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Abstract. This paper investigates the potential benefit of ground-based microwave radiometers (MWRs) to improve the initial

state (analysis) of current numerical weather prediction (NWP) systems during fog conditions. To this end, temperature, hu-

midity and liquid water path (LWP) retrievals have been performed by directly assimilating brighness
✿✿✿✿✿✿✿✿
brightness temperatures

using a one-dimensional variational technique (1D-Var). This study focuses on a fog dedicated field-experiment performed over

winter 2016-2017 in France. In-situ measurements from a 120 m tower and radiosoundings are used to assess the improvement5

brought by the 1D-Var analysis to the background. A sensitivity study demonstrates the importance of the cross-correlations

between temperature and specific humidity in the background-error-covariance matrix as well as the bias-correction applied

on MWR raw measurements. With the optimal 1D-Var configuration, a root-mean-square-error smaller than 1.5 K (resp.

✿✿✿✿✿✿✿✿✿✿
respectively 0.8 K) for temperature and 1 g.kg−1 (resp.

✿✿✿✿✿✿✿✿✿✿
respectively 0.5 g.kg−1) for humidity is obtained up to 6 km altitude

(resp.
✿✿✿✿✿✿✿✿✿✿
respectively within the fog layer up to 250 m). A thin-radiative fog case study has shown that the assimilation of MWR10

observations was able to correct large temperature errors of the AROME model as well as vertical and temporal errors ob-

served in the fog lifecycle. A statistical evaluation through the whole period has demonstrated that the largest impact when

assimilating MWR observations is obtained on the temperature and LWP fields, while it is neutral to slightly positive for the

specific humidity. Most of the temperature improvement is observed during false alarms when the AROME forecasts tend to

significantly overestimate the temperature cooling. During missed fog profiles, 1D-Var analyses were found to increase the15

atmospheric stability within the
✿✿✿
first 100 m

✿✿✿✿
above

✿✿✿
the

✿✿✿✿✿✿✿
surface compared to the initial background profile. Concerning the LWP,

the RMSE with respect to MWR statistical regressions is decreased from 101 g.m−2 in the background to 27 g.m−2 in the

1D-Var analysis. These encouraging results led to the deployment of 8 MWRs during the international SOFOG3D (SOuth

FOGs 3D experiment for fog processes study) experiment conducted by Météo-France.
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1 Introduction

Each year large human and economical losses are due to fog episodes, which, by the large reduction of visibility, affect avi-

ation, marine, and land transportation (Gultepe et al. (2007))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Gultepe et al., 2007). Fog forecasts remain quite inaccurate due

to the complexity, non linearities and fine scale of the physical processes taking part in the fog lifecycle. Fog results from

a combination of radiative, turbulent and microphysical processes as well as interactions with surface heterogeneities which25

will drive the relative importance of local and large-scale circulations. Recently, three dimensional models have replaced

one-dimensional models to forecast fog in most national weather services. Currently, convective-scale numerical weather pre-

diction (NWP) models run with an horizontal resolution of approximately one kilometre with frequent data assimilation cycles.

While the importance of vertical resolution (Philip et al. (2016))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Philip et al., 2016), aerosol activation (Mazoyer et al. (2019)

)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Mazoyer et al., 2019) or water deposition (Tav et al. (2018))

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Tav et al., 2018) have recently been highlighted to improve30

fog forecasts, fog is also known to be highly sensitive to initial conditions (Bergot and Guedalia (1994), Bergot et al. (2005),

Hu et al. (2014))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Bergot and Guedalia, 1994; Bergot et al., 2005; Hu et al., 2014). Therefore, accurate initial temperature, hu-

midity and wind profiles are crucial to successfully forecast fog. However, the atmospheric boundary layer (ABL) has also

been identified as a part of the atmosphere which is undersampled by observations. Even though satellite data provide a

✿✿✿✿✿
enable

✿
global coverage all over the world, they provide limited information on the ABL due to the attenuation by clouds35

and degraded vertical resolution in the ABL. Additionally, uncertainties in surface properties (such as skin temperature and

emissivity, Guedj et al. (2011)) )
✿
limit the assimilation of surface-sensitive channels over lands (Guedj et al., 2011). Recently,

an Observing System Simulation Experiment (OSSE) by Hu et al. (2017), has demonstrated that temperature and moisture

at the surface have a larger impact on fog forecast than surface wind observations concluding that temperature and humidity

profilers could potentially play a major role in the improvement of fog forecast initialization. Ground-based microwave ra-40

diometers (MWR) are robust instruments providing continuous observations of temperature and humidity profiles as well as

integrated liquid and water contents during all-sky weather conditions. Even if their vertical resolution degrades with altitude

(Cimini et al. (2006))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Cimini et al., 2006), most of their information content resides in the ABL (Löhnert and Maier (2012))

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Löhnert and Maier, 2012) and their high temporal resolution (few minutes) makes them suitable to monitor the evolution of

fogdevelopment. Despite the potential impact of MWRs in NWP models, assimilation experiments of their data have been lim-45

ited to few attempts. The first preliminary study of Vandenberghe and Ware (2002) has demonstrated a positive impact of the

assimilation of a single MWR unit into the 10 km horizontal resolution MM5 (https://www2.mmm.ucar.edu/mm5/) mesoscale

model in the context of a winter fog event. The impact of a simulated network of 140 MWRs through an OSSE was also

investigated by Otkin et al. (2011) and Hartung et al. (2011) on a winter storm case. This study confirmed a positive impact

on temperature and humidity analyses as well as up to 12 hour forecasts on moisture flux. More recently, a real network of 1350

MWRs was assimilated by Caumont et al. (2016) into the 2.5 km horizontal resolution convective scale model AROME in the

context of heavy-precipitation events in the western Mediterranean. Impact of this network was found to be neutral on temper-

ature and humidity fields but positive on quantitative precipitation forecasts up to 18 hours. In addition, Martinet et al. (2015)

and Martinet et al. (2017) have demonstrated the positive impact that could be expected on NWP temperature profile analyses
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by the direct assimilation of MWR brightness temperatures into the AROME model with a one-dimensional variational frame-55

work (1D-Var). All these studies showed an encouraging positive impact of the assimilation of MWRs
✿✿✿✿✿
MWR observations into

NWP, though they are limited to deep-convection, single case studies on low resolution limited area models, or restricted to

temperature analyses only. The purpose of this article is to evaluate the expected benefit of MWRs on km-scale NWP analyses

during fog events on an extended dataset over a six-month fog experiment. This expands the studies of Martinet et al. (2015)

and Martinet et al. (2017) to humidity and liquid water path retrievals and evaluates the impact of new tools developed to op-60

timize the assimilation of MWRs during COST actions TOPROF (Illingworth et al. (2019)) and PROBE (Cimini et al. (2020)

)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Illingworth et al., 2019)

✿✿✿
and

✿✿✿✿✿✿✿
PROBE

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Cimini et al., 2020). A fog dedicated field experiment was carried out in the North-East

of France during the winter 2016-2017 during which a 14-channel MWR has been operated. The impact of MWR brightness

temperatures on temperature, humidity and liquid water content profiles forecast by AROME has been evaluated during the

six-month period against in-situ data collected during intensive observation periods (IOPs) and continuous measurements de-65

ployed on a 120 m instrumented tower. This paper begins with an overview of the dataset, the AROME model and a description

of the 1D-Var settings in section 2. A sensitivity study of the 1D-Var retrievals to the background-error-covariance matrix and

bias-correction to select the optimal configuration is presented in section 3. Section 4 presents a case study of the first IOP

showing large AROME errors during a thin radiative fog event well corrected by
✿✿✿
that

✿✿✿
are

✿✿✿✿✿✿✿✿
corrected

✿✿✿✿✿
when

✿✿✿✿✿
using

✿
the 1D-Var

✿✿✿✿✿✿✿
retrieval. Section 5 generalizes the results obtained in section 4 through a statistical evaluation of 1D-Var retrieval errors and70

expected impact on the AROME analyses. Section 6 presents the deployment of a regional-scale MWR network for fog forecast

improvement as continuity of this study, while finally section 7 summarises the main conclusions.

2 Dataset and methodology

2.1 Instrumentation

Data sampled during a field experiment dedicated to fog process studies carried out at the ANDRA (the French National75

Radioactive Waste Management Agency) atmospheric platform located in Houdelaincourt (48.5623N; 5.5055E) in the North-

East of France during the winter 2016-2017 are used in this study. The experimental site was chosen due to the high occurence

of fogs and the possibility to take advantage of a 120 m instrumented tower. A large range of in-situ instrumentation was

deployed during the six-month experiment: visibility sensors, liquid water content and droplet size distribution measurements,

temperature and relative humidity measurements at different levels above ground (10 m, 50 m, 120 m). In addition to in-80

situ measurements, a 14-channel HATPRO MWR (Rose et al. (2005))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Rose et al., 2005) manufactured by Radiometer Physics

Gmbh (RPG) was deployed on site during the experiment. The HATPRO MWR is a passive instrument measuring the naturally

emitted downwelling radiance in two spectral ranges: 22.24 to 31 GHz to retrieve humidity profiles with a low resolution but

high accurate integrated water contents (IWV) and liquid water path (LWP). The
✿
; 51 to 58 GHz range, located in the 60 GHz

O2 absorption complex line, is used to retrieve temperature profiles. Elevation scans from 5.4◦ to 90◦ were used to improve the85

vertical resolution of temperature profiles assuming that horizontal homogeneity in the vicinity of the instrument is respected.

A ceilometer Vaisala CL31 was deployed during October to December 2016 replaced by a Vaisala CT25K from January to
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April 2017 to determine the cloud base altitude. In addition, 21 VAISALA RS92 radiosondes with an expected accuracy of 0.5

K in temperature and 5 % in relative humidity were launched during IOPs. Tethered balloon measurements were also carried

out with the deployment of a cloud particle probe and a turbulence probe.90

2.2 The AROME NWP model

In this study 1-hour forecasts from the French convective scale model AROME (Application of Research to Operations at

MEsoscale, Seity et al. (2011)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Seity et al. (2011)) are used as a priori profiles or "backgrounds". AROME is a limited area

model covering Western Europe with non-hydrostatic dynamical core. Since beginning 2015, the horizontal resolution of

AROME has been increased from 2.5 km to 1.3 km as well as the number of vertical levels from 60 to 90 (Brousseau et al. (2016)95

)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Brousseau et al., 2016). Vertical levels follow the terrain in the lowest layers and isobars in the upper atmosphere. The

detailed physics of Arome are inherited from the research Meso-NH model (Lafore et al. (1997))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Lafore et al., 1997). Deep

convection is assumed to be resolved explicitly, but shallow convection is parameterized following Pergaud et al. (2009)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Pergaud et al. (2009). A bulk one-moment microphysical scheme (Pinty and Jabouille (1998))

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Pinty and Jabouille, 1998) gov-

erns the equations of the specific contents of six water species (humidity, cloud liquid water, precipitating liquid water, pristine100

ice, snow, and graupel). This new version also performs 3D-Var analyses every hour instead of every three hours to optimize

the use of frequent observations. All conventional observations are assimilated together with wind profilers, winds from space-

borne measurements (Atmospheric Motion Vectors and scatterometers), Doppler winds (Montmerle and Faccani (2009)) and

reflectivity (Wattrelot et al. (2014))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Montmerle and Faccani, 2009)

✿✿✿
and

✿✿✿✿✿✿✿✿✿
reflectivity

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Wattrelot et al., 2014) from ground-based

weather radars, satellite radiances as well as ground-based GPS measurements (Mahfouf et al. (2015))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Mahfouf et al., 2015).105

2.3 1D-Var framework

To retrieve temperature and humidity profiles and evaluate the impact on AROME analyses, a 1D-Var framework similar to

the one described in Martinet et al. (2017) is used. Based on the optimal estimation theory by Rodgers (2000)
✿✿✿✿✿✿✿✿✿✿✿✿
Rodgers (2000),

MWR observations are optimally combined with an a priori estimation of the atmospheric state which, in this study, refers to110

1-hour AROME forecasts. To this end, the two sources of information are weighted by
✿✿✿✿
their corresponding uncertainty called

the background-error-covariance matrix (B) for the a priori profile and the observation-error-covariance matrix (R) for the

observation to find the optimal state. In order to find the optimal state minimizing the distance to the observation, a radiative

transfer model is needed to compute the equivalent observation from the a priori. The method iteratively modifies the state

vector x from the a priori xb to minimize the following cost function:115

J(x) =
1

2
(x− xb)

TB−1(x− xb)+
1

2
(y−H(x))TR−1(y−H(x))

where H represents the observation operator (radiative transfer model and interpolations from model space to observation

space), T represents the transpose operator and −1 the inverse operator. The observation-error-covariance matrix R should
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take into account representativeness and forward model errors as well as radiometric noise. Throughout the manuscript, the

atmospheric state minimizing the cost function is called the "analysis" (xa), "increment" refers to the difference between the a120

priori xb and the analysis, "innovation" refers to the difference between the observation and the a priori xb.

For the first time, the fast radiative transfer model RTTOV-gb (De Angelis et al. (2016), Cimini et al. (2019)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(De Angelis et al., 2016; Cimini

✿
, developed specifically to simulate MWR observations for operational applications during the Cost action TOPROF, is used

within the 1D-Var package maintained by the NWP Satellite Application Facility (https://www.nwpsaf.eu/site/software/1d-var/).

To this end, the 1D-Var has been adapted to the ground-based sensing configuration of MWRs and interfaced with RTTOV-gb.125

In this study the control vector x consists in temperature and the natural logarithm of specific humidity on the same 90 levels as

defined in AROME. These levels cover the atmospheric range from the ground up to 30 km, the vertical resolution decreasing

with altitude: 20-100 m below 1 km, 100-200 m from 1 to 5 km, around 400 m at 10 km. Additionally to temperature and

humidity, the liquid water path is also included in the control vector. Following the current implementation of the NWPSAF

1D-Var, no correlation between the LWP and the other variables is assumed in the B matrix. The observation vector y consists130

of brightness temperatures (BT) in all K-band
✿
(1)

✿
and V-band channels (2) at zenith and only opaque channels (above 54 GHz)

at low elevation angles: 42◦, 30◦, 19.2◦, 10.2◦ and 5.4 ◦. Transparent channels are not used at low elevation angles due to the

violation of the assumption of horizontal homogeneity.

3 Evaluation of 1D-Var retrievals

3.1 Background errors135

In variational data assimilation (either 1D-Var or 3D/4D-Var), the accuracy of the analysis will depend on the background-

error covariance matrix B. This matrix specifies how much weight is given to the a priori profile compared to the observation,

how the information from the localized observation is spread in the model space both vertically and horizontally (for 3D/4D-

Var assimilation) and impose the balance between the model control variables. However, due to difficulties in measuring the

"true" state, this B matrix has to be modelled. Currently, climatological, spatially homogeneous and isotropic background-error140

covariances are used operationally in the AROME model (Brousseau et al. (2011))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Brousseau et al., 2011). They are computed

from 3h range forecast differences from an ensemble data assimilation over long time periods and the whole model domain.

As demonstrated by Ménétrier and Montmerle (2011), climatological covariances are inadequate for fog areas which exhibit a

much stronger positive coupling between temperature and humidity and attenuated vertical correlations above the fog layer.

For this study, a similar approach as the one described in Ménétrier and Montmerle (2011) has thus been used to infer145

background-error covariances adapted to fog layers and to the AROME configuration and the time period of the experiment.

To this end, the AROME ensemble data assimilation schemes (AROME EDA) that mimics in a variational context the approach

taken in the stochastic Ensemble Kalman Filter (Evensen (2003))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Evensen, 2003) has been used. The EDA explicitly perturbs

the observations, the model and the boundary conditions, and gives in return estimates of analysis and background error covari-

1
✿✿✿✿
22.24,

✿✿✿✿
23.04,

✿✿✿✿✿
23.84,

✿✿✿✿
25.44,

✿✿✿✿
26.24,

✿✿✿✿✿
27.84,

✿✿✿
31.4

✿✿✿✿
GHz

222.24, 23.04, 23.84, 25.44, 26.24, 27.84, 31.4, 51.26, 52.28, 53.86, 54.94, 56.66, 57.3and
✿
, 58 GHz
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ance (Fisher (2003); Zagar et al. (2005))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Fisher, 2003; Zagar et al., 2005). The AROME EDA consists in running an ensemble150

of 3D-Vars in parallel, where the observations are perturbed according to their prescribed error statistics. The model perturba-

tions are represented by an online multiplicative inflation scheme (Raynaud and Bouttier, 2015). The inflation factor is derived

from the skill over spread ratio. The perturbed boundary conditions are taken from the global EDA (Raynaud et al., 2011).

The EDA configuration used for this study corresponds to the operational implementation since July 2018 with a horizontal

resolution set to 3.2km and an ensemble size of 25 members.155

Firstly, using this AROME EDA, a so-called "climatological" B was obtained by computing the forecast differences ǫk,lb =

xk
b − xl

b between members k,l for all grid points of the whole AROME domain and all assimilation cycles on the 28th of

October 2016 (IOP1). A specific fog B matrix was then computed by applying a fog mask in order to only select grid

points for which most of the EDA members forecast fog. According to the discussion on the fog-model predictor used in

Ménétrier and Montmerle (2011), the fog mask was based on the presence of liquid water contents above 10−6 kg.kg−1 in the160

first three layers of the model. Several fog B matrices have been computed using different assimilation cycles. The fog B matrix

showing the best results in terms of root-mean-square-errors (RMSE) with respect to radiosoundings has then been selected

for this study.

Similarly to Brousseau et al. (2016), background error standard deviations are multiplied by a factor α < 1 in order to take

into account the forecast error reduction while the background range decreases from 3 to 1h (as the AROME EDA provides 3h165

forecasts whereas the 1D-Var deals with 1h forecasts). Based on comparison with in-situ measurements, an optimal value of

α= 0.7 was found. This multiplicative factor is only applied on background error standard deviations while cross-correlations

are assumed to be the same at the 1 and 3h forecast ranges. Figure 1 compares background error standard deviations for

temperature and the natural logarithm of specific humidity computed for the "climatological" and "fog" B matrices. Similar

shape and magnitude are observed between the two B matrices for the natural logarithm of specific humidity. However, in170

the case of temperature, background errors in fog areas are found to be larger within the first 500 m with a maximum of 0.7

K at 250 m. On the other hand, the "climatological" B matrix shows values below 0.5 K within the whole fog layer. Figure

2 shows the cross-correlations between specific humidity and temperature. Similarly to Ménétrier and Montmerle (2011), a

strong positive coupling appears in the fog layer within the first 200 m. This coupling implies that a positive temperature error

will be translated into a positive specific humidity error (and vice-versa) due to saturated conditions. This structure significantly175

differs from the one observed in climatological conditions with almost no coupling between the two variables in the boundary

layer. The fog layer is also un-coupled with atmospheric layers above the fog top which exhibit a negative coupling between

temperature and humidity.

3.2 Optimal configuration of 1D-Var retrievals

The accuracy of 1D-Var retrievals depends not only on the background-error-covariance matrix but also on an adequate speci-

fication of the observation-error-covariance matrix. Observation errors are assumed to follow Gaussian distributions with zero

mean. A similar method as described in Martinet et al. (2015), De Angelis et al. (2017) and Cimini et al. (2020) has been used

to implement a bias correction of BT measurements based on 6-month differences between MWR observations and BTs simu-
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Figure 1. Background error standard deviations for temperature (left pannel) and the natural logarithm of specific humidity (right panel) for

a "climatological" B matrix (red line) or a specific fog B matrix (blue line).
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Figure 2. Cross-correlations between the natural logarithm of specific humidity (y-axis) and temperature (x-axis) for a fog B matrix (left

panel) or a climatological B matrix (right panel). x-axis and y-axis are labelled according to altitude above ground in meter.

lated from AROME 1h forecasts with the use of RTTOV-gb (so-called "O-B monitoring"). Table 1 reports the biases obtained

for each channel at 90◦ and the most opaque channels at low elevation angles. The values are consistent with those reported in

De Angelis et al. (2017). A static bias-correction of all channels based on table 1 has been applied to the measurements.

Observation errors due to liquid nitrogen calibration and spectroscopic errors in radiative transfer models were updated accord-

ing to recent studies from Maschwitz et al. (2013) and Cimini et al. (2018). Therefore, in addition to commonly used values of

instrumental noise (0.5 K for transparents channels and 0.2 K for the most opaque channels), the individual errors defined by
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Maschwitz et al. (2013) and Cimini et al. (2018) were added in quadrature:

σtot =
√
σnoise

2 + σcalib
2 + σFM

2

with σtot the total observation errors, σnoise the uncertainty due to noise, σcalib calibration uncertainties and σFM the un-180

certainty due to spectroscopic errors in the radiative transfer model. It is important to note that calibration errors of modern

MWRs are lower than the ones used in this study due to new developments in the manufacturer software and liquid nitrogen

target used for the radiometer calibration. Table 2 summarizes the total observation uncertainty for each channel.

Table 1. Bias of the observation minus background departures computed from AROME forecasts for all frequency at 90◦ elevation angle

and only the most opaque channels (54.94 to 58 GHz) at lower elevation angles.

22.24 23.04 23.84 25.44 26.24 27.84 31.4 51.26 52.28 53.86 54.94 56.66 57.3 58

90 ◦ 0.41 0.66 0.17 0.18 0.15 -0.43 0.31 -1.30 -4.72 -0.28 -0.04 0.06 0.16 0.20

42 ◦ - - - - - - - - - - 0.04 0.18 0.22 0.23

30 ◦ - - - - - - - - - - 0.07 0.24 0.27 0.27

19.2 ◦ - - - - - - - - - - 0.14 0.31 0.33 0.30

10.2 ◦ - - - - - - - - - - 0.23 0.37 0.35 0.32

5.4 ◦ - - - - - - - - - - 0.18 0.24 0.25 0.21

Table 2. Observation uncertainties (K) prescribed in the observation-error-covariance matrix for each channel.

Frequency (GHz): 22.24 23.04 23.84 25.44 26.24 27.84 31.4 51.26 52.28 53.86 54.94 56.66 57.3 58

σo (K): 1.34 1.71 1.16 1.08 1.25 1.17 1.19 3.21 3.29 1.30 0.37 0.42 0.42 0.36

In order to define the best configuration of 1D-Var retrievals in terms of background-error-covariance matrix and bias-

correction, statistics have been performed over the 6-month period by comparison with the 120-m tower measurements. For

each altitude instrumented with a weather station (50 and 120 m altitude) and each variable (temperature and specific humidity),

the error reduction brought by the analysis over the background is defined as:

ER = 1− RMSExa

RMSExb

with RMSExa the root-mean-square-errors of the 1D-Var retrieved profiles with respect to the mast measurements, and

RMSExb the root-mean-square-errors of the background profiles with respect to the mast measurements. It is important185

to note that given the relative low vertical resolution of MWR retrievals, the retrievals at 50 and 120 m are likely to be highly

correlated.

Table 4 reports the calculated error reduction for each variable, each altitude and each 1D-Var configuration. The 1D-Var

configuration maximizing each ER will be selected as the best configuration. Statistics are divided between fog profiles only

(lower part) or all weather-conditions except fog (upper part). In addition to tower measurements limited to only two levels, the190
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different 1D-Var configurations were also evaluated in terms of bias and RMSE against 21 radiosondes (Figure 3). Radiosondes

were launched during IOPs in different atmospheric conditions: the majority are under stratus-cloud and fog conditions and a

few of them in clear-sky. Table 3 gives a list of the different configurations evaluated in this section. The three first configu-

rations aim at evaluating the impact of the background-error-covariance matrix while the last two configurations focus on the

bias-correction.195

3.2.1 Sensitivity to the background-error-covariance matrix

In order to evaluate the impact of the background-error-covariance matrix, three experiments have been designed. The CTRL

run mimics the configuration of the operational AROME 3D-Var data assimilation system with a "climatological" B matrix

taking into account cross-correlations between temperature and specific humidity. As cross-covariances highly depend on

the weather conditions (Hólm et al., 2002; Michel et al., 2011) and the use of fixed covariances is not optimal when dealing200

with different atmospheric scenarios, Config1 aims at evaluating the impact of the cross-correlations between temperature and

humidity on the retrievals. To this end Config1 corresponds to the same configuration but removing the cross-correlations

between temperature and specific humidity. It can be noted that this approach is still used in various 3D/4D-Var operational

schemes (Barker et al., 2004). Config2 mimics the use of a flow dependent B matrix during fog conditions only with a full

correlated fog-specific B matrix during fog events but a non-correlated climatological B matrix for all other weather conditions.205

For these three configurations, the bias-correction based on clear-sky O-B monitoring is applied to the raw BT measurements.

Table 3. List of 1D-Var experiments.

Expt. Description Bias correction
✿✿✿✿
(BC)

CTRL Climatological Bclim matrix BC from AROME O-B monitoring

computed from the AROME EDA with

cross-covariances between T and Q

Config1: Climatological Bclim matrix BC from AROME O-B monitoring

Bclim NO CROSS CORR computed from the AROME EDA

without cross-covariances between T and Q

Config2: Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

Bflow dependent Bclim without cross-correlations for visi_10m>1000m

Config3: Bflow dependent Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

NO BC 54-58 GHz Bclim without cross-correlations for visi_10m>1000m for channels 22 GHz-53.86 GHz

NO BC for channels 54.54 to 58 GHz

Config4: Bflow dependent Cross-correlated Bfog matrix if visi_10m < 1000m BC from AROME O-B monitoring

BC δT < 5K Bclim without cross-correlations for visi_10m>1000m base on all clear-sky profiles with T500m-Tground < 5K

The worst results are obtained with the CTRL configuration, which considers a "climatological" B matrix taking into ac-

count cross-correlations between temperature and humidity. With this configuration, the specific humidity RMSE with respect

9



Table 4. Reduction in the RMSE with respect to tower measurements after the 1D-Var analysis (RMSExa) compared to the background

(RMSExb) for all weather conditions (upper part) or only fog events (lower part): ER = 1− RMSExa
RMSExb

(%). Statistics performed on tem-

perature (T, (K)) and specific humidity (Qspec, kg.kg−1) at 50 and 120 m altitude.

ER

1DVAR
CTRL: Bclim Config 1: Bclim Config2: Bfog Bclim Config3: Bfog Bclim Config4: Bfog Bclim

Cross-corr no cross-corr NO BC 56-58 GHz BC ∆T < 5 K

All conditions except fog (statistics on 2534 profiles)

T 50m 42 42 42 57 54

T 120m 40 40 40 50 50

Qspec 50m -4 0.2 0.3 0.3 0.3

Qspec 120m -7 0.1 0.1 0.1 0.1

Fog cases (statistics on 351 profiles)

T 50m 37 37 34 50 44

T 120m 21 21 24 32 32

Qspec 50m -7 -1 -5 15 6

Qspec 120m -20 -3 21 20 21

to tower measurements is degraded by up to 20 % (resp.
✿✿✿✿✿✿✿✿✿
respectively

✿
7 %) at 120 m altitude during fog conditions (resp.

✿✿✿✿✿✿✿✿✿✿
respectively all weather conditions). This demonstrates the importance of the B matrix cross-correlations on 1D-Var accu-210

racy and particularly in the case of observations with low information content on the vertical structure (as MWRs are mainly

sensitive to the total column water vapor content due to vertically quasi-constant weighting functions). The humidity profile

degradation is significantly reduced to less than 3 % thanks to the use of a block diagonal B matrix in Config1. Humidity

profiles are finally improved by up to 21 % in RMSE at 120 m during fog conditions with the use of a specific fog B matrix

adapted to the meteorological conditions. Figure 3 confirms that the best configuration in terms of B matrix corresponds to215

Config2 compared to the CTRL configuration. In fact, the use of a "climatological" B matrix with cross-correlations degrades

both temperature and humidity retrievals but more significantly specific humidity up to 4 km. Overall, these results confirm

that, for MWRs, humidity increments in the lowest levels are significantly driven by the cross-correlations between temper-

ature and humidity. These correlations (sign and amplitude) being highly dependent on the weather conditions, the B matrix

should ideally be updated for each profile. When it is not possible, the use of a block diagonal B matrix might be preferable to220

avoid degradation in the retrievals due to inaccurate cross-correlations. This result is in line with the study of Dee and Da Silva

(2003) which showed that, when humidity is less adequately observed than temperature, it is more accurate to neglect humidity

- temperature error covariances. However, when an adapted flow-dependent B matrix is used, the specific humidity analysis is

improved. In the future, the use of ensemble data assimilation schemes should enable deriving optimal B matrices evolving in

time and space to be consistent with the weather conditions in order to optimize specific humidity retrievals.225
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3.2.2 Sensitivity to the bias correction applied on opaque channels

One other source of errors in the lowest levels could come from the bias correction applied on the most opaque channels.

In fact, the bias correction has been inferred from differences with respect to the AROME model which is known for larger

errors in the boundary layer below 2 km altitude (Martinet et al., 2015, 2017). Two additional configurations have thus been

designed to evaluate the impact of the bias correction applied on raw measurements. Config3 is similar to config2 except that230

the bias-correction is not applied on the last four most opaque channels (54-58 GHz range). Config4 is similar to config2

except that the bias-correction applied to all channels is based on statistics of O-B departures made on clear-sky profiles with

a temperature gradient between 500 m altitude and surface smaller than 5 K. Table 4 shows that 1D-Var retrievals are already

improved with Config4 in fog conditions. Consequently, removing larger model errors during very stable conditions in the

O-B monitoring leads to an improved estimation of the bias correction. The best scores are finally obtained with Config3235

with improved temperature retrievals by 15 % at 50 m. Figure 3 confirms that if the bias-correction based on the AROME

monitoring is applied to the 54-58 GHz channels, a significant degradation in the temperature retrievals is observed in the first

500 m. Removing the bias correction applied to transparent channels causes a significant degradation of the specific humidity

retrievals above 2 km altitude.

This result demonstrates that, even though the bias-correction of MWR BT measurements can be computed from AROME240

short-term-forecasts for transparent channels, this method is not optimal for opaque channels without a thorough screening

of the O-B innovations. In fact, the bias-correction of opaque channels depends on the accuracy of the forecast model within

the boundary layer, which is known to be degraded during stable conditions. Similar conclusions are found in Martinet et al.

(2017), despite the larger period of O-B monitoring (6-months instead of 2-months) and a less complex terrain.

245

Figure 3 finally shows that the best performance is obtained with Config3 through the whole atmospheric column both for

temperature and humidity. For temperature, with this best configuration, RMSE smaller than 0.6 K within the fog layer and

below 1.6 K considering the whole atmospheric profile up to 6 km altitude are obtained. The 1D-Var analysis outperforms the

background in the first 800 m with a maximum improvement observed within the fog layer (RMSE decreased from 2.2 K to

0.6 K at 75 m). As expected, most of the information from the MWR observations are located below 2000 m and mainly below250

1000 m. For humidity, RMSE accuracies are less than 1 g.kg−1 for the best scenario. Most of the improvement brought to the

background is located below 3000 m with a maximum RMSE decrease reaching 0.2 g.kg−1 at 75 m and 1800 m. Configuration

3 is used in the following sections.

4 Thin radiative fog case study

This section focuses on a thin radiative fog case observed on the 28th of October 2016. Figure 4 shows the cloud base height255

retrieved from a CL31 ceilometer (top panel), the visibility measurements on the instrumented tower at 10 m and 120 m altitude

(blue and green lines respectively, middle panel) as well as the 1-hour AROME forecasts of liquid water content (LWC) for the

same day (bottom panel). During the whole period, fog is only observed at 10 m altitude during 40 minutes at midnight and
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Figure 3. Vertical profiles of (left) temperature and (right) specific humidity bias (solid line) and root-mean-square-errors (dashed lines) of

1D-Var retrievals (coloured lines) and AROME backgrounds (black line) against 21 radiosondes launched during IOPs: 1DVAR retrievals

from AROME 1 h forecasts with bias-correction and a cross-correlated climatological B matrix (CTRL, magenta), with bias-correction and

a cross-correlated dedicated fog B matrix (Config2, blue), with bias-correction except channels 11-14 and a cross-correlated dedicated fog B

matrix (Config3, red), without any bias-correction and a cross-correlated dedicated fog B matrix (cyan).

then during 4 hours from 5 to 9 UTC. A stratus-cloud is then observed from 10 UTC until midnight with a cloud base height

between 300 and 500 m. The AROME backgrounds simulate a continuous thick fog event from 0 to 13 UTC, which is then260

lifted until 15 UTC into a stratus cloud at 500 m altitude. The stratus cloud is then dissipated to appear again after 20 UTC. In

this example, two main deficiencies in the AROME 1-hour forecasts are observed: a temporally longer and vertically thicker

fog event and the erroneous dissipation of the stratus cloud between 15 and 20 UTC.

Figure 5 compares the time series of temperature profiles (top panels) and specific humidity (bottom panels) forecast by

AROME (left panels) and retrieved with the 1D-Var scheme using the optimal configuration. We can note the large tempera-265

ture increment by up to 5 K from 0 to 12 UTC essentially in the first 250 m after 1D-Var is applied; this is the period where

the model simulates a thick fog event not confirmed by the observations. This is followed by a temperature cooling within 2

K during the stratus cloud (16 to 24 UTC). The specific humidity is only modified during the fog event (5 to 9 UTC) with an
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increase of 1 g.kg−1 in the first 1500 m.

In order to quantify the accuracy of the 1D-Var increments in this specific fog case, Figure 6 evaluates the corresponding270

diurnal evolution of temperature, specific humidity and relative humidity at 50 and 120 m altitude. A large underestimation of

the temperature by 4 to 6 K is observed in the AROME forecasts by night until 13 UTC. AROME forecasts are also found to

be too warm by 2 K after 18 UTC. The assimilation of MWR brightness temperatures in a 1D context greatly improves the

model background (temperature) during the nightime fog event with temperature errors smaller than 2 K after assimilation.

The 1D-Var retrievals almost perfectly fit the in-situ observations after 13 UTC for temperature both at 50 and 120 m altitude.275

In terms of specific humidity, AROME tends to underestimate the specific humidity at nighttime probably due to an overes-

timation of the saturation. Indeed, as the fog layer was thicker in AROME than in the observations, we believe the model

converts too much water vapour into liquid erroneously, which makes it underestimate specific humidity. On the contrary, the

specific humidity is overestimated in the afternoon. After 1D assimilation of MWR measurements, specific humidity is nearly

identical to the AROME forecasts except during the longest fog event (between 4 and 9 UTC) where the 1D analysis is closer280

to the tower measurements than the background. This is likely due to the use of the cross-correlated fog B matrix under these

conditions as opposite to the use of a block diagonal B matrix when fog is not observed. Most of the model increment is thus

produced by the B matrix cross-covariances. Background errors are reduced from 0.5 g.kg−1 to 0.1 g.kg−1. Though closer to

the in-situ observations, 1D-Var retrievals slightly overestimate specific humidity between 4 and 9 UTC. This is most likely

due to over-estimated positive cross-correlations between temperature and humidity in the B matrix. In terms of relative hu-285

midity, the temperature warming by night leads to the effect that the fog layer is not saturated any more in agreement with the

tower in-situ measurements. However, this field is degraded after 13 UTC. In fact, the 1D-Var scheme correctly reduces the

temperature but is not able to decrease the specific humidity. The relative humidity is thus wrongly increased by the 1D-Var

analysis.

In view of the future inclusion of hydrometeors in the data assimilation control variables, the information brought by MWRs290

to the liquid water path (LWP) could also be very valuable. Figure 7 shows the time series of LWP forecast by AROME,

retrieved through the 1D-Var and retrieved from a quadratic regression applied on BT measurements. It can be seen that the

AROME model clearly overestimates the fog LWP with a maximum reaching 90 g.m−2 at 7 UTC. This value, however,

decreased down to 25 g.m−2 after the 1D assimilation of MWR brightness temperatures. During the period where the model

fails to simulate the stratus cloud, the LWP is significantly increased in the 1D-Var analysis with values between 30 and 80295

g.m−2 even if the background profile has no cloud layer between 14 and 20 UTC. These LWP modifications brought by the

1D-Var are consistent with the in-situ observations on the instrumented tower as well as ceilometer observations.

5 Six-month statistics

While the previous section focuses on an extreme fog case, this section aims at more general conclusions on the expected impact

of MWR BTs assimilation on AROME analysis. To this end, a statistical evaluation of the expected model increments (analysis300

minus background differences) after assimilating MWR measurements has been conducted using the tower measurements
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Figure 4. Top panel: Cloud base height (m) derived from the CL31 ceilometer measurements, middle panel: visibility at 10 m (blue) and 120

m (green line), bottom panel: AROME 1-hour forecasts of liquid water content in g.kg−1. 28 October 2016.

during the six-month period. 1D-Var retrievals have been performed using the optimal configuration described in section 3.2.

A total of 351 hours of fog (rain events have been removed) could be observed with the MWR. In order to evaluate the

performance of the AROME background profiles (1h forecast) to accurately forecast fog events, statistics based on the hit ratio

(HR), false alarm rate (FAR), frequency bias index (FBI) and critical-success-index (CSI) have been computed. If GD is the305
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Figure 5. Time series of temperature profiles (top panels) and specific humidity (bottom panels) forecast by AROME (left panels) and

retrieved with the 1D-Var scheme with the optimal configuration (Config3, right panels). 28 October 2016.

number of fog profiles well detected, ND the number of undetected fog profiles, FA the number of false alarms, these scores

are defined by:

HR=
GD

GD+ND

FAR =
FA

GD+FA

FBI =
GD+FA

GD+ND

CSI =
GD

GD+ND+FA

(1)

To detect fog profiles in the model space, a new visibility diagnosis specifically developed for the AROME model has been

used (Dombrowski-Etchevers et al.
✿✿✿✿✿✿✿
personal

✿✿✿✿✿✿✿✿✿✿✿✿✿
communication,

✿✿✿✿
July

✿✿✿✿
2020). In this new diagnosis, the visibility is directly deduced310

from the liquid water content at ground. It was computed through a statistical regression between hourly maximum of liquid

water content forecast by AROME and observed minimum of visibility on 100 ground stations during five months. A hit ratio

of 73 % and a false alarme rate of 58 % was found. A FBI of 1.77 means that the AROME background profiles tend to forecast
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too many fog events. CSI equal to 0.35 means that only 35 % of fog events (observed and/or predicted) are correctly forecast by

the model. These statistics emphasize that quite large errors are observed in the AROME 1h forecasts of fog with an excessive315

number of false alarms. In order to evaluate the potential benefit of MWR observations to adjust the AROME background

profiles, the statistical study of model increments is split between the good detections, missed fog profiles and false alarms.

Firstly, the frequency distributions of differences of 1D-Var analysis and background with tower measurements at 50 m

are displayed in Figure 8 both for temperature and specific humidity. For temperature and for all subsets, the distributions

of 1D-Var analysis errors are more centered and more symmetric compared to the background error distributions. Thus, the320

largest background errors (above 2 K in absolute values) are succesfully corrected by the 1D-Var analysis. Background error

distributions also present a larger tail towards negative values with a secondary peak centered around -4 K in the case of false

alarms and to a smaller extent in the case of good fog detections. The largest temperature improvement is observed in the case

of false alarms with only 35 % of the background errors being within -0.5 to 0.5 K, against 69 % for the analysis. RMSE with

respect to tower measurements are also significantly improved with values between 1.3 and 1.9 K in the background against325

0.6 K in the analysis. The frequency distribution of specific humidity errors for 1D-Var analysis and background are close, with

similar bias and RMSE for good detections and false alarms. A slight degradation is observed for missed fog detections with

a RMSE of 0.33 g.kg−1 in the analysis against 0.25 g.kg−1 in the background. Overall, the impact on humidity is less evident

than on temperature at 50 m altitude.

To get a vertical perspective, Figure 9 shows the profiles of the frequency distribution of analysis minus background differences.330

As more than 90 % of the water vapour increments are within 1 g.kg−1 up to 1500 m altitude, only the impact on temperature

is discussed. For each vertical bin, the frequency of the temperature increments within a given range of values is shown. The

frequency distribution of 1D-Var increments has been separated between cases of correct fog detection, missed fog and false

alarms. For all dataset, most of the temperature analysis increments are observed below 750 m and span the range -5 to 5 K.

The largest increments are observed between 100 and 300 m altitude for which around 20 % of the analysis minus background335

differences are larger than 2 K in absolute values. We can note significant differences in the shape of the increment distributions

depending on the forecast score. While the distribution of good detections is quite symmetric, it is not the case for missed fog

profiles and false alarm distributions. In the case of missed fog events, the distribution is negatively-skewed close to the ground

whereas it is positively-skewed above 100 m altitude. This asymmetry means that the largest analysis increments in magnitude

tend to decrease the temperature close to the ground and increase the temperature above 100 m. Consequently, we can expect340

1D-Var analyses to increase the atmospheric stability in the first 150 m, which is key for fog formation. In the case of false

alarms, the distribution is positively-skewed for all vertical levels. This asymmetry means that the largest analysis increments,

though less frequent in the distribution, occur when the AROME forecasts tend to significantly overestimate the temperature

cooling. By limiting the temperature cooling, the 1D-Var analyses might limit the erroneous saturation leading to false alarms

in the background.345

Additional value of MWR data for NWP forecasts and process studies is in the LWP product. In fact, MWR is one of

the most reliable sources for this variable (Crewell and Löhnert (2003))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Crewell and Löhnert, 2003), which is key for better

understanding the microphysics of fog lifecycle and limiting the forecast spin-up (i.e. the unbalance of thermodynamic profiles
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with microphysical variables during the analysis). In fact, as hydrometeors are currently not included in the control variables of

most operational variational data assimilation schemes, these fields are kept unchanged during the analysis. Thus, the analyzed350

hydrometeor fields correspond to the previous background. Consequently, in the following statistics, the background values

of LWP correspond in fact to the LWP in the operational AROME analysis. These fields are then modified according to the

updated temperature and humidity analyses in the first time steps of the forecast through the model physics. The statistical study

performed here is also useful to evaluate the expected impact on the AROME analyses if MWR observations were assimilated

and the LWP included in the control variables. To this end, Figure 10 investigates the frequency distribution of LWP increments355

split by forecast skill (good detections, undetected fog, false alarms). Firstly, we can note that the LWP increments are higher

than 50 g.m−2 in absolute values for approximately 50 % of good detections and missed fog profiles and 30 % of false alarms.

During false alarms, 95 % of the background LWP values are below 20 g.m−2 (not shown), which is close to the MWR

sensitivity which might explain smaller 1D-Var increments during false alarms. The mean increment is the highest in the case

of missed fog events (57 g.m−2) and the smallest in the case of false alarms (15 g.m−2). It is important to note that during false360

alarms, the LWP increment might be positive due to the presence of cloud layers though we would expect the 1D-Var analysis

to decrease the LWP within the fog layer. If we restrict the statistics to false alarms without cloud aloft, the mean increment

is reduced to -2 g.m−2. As expected, large positive increments occur more often in fog cases un-detected by AROME with

47 % of the distribution showing increments above 50 g.m−2 against 35 % in good detections and 22 % in false alarms (8 %

for false alarms without cloud layers aloft). To further investigate the LWP increments and retrieved values, more in situ data365

are necessary, e.g from the cloud droplet probe mounted on the tethered balloon or cloud radar measurements. However, the

lack of cloud radar measurements to differentiate the LWP within the fog layer and cloud aloft makes this evaluation complex.

Too few cases during which MWR observations were colocated with an entire sounding of the fog layer with the tethered

balloon have been sampled to make an independent evaluation of this product. This is why we use the LWP derived from the

MWR alone through a quadratic regression as a reference. The expected accuracy of this product
✿✿
is 15 to 20 g.m−2 according370

to Crewell and Löhnert (2003). To this end, Figure 12 shows the scatterplot between the LWP retrieved with the MWR alone

(through multi-channel regressions provided by the manufacturer) and the 1D-Var analyses or background profiles (left panel).

We can note the large improvement in correlation between the LWP forecast by the background (0.72) versus the 1D-Var

analysis (0.98) with respect to the MWR multi-channel retrieval. This is of course expected as the 1D-Var minimization tends

to get closer to the MWR brightness temperatures which are also used in the multi-channel retrieval. However, this evaluation375

is a good sanity check showing the good behaviour of the 1D-Var algorithm and its capability to extract the information from

the observation even with very large errors in the first guess background profiles. The mean error of the AROME LWP is -49

g.m−2 and is reduced to -2 g.m−2 after 1D assimilation. The root-mean-square-error is significantly reduced from 102 g.m−2

to 27 g.m−2.

The same evaluation has been carried out on the IWV (Figures 11 and 12). Since MWRs are more sensitive to column integral380

than vertical distribution, more significant impact is expected on IWV than specific humidity profiles. The IWV increments

span from -4 to 4 kg.m−2, which correspond to a change in the background IWV up to 30 %. The distribution of IWV

increments is positively-skewed for correct fog detection meaning that the largest increments in magnitude are observed when
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the background underestimates the integrated water vapour content. On the contrary, it is negatively-skewed for missed fog

profiles meaning that the largest increments occur when the model overestimates the integrated water vapour content. It is more385

symmetric in the case of false alarms. The correlation coefficient with respect to the MWR multi-channel retrieval (fig. 12)

is sligthly increased from 0.97 to 1. The RMSE is improved from 1.30 to 0.71 kg.m−2. The impact of MWR observations is

thus positive on IWV, though the good quality of AROME humidity forecast leaves little room for improvement. This could be

explained by the assimilation of observations sensitive to the total column water vapor like Global Navigation Satellite System

(GNSS) zenith total delay. Further investigation on multiple sites would be needed to confirm this hypothesis.390

The next natural step of this study would be to calculate updated scores of fog detections with the new 1D-Var analyses

compared to the background profiles. However, forecast scores are only based on the LWC at ground whereas the 1D-Var

works on the liquid water path without information on the cloud vertical structure. During false alarms, conclusions on the

impact on forecast scores are complexified by the presence of cloud layers above fog in a majority of false alarms which can

cause an increase in LWC at ground. As for the hit ratio, it is increased from 73 % in the background to 81 % in the analysis.395

The rate of missed fog events is also decreased from 27 % in the background to 19 % in the 1D-Var analysis. However, as this

evaluation is only based on the LWC change at the ground, it is necessary to evaluate the impact of the new temperature and

humidity fields on the LWC after a few time steps of forecasts but this is beyond the scope of this paper. This investigation into

the forecast impact will be studied in the future within the framework of the SOFOG3D experiment (section 6).

6 A regional-scale MWR network for fog process studies: the SOFOG3D experiment400

This worked
✿✿✿✿
study

✿
has proved MWRs to be potential good candidates to be assimilated into current mesoscale models with

a special focus on fog forecast improvement. However, our conclusions are currently limited by the small dataset (only one

winter at one site) and the lack of impact studies on fog forecast. Although, a positive impact is expected on the analysis of

the ABL temperature profile and the LWP, and, to a smaller extent, to the IWV, the next step will be to quantify the impact

of a more accurate initial state on fog forecast capability. Among the massive number of observations currently assimilated405

into operational models, the assimilation of only one MWR unit would probably not be efficient to effectively constrain the

boundary layer in the model analysis and to keep the valuable information brought by this local observation over the forecast

range. In order to go further in this evaluation, the deployment of a dense network of MWRs is necessary to perform a data

assimilation study into the operational AROME 3D-Var assimilation system. Thanks to the strong European collaboration

built in the framework of the cost action TOPROF (www.cost.eu/COST_Actions/essem/ES1303), pursued by the cost action410

PROBE (PROfiling the Boundary layer at a European Scale, Cimini et al. (2020)), an un-precedented regional-scale network

of 8 MWR units has been deployed in the South West of France during the period October 2019 to April 2020. This network

will serve the data assimilation experiment, fog process studies and model evaluation of the international SOFOG3D (SOuth

FOGs 3D experiment for fog processes study) experiment led by Météo-France. Figure 13 shows the domain of the dedicated

500 m horizontal resolution AROME version in test for evaluation during SOFOG3D and the location of the 8 MWR units415

deployed for the experiment. MWR locations have been chosen for an homogeneous spread over the AROME domain at sites
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known for the high frequency of fog occurrence. An increased density of MWRs is found at the super-site with two co-located

MWRs and a third humidity profiler deployed approximately 7 km away from the super-site to document the impact of surface

heterogeneities on fog characteristics. The methodology introduced in this paper will be extended to the 8 MWRs deployed

during SOFOG3D. This large dataset will help quantifying the spatio-temporal variability of fog parameters (thermodynamics420

and microphysics) between the different sites, better understand the main processes playing a role in fog formation / dissipation

/ development and run real data assimilation experiments using the operational 3D-Var assimilation scheme of the AROME

model to quantify the expected fog forecast improvement thanks to ground-based MWRs.

7 Conclusions

In this study, the expected benefit of ground-based MWRs on NWP analyses during fog conditions has been investigated with425

a 1D-Var technique. Temperature, humidity and LWP have been retrieved through the optimal combination of short-term-

forecasts and MWRs brightness temperatures. In this study, a new retrieval algorithm, combining the NWPSAF 1D-Var and

the fast radiative transfer model RTTOV-gb, has been evaluated on a 6-month period spanning 351 hours of fog conditions.

The first part of this work aimed at deriving an optimal background-error-covariance matrix for fog conditions with the use

of newly developed AROME EDA. Similarly to Ménétrier and Montmerle (2011), background-error standard deviations were430

found to be approximately 40 % larger within the first 250 m for temperature compared to a commonly used "climatological

B matrix". For specific humidity, similar standard deviations were observed. Most of the differences between a climatological

B matrix and a fog B matrix were observed in the cross-correlations between temperature and specific humidity, with a strong

positive coupling within the fog layer and uncoupling between the fog layer and atmospheric layers above. The impact of the

B matrix and bias-correction has been investigated through a statistical evaluation of the retrieval accuracy with respect to the435

in-situ measurements on the instrumented tower at 50 and 120 m altitude. The optimal configuration has been defined through

the definition of the error reduction brought by the analysis over the background for each variable (temperature and specific

humidity) and each altitude. The best scenario mimics the use of a "flow dependent" B matrix by using a cross-correlated

fog B matrix when fog is detected by visibility measurements and an un-correlated climatological B matrix during the other

conditions. The retrievals of specific humidity at 120 m altitude are the most impacted: contrary to the significant degradation440

of the background by around 20 % with a sub-optimal B matrix, an improvement of 21% of the background is obtained with an

optimal B matrix. This demonstrates the crucial role of the B matrix cross-correlations when assimilating observations with low

information content on the vertical structure. Consequently, the on-going development of an 3D-EnVar scheme for the AROME

model (Montmerle et al. (2018))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Montmerle et al., 2018) is a necessary step to optimally assimilate MWR observations into

the AROME model. The use of a static bias-correction based on the monitoring of observation minus background innovations445

was also evaluated. Biases of less than 0.5 K were observed for K-band and opaque V-band channels and up to -4.7 K for the

most transparent V-band channels. The found bias is similar to previous studies; its correction applied to BT measurements

improves humidity retrievals above 2000 m but degrades temperature retrievals in the first 200 m. This degradation is most

likely due to well-known larger model errors in the boundary layer during stable conditions, which are incorrectly included in
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the bias-correction. Restricting the computation of the bias-correction to clear-sky unstable conditions was found to remove450

most of the degradation. Overall, with the best configuration (flow dependent fog B matrix and no bias correction for most

opaque channels), temperature and humidity profiles could be retrieved with RMSE below 1.6 K and 1 g.kg−1 up to 6 km in

the troposphere.

A thin radiative fog sampled during the first IOP of the experiment was then described. For this specific case, the AROME

model was found to simulate a temporally longer and vertically thicker fog event and is not able to maintain the stratus cloud455

in the afternoon. After 1D assimilation of MWR observations, a large warming up to 5 K is observed within the first 500 m

during the fog event associated with an increase in specific humidity and a decrease of LWP by 40 to 70 g.m−2 consistent with

in-situ measurements showing the large impact brought by MWR observations to modify the initial state of the model in fog

conditions.

Finally, a statistical evaluation of the expected model increments after assimilating MWR measurements has been conducted460

using tower measurements. Large forecast errors were observed in the AROME backgrounds with a tendency to overestimate

the presence of fog. During missed fog profiles, 1D-Var increments pull towards lower temperature close to the ground and

higher temperature above 100 m altitude, i.e. higher atmospheric stability. The largest analysis increments and background

errors are observed during false alarms when the AROME forecasts tend to significantly overestimate the temperature cooling.

Overall, RMSE values from 1.3 to 1.9 K are observed in the background against 0.6 K in the analysis. For specific humidity,465

analysis increments are small and below 1g.kg−1 within the fog layer. On the contrary, a large impact has been found on

the LWP with increments up to 200 g.m−2 in extreme missed fog events. A larger impact was found on the IWV than the

humidity profile with a RMSE with respect to tower measurements decreased from 1.3 kg.m−2 to 0.7 kg.m−2 during observed

fog profiles. However, it was noted that the AROME backgrounds are more accurate on the IWV compared to temperature and

LWP, which leaves less chances for improvement.470

Using for the first time the RTTOV-gb fast radiative transfer model, this study investigated the impact of assimilating MWR

observations in the AROME model during fog conditions. This evaluation, previously limited to temperature profiles only, was

extended to humidity and LWP. Promising results are shown, with significant positive impact on temperature and LWP and

small but slightly positive impact on humidity. In order to confirm the results obtained in a 1D-Var framework, the next step is

now to assimilate a real network of ground-based MWRs through a 3D-Var or 3D-EnVar data assimilation scheme. Following475

the recommendations of Caumont et al. (2016) and thanks the strong European collaboration built within the TOPROF and

PROBE COST actions, 8 MWRs have been deployed in the South-West of France from October 2019 to April 2020 in the

context of the international fog campaign SOFOG3D. The locations of the MWR units have been chosen to optimize their

impact in the model specifically for fog forecast evaluation. A 1D-Var plus 3D-EnVar approach will be used to assimilate

profiles retrieved through the 1D-Var algorithm presented here, taking the most out of the lessons learnt in this work.480
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Figure 6. Diurnal evolution of temperature (top panel), specific humidity (middle panel) and relative humidity (bottom panel) forecast by

AROME (red), measured by weather station (black) and retrieved by the 1D-Var algorithm (blue). 28 October 2016.
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Figure 7. Time serie of liquid water path forecast by AROME (red), retrieved by the 1D-Var algorithm (blue) or retrieved from the MWR
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Figure 8. Frequency distribution of 1D-Var analyses (orange) and background (blue) differences compared to tower measurements for

temperature (top panel) and specific humidity (bottom panel) at 50 m altitude. Statistics performed over 255 profiles of good fog detection

(left panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 9. Vertical profiles of the frequency distribution of temperature increments (analysis minus background differences). Statistics per-

formed over 255 profiles of good fog detection (left panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms

(right panel).
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Figure 10. Frequency distribution of 1D-Var LWP increments (g.m−2). Statistics performed over 255 profiles of good fog detection (left

panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 11. Frequency distribution of 1D-Var IWV increments (kg.m−2). Statistics performed over 255 profiles of good fog detection (left

panel), 95 profiles of undetected fog (middle panel) and 368 profiles of false alarms (right panel).
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Figure 12. Scatterplot between a multi-channel regression based on MWR observations (y-axis) and the background forecast by AROME

(red dots) or the 1D-Var analysis (blue dots) for LWP (left panel) and IWV (right panel). Statistics performed over 351 observed fog profiles.
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Figure 13. Surface geopotential and domain of the AROME-500m dedicated to the SOFOG3D experiment. Locations of the MWR sites

are shown with the filled circles (red indicate temperature and humidity profilers, yellow only humidity retrievals and cyan only temperature

retrievals. )
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