context greatly improves the

model background (temperature) during the nightime fog event with temperature errors smaller than 2 K after assimilation.270
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The 1D-Var retrievals almost perfectly fit the in-situ observations after 13 UTC for temperature both at 50 and 120 m altitude.

In terms of specific humidity, AROME tends to underestimate the specific humidity at nighttime probably due to an overes-

timation of the saturation. Indeed, as the fog layer was thicker in AROME than in the observations, we believe the model

converts too much water vapour into liquid erroneously, which makes it underestimate specific humidity. On the contrary, the

specific humidity is overestimated in the afternoon. After 1D assimilation of MWR measurements, specific humidity is nearly275

identical to the AROME forecasts except during the longest fog event (between 4 and 9 UTC) where the 1D analysis is closer

to the tower measurements than the background. This is likely due to the use of the cross-correlated fog B matrix under these

conditions as opposite to the use of a block diagonal B matrix when fog is not observed. Most of the model increment is thus

produced by the B matrix cross-covariances. Background errors are reduced from 0.5 g.kg−1 to 0.1 g.kg−1. Though closer to

the in-situ observations, 1D-Var retrievals slightly overestimate specific humidity between 4 and 9 UTC. This is most likely280

due to over-estimated positive cross-correlations between temperature and humidity in the B matrix. In terms of relative hu-

midity, the temperature warming by night leads to the effect that the fog layer is not saturated any more in agreement with the

tower in-situ measurements. However, this field is degraded after 13 UTC. In fact, the 1D-Var scheme correctly reduces the

temperature but is not able to decrease the specific humidity. The relative humidity is thus wrongly increased by the 1D-Var

analysis.285

In view of the future inclusion of hydrometeors in the data assimilation control variables, the information brought by MWRs

to the liquid water path (LWP) could also be very valuable. Figure 7 shows the time series of LWP forecast by AROME,

retrieved through the 1D-Var and retrieved from a quadratic regression applied on BT measurements. It can be seen that the

AROME model clearly overestimates the fog LWP with a maximum reaching 90 g.m−2 at 7 UTC. This value, however,

decreased down to 25 g.m−2 after the 1D assimilation of MWR brightness temperatures. During the period where the model290

fails to simulate the stratus cloud, the LWP is significantly increased in the 1D-Var analysis with values between 30 and 80

g.m−2 even if the background profile has no cloud layer between 14 and 20 UTC. These LWP modifications brought by the

1D-Var are consistent with the in-situ observations on the instrumented tower as well as ceilometer observations.

5 Six-month statistics

While the previous section focuses on an extreme fog case, this section aims at more general conclusions on the expected impact295

of MWR BTs assimilation on AROME analysis. To that end, a statistical evaluation of the expected model increments (analysis

minus background differences) after assimilating MWR measurements has been conducted using the tower measurements

during the six-month period. 1D-Var retrievals have been performed using the optimal configuration described in section 3.2.

A total of 351 hours of fog (rain events have been removed) could be observed with the MWR. In order to evaluate the

performance of the AROME background profiles (1h forecast) to accurately forecast fog events, statistics based on the hit ratio300

(HR), false alarm rate (FAR), frequency bias index (FBI) and critical-success-index (CSI) have been computed. If GD is the

number of fog profiles well detected, ND the number of undetected fog profiles, FA the number of false alarms, these scores

are defined by:
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Figure 4. Top panel: Cloud base height (m) derived from the CL31 ceilometer measurements, middle panel: visibility at 10 m (blue) and 120

m (green line), bottom panel: AROME 1-hour forecasts of liquid water content in g.kg−1. 28 October 2016.
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Figure 5. Time series of temperature profiles (top panels) and specific humidity (bottom panels) forecast by AROME (left panels) and

retrieved with the 1D-Var scheme with the optimal configuration (Config3, right panels). 28 October 2016.
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(1)

To detect fog profiles in the model space, a new visibility diagnosis specifically developed for the AROME model has305

been used (Dombrowski-Etchevers et al. (2020)). In this new diagnosis, the visibility is directly deduced from the liquid water

content at ground. It was computed through a statistical regression between hourly maximum of liquid water content forecast

by AROME and observed minimum of visibility on 100 ground stations during five months. A hit ratio of 73 % and a false

alarme rate of 58 % was found. A FBI of 1.77 means that the AROME background profiles tend to forecast too many fog

events. CSI equal to 0.35 means that only 35 % of fog events (observed and/or predicted) are correctly forecast by the model.310

These statistics emphasize that quite large errors are observed in the AROME 1h forecasts of fog with an excessive number
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of false alarms. In order to evaluate the potential benefit of MWR observations to adjust the AROME background profiles, the

statistical study of model increments is split between the good detections, missed fog profiles and false alarms.

Firstly, the frequency distributions of differences of 1D-Var analysis and background with tower measurements at 50 m

are displayed in Figure 8 both for temperature and specific humidity. For temperature and for all subsets, the distributions315

of 1D-Var analysis errors are more centered and more symmetric compared to the background error distributions. Thus, the

largest background errors (above 2 K in absolute values) are succesfully corrected by the 1D-Var analysis. Background error

distributions also present a larger tail towards negative values with a secondary peak centered around -4 K in the case of false

alarms and to a smaller extent in the case of good fog detections. The largest temperature improvement is observed in the case

of false alarms with only 35 % of the background errors being within -0.5 to 0.5 K, against 69 % for the analysis. RMSE with320

respect to tower measurements are also significantly improved with values between 1.3 and 1.9 K in the background against

0.6 K in the analysis. The frequency distribution of specific humidity errors for 1D-Var analysis and background are close, with

similar bias and RMSE for good detections and false alarms. A slight degradation is observed for missed fog detections with

a RMSE of 0.33 g.kg−1 in the analysis against 0.25 g.kg−1 in the background. Overall, the impact on humidity is less evident

than on temperature at 50 m altitude.325

To get a vertical perspective, Figure 9 shows the profiles of the frequency distribution of analysis minus background differences.

As more than 90 % of the water vapour increments are within 1 g.kg−1 up to 1500 m altitude, only the impact on temperature

is discussed. For each vertical bin, the frequency of the temperature increments within a given range of values is shown. The

frequency distribution of 1D-Var increments has been separated between cases of correct fog detection, missed fog and false

alarms. For all dataset, most of the temperature analysis increments are observed below 750 m and span the range -5 to 5 K.330

The largest increments are observed between 100 and 300 m altitude for which around 20 % of the analysis minus background

differences are larger than 2 K in absolute values. We can note significant differences in the shape of the increment distributions

depending on the forecast score. While the distribution of good detections is quite symmetric, it is not the case for missed fog

profiles and false alarm distributions. In the case of missed fog events, the distribution is negatively-skewed close to the ground

whereas it is positively-skewed above 100 m altitude. This asymmetry means that the largest analysis increments in magnitude335

tend to decrease the temperature close to the ground and increase the temperature above 100 m. Consequently, we can expect

1D-Var analyses to increase the atmospheric stability in the first 150 m, which is key for fog formation. In the case of false

alarms, the distribution is positively-skewed for all vertical levels. This asymmetry means that the largest analysis increments,

though less frequent in the distribution, occur when the AROME forecasts tend to significantly overestimate the temperature

cooling. By limiting the temperature cooling, the 1D-Var analyses might limit the erroneous saturation leading to false alarms340

in the background.

Additional value of MWR data for NWP forecasts and process studies is in the LWP product. In fact, MWR is one of the most

reliable sources for this variable (Crewell and Löhnert (2003)), which is key for better understanding the microphysics of fog

lifecycle and limiting the forecast spin-up (i.e. the unbalance of thermodynamic profiles with microphysical variables during

the analysis). In fact, as hydrometeors are currently not included in the control variables of most operational variational data345

assimilation schemes, these fields are kept unchanged during the analysis. Thus, the analyzed hydrometeor fields correspond
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to the previous background. Consequently, in the following statistics, the background values of LWP correspond in fact to the

LWP in the operational AROME analysis. These fields are then modified according to the updated temperature and humidity

analyses in the first time steps of the forecast through the model physics. The statistical study performed here is also useful

to evaluate the expected impact on the AROME analyses if MWR observations were assimilated and the LWP included in350

the control variables. To that end, Figure 10 investigates the frequency distribution of LWP increments split by forecast skill

(good detections, undetected fog, false alarms). Firstly, we can note that the LWP increments are higher than 50 g.m−2 in

absolute values for approximately 50 % of good detections and missed fog profiles and 30 % of false alarms. During false

alarms, 95 % of the background LWP values are below 20 g.m−2 (not shown), which is close to the MWR sensitivity which

might explain smaller 1D-Var increments during false alarms. The mean increment is the highest in the case of missed fog355

events (57 g.m−2) and the smallest in the case of false alarms (15 g.m−2). It is important to note that during false alarms, the

LWP increment might be positive due to the presence of cloud layers though we would expect the 1D-Var analysis to decrease

the LWP within the fog layer. If we restrict the statistics to false alarms without cloud aloft, the mean increment is reduced

to -2 g.m−2. As expected, large positive increments occur more often in fog cases un-detected by AROME with 47 % of the

distribution showing increments above 50 g.m−2 against 35 % in good detections and 22 % in false alarms (8 % for false alarms360

without cloud layers aloft). To further investigate the LWP increments and retrieved values, more in situ data are necessary,

e.g from the cloud droplet probe mounted on the tethered balloon or cloud radar measurements. However, the lack of cloud

radar measurements to differentiate the LWP within the fog layer and cloud aloft makes this evaluation complex. Too few cases

during which MWR observations were colocated with an entire sounding of the fog layer with the tethered balloon have been

sampled to make an independent evaluation of this product. This is why we use the LWP derived from the MWR alone through365

a quadratic regression as a reference. The expected accuracy of this product 15 to 20 g.m−2 according to Crewell and Löhnert

(2003). To that end, Figure 12 shows the scatterplot between the LWP retrieved with the MWR alone (through multi-channel

regressions provided by the manufacturer) and the 1D-Var analyses or background profiles (left panel). We can note the large

improvement in correlation between the LWP forecast by the background (0.72) versus the 1D-Var analysis (0.98) with respect

to the MWR multi-channel retrieval. This is of course expected as the 1D-Var minimization tends to get closer to the MWR370

brightness temperatures which are also used in the multi-channel retrieval. However, this evaluation is a good sanity check

showing the good behaviour of the 1D-Var algorithm and its capability to extract the information from the observation even

with very large errors in the first guess background profiles. The mean error of the AROME LWP is -49 g.m−2 and is reduced

to -2 g.m−2 after 1D assimilation. The root-mean-square-error is significantly reduced from 102 g.m−2 to 27 g.m−2.

The same evaluation has been carried out on the IWV (Figures 11 and 12). Since MWRs are more sensitive to column integral375

than vertical distribution, more significant impact is expected on IWV than specific humidity profiles. The IWV increments

span from -4 to 4 kg.m−2, which correspond to a change in the background IWV up to 30 %. The distribution of IWV

increments is positively-skewed for correct fog detection meaning that the largest increments in magnitude are observed when

the background underestimates the integrated water vapour content. On the contrary, it is negatively-skewed for missed fog

profiles meaning that the largest increments occur when the model overestimates the integrated water vapour content. It is more380

symmetric in the case of false alarms. The correlation coefficient with respect to the MWR multi-channel retrieval (fig. 12)
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is sligthly increased from 0.97 to 1. The RMSE is improved from 1.30 to 0.71 kg.m−2. The impact of MWR observations is

thus positive on IWV, though the good quality of AROME humidity forecast leaves little room for improvement. This could be

explained by the assimilation of observations sensitive to the total column water vapor like Global Navigation Satellite System

(GNSS) zenith total delay. Further investigation on multiple sites would be needed to confirm this hypothesis.385

The next natural step of this study would be to calculate updated scores of fog detections with the new 1D-Var analyses

compared to the background profiles. However, forecast scores are only based on the LWC at ground whereas the 1D-Var

works on the liquid water path without information on the cloud vertical structure. During false alarms, conclusions on the

impact on forecast scores are complexified by the presence of cloud layers above fog in a majority of false alarms which can

cause an increase in LWC at ground. As for the hit ratio, it is increased from 73 % in the background to 81 % in the analysis.390

The rate of missed fog events is also decreased from 27 % in the background to 19 % in the 1D-Var analysis. However, as this

evaluation is only based on the LWC change at the ground, it is necessary to evaluate the impact of the new temperature and

humidity fields on the LWC after a few time steps of forecasts but this is beyond the scope of this paper. This investigation into

the forecast impact will be studied in the future within the framework of the SOFOG3D experiment (section 6).

6 A regional-scale MWR network for fog process studies: the SOFOG3D experiment395

This worked has proved MWRs to be potential good candidates to be assimilated into current mesoscale models with a special

focus on fog forecast improvement. However, our conclusions are currently limited by the small dataset (only one winter

at one site) and the lack of impact studies on fog forecast. Although, a positive impact is expected on the analysis of the

ABL temperature profile and the LWP, and, to a smaller extent, to the IWV, the next step will be to quantify the impact

of a more accurate initial state on fog forecast capability. Among the massive number of observations currently assimilated400

into operational models, the assimilation of only one MWR unit would probably not be efficient to effectively constrain the

boundary layer in the model analysis and to keep the valuable information brought by this local observation over the forecast

range. In order to go further in this evaluation, the deployment of a dense network of MWRs is necessary to perform a data

assimilation study into the operational AROME 3D-Var assimilation system. Thanks to the strong European collaboration

built in the framework of the cost action TOPROF (www.cost.eu/COST_Actions/essem/ES1303), pursued by the cost action405

PROBE (PROfiling the Boundary layer at a European Scale, Cimini et al. (2020)), an un-precedented regional-scale network

of 8 MWR units has been deployed in the South West of France during the period October 2019 to April 2020. This network

will serve the data assimilation experiment, fog process studies and model evaluation of the international SOFOG3D (SOuth

FOGs 3D experiment for fog processes study) experiment led by Météo-France. Figure 13 shows the domain of the dedicated

500 m horizontal resolution AROME version in test for evaluation during SOFOG3D and the location of the 8 MWR units410

deployed for the experiment. MWR locations have been chosen for an homogeneous spread over the AROME domain at sites

known for the high frequency of fog occurrence. An increased density of MWRs is found at the super-site with two co-located

MWRs and a third humidity profiler deployed approximately 7 km away from the super-site to document the impact of surface

heterogeneities on fog characteristics. The methodology introduced in this paper will be extended to the 8 MWRs deployed
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during SOFOG3D. This large dataset will help quantifying the spatio-temporal variability of fog parameters (thermodynamics415

and microphysics) between the different sites, better understand the main processes playing a role in fog formation / dissipation

/ development and run real data assimilation experiments using the operational 3D-Var assimilation scheme of the AROME

model to quantify the expected fog forecast improvement thanks to ground-based MWRs.

7 Conclusions

In this study, the expected benefit of ground-based MWRs on NWP analyses during fog conditions has been investigated with420

a 1D-Var technique. Temperature, humidity and LWP have been retrieved through the optimal combination of short-term-

forecasts and MWRs brightness temperatures. In this study, a new retrieval algorithm, combining the NWPSAF 1D-Var and

the fast radiative transfer model RTTOV-gb, has been evaluated on a 6-month period spanning 351 hours of fog conditions.

The first part of this work aimed at deriving an optimal background-error-covariance matrix for fog conditions with the use

of newly developed AROME EDA. Similarly to Ménétrier and Montmerle (2011), background-error standard deviations were425

found to be approximately 40 % larger within the first 250 m for temperature compared to a commonly used "climatological

B matrix". For specific humidity, similar standard deviations were observed. Most of the differences between a climatological

B matrix and a fog B matrix were observed in the cross-correlations between temperature and specific humidity, with a strong

positive coupling within the fog layer and uncoupling between the fog layer and atmospheric layers above. The impact of the

B matrix and bias-correction has been investigated through a statistical evaluation of the retrieval accuracy with respect to the430

in-situ measurements on the instrumented tower at 50 and 120 m altitude. The optimal configuration has been defined through

the definition of the error reduction brought by the analysis over the background for each variable (temperature and specific

humidity) and each altitude. The best scenario mimics the use of a "flow dependent" B matrix by using a cross-correlated

fog B matrix when fog is detected by visibility measurements and an un-correlated climatological B matrix during the other

conditions. The retrievals of specific humidity at 120 m altitude are the most impacted: contrary to the significant degradation435

of the background by around 20 % with a sub-optimal B matrix, an improvement of 21% of the background is obtained with an

optimal B matrix. This demonstrates the crucial role of the B matrix cross-correlations when assimilating observations with low

information content on the vertical structure. Consequently, the on-going development of an 3D-EnVar scheme for the AROME

model (Montmerle et al. (2018)) is a necessary step to optimally assimilate MWR observations into the AROME model. The

use of a static bias-correction based on the monitoring of observation minus background innovations was also evaluated. Biases440

of less than 0.5 K were observed for K-band and opaque V-band channels and up to -4.7 K for the most transparent V-band

channels. The found bias is similar to previous studies; its correction applied to BT measurements improves humidity retrievals

above 2000 m but degrades temperature retrievals in the first 200 m. This degradation is most likely due to well-known larger

model errors in the boundary layer during stable conditions, which are incorrectly included in the bias-correction. Restricting

the computation of the bias-correction to clear-sky unstable conditions was found to remove most of the degradation. Overall,445

with the best configuration (flow dependent fog B matrix and no bias correction for most opaque channels), temperature and

humidity profiles could be retrieved with RMSE below 1.6 K and 1 g.kg−1 up to 6 km in the troposphere.
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A thin radiative fog sampled during the first IOP of the experiment was then described. For this specific case, the AROME

model was found to simulate a temporally longer and vertically thicker fog event and is not able to maintain the stratus cloud

in the afternoon. After 1D assimilation of MWR observations, a large warming up to 5 K is observed within the first 500 m450

during the fog event associated with an increase in specific humidity and a decrease of LWP by 40 to 70 g.m−2 consistent with

in-situ measurements showing the large impact brought by MWR observations to modify the initial state of the model in fog

conditions.

Finally, a statistical evaluation of the expected model increments after assimilating MWR measurements has been conducted

using tower measurements. Large forecast errors were observed in the AROME backgrounds with a tendency to overestimate455

the presence of fog. During missed fog profiles, 1D-Var increments pull towards lower temperature close to the ground and

higher temperature above 100 m altitude, i.e. higher atmospheric stability. The largest analysis increments and background

errors are observed during false alarms when the AROME forecasts tend to significantly overestimate the temperature cooling.

Overall, RMSE values from 1.3 to 1.9 K are observed in the background against 0.6 K in the analysis. For specific humidity,

analysis increments are small and below 1g.kg−1 within the fog layer. On the contrary, a large impact has been found on460

the LWP with increments up to 200 g.m−2 in extreme missed fog events. A larger impact was found on the IWV than the

humidity profile with a RMSE with respect to tower measurements decreased from 1.3 kg.m−2 to 0.7 kg.m−2 during observed

fog profiles. However, it was noted that the AROME backgrounds are more accurate on the IWV compared to temperature and

LWP, which leaves less chances for improvement.

Using for the first time the RTTOV-gb fast radiative transfer model, this study investigated the impact of assimilating MWR465

observations in the AROME model during fog conditions. This evaluation, previously limited to temperature profiles only, was

extended to humidity and LWP. Promising results are shown, with significant positive impact on temperature and LWP and

small but slightly positive impact on humidity. In order to confirm the results obtained in a 1D-Var framework, the next step is

now to assimilate a real network of ground-based MWRs through a 3D-Var or 3D-EnVar data assimilation scheme. Following

the recommendations of Caumont et al. (2016) and thanks the strong European collaboration built within the TOPROF and470

PROBE COST actions, 8 MWRs have been deployed in the South-West of France from October 2019 to April 2020 in the

context of the international fog campaign SOFOG3D. The locations of the MWR units have been chosen to optimize their

impact in the model specifically for fog forecast evaluation. A 1D-Var plus 3D-EnVar approach will be used to assimilate

profiles retrieved through the 1D-Var algorithm presented here, taking the most out of the lessons learnt in this work.
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Figure 6. Diurnal evolution of temperature (top panel), specific humidity (middle panel) and relative humidity (bottom panel) forecast by

AROME (red), measured by weather station (black) and retrieved by the 1D-Var algorithm (blue). 28 October 2016.
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Figure 7. Time serie of liquid water path forecast by AROME (red), retrieved by the 1D-Var algorithm (blue) or retrieved from the MWR

alone through a quadratic regression (magenta). 28 October 2016.
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Figure 8. Frequency distribution of 1D-Var analyses (orange) and background (blue) differences compared to tower measurements for

temperature (top panel) and specific humidity (bottom panel) at 50 m altitude. Statistics performed over 255 profiles of good fog detection

(left panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 9. Vertical profiles of the frequency distribution of temperature increments (analysis minus background differences). Statistics per-

formed over 255 profiles of good fog detection (left panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms

(right panel).
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Figure 10. Frequency distribution of 1D-Var LWP increments (g.m−2). Statistics performed over 255 profiles of good fog detection (left

panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 11. Frequency distribution of 1D-Var IWV increments (kg.m−2). Statistics performed over 255 profiles of good fog detection (left

panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 12. Scatterplot between a multi-channel regression based on MWR observations (y-axis) and the background forecast by AROME

(red dots) or the 1D-Var analysis (blue dots) for LWP (left panel) and IWV (right panel). Statistics performed over 351 observed fog profiles.
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Figure 13. Surface geopotential and domain of the AROME-500m dedicated to the SOFOG3D experiment. Locations of the MWR sites

are shown with the filled circles (red indicate temperature and humidity profilers, yellow only humidity retrievals and cyan only temperature

retrievals. )
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