
  Dear Piet 
 
We understand it is sometime difficult to obtain answers from the reviewers, and we appreciate 
your work. 
As an answer to your message, we have added in our answers to the reviews below a clear 
identification of the changes that have been made in the manuscript to answer their 
comments.  The manuscript in track-change mode is very similar to the one we send last August, 
although we have added a few sentences on lines 313-327. 
 
We feel that we have accounted for most of the reviewer recommendations and clearly justified 
why we did not for the few other ones, and we hope you agree so that the paper can now be 
published  
 
With best regards 
 
Leslie David, Françius-Marie Bréon, Frédéric Chevallier 
 

Answer to reviews 
 
We warmly thanks both reviewers for their work, their careful analysis, and their suggestions 
that, we hope, led to an improve version of the manuscript. 
We agree with most comments, but not all of them as detailed in the following. 
 
In the following, the reviews are in Italic whereas our answers are in plain text 
 

Reviewer 1 
 

The authors describe in their manuscript the usage of an artificial neural network (ANN) to 
retrieve XCO2 and surface pressure from OCO-2 radiances. The topic fits well to the aims and 
scopes of AMT and is highly relevant because of the immense computational resources needed 
to process current and moreover future satellite data with state of the art full physics algorithms 
which are still prone to biases that require empirical corrections and have unknown origin. 
However, concluding my general and specific comments below, the presented material does 
not provide enough evidence to support the main conclusions namely that the results indicate 
that the ANN approach outperforms the operational NASA full physics algorithm and that it 
can be used to improve our knowledge of CO2 fluxes. It is understandable to limit the ANN 
development to simple cases at first (e.g., nadir only) and it is also not to be expected that the 
ANN will produce perfect results from the first try on. However, the functionality must be 
provable. This means it must become clear that the ANN has indeed learned and generalized 
primarily from the spectral information so that it is able to follow also un-expected CO2 
features such as plumes. The presented material seems not sufficient to prove or disprove this. 
I’m sorry that I cannot give a more positive feedback, but because of this and the many open 
questions I cannot recommend a publication at AMT. However, due to the relevance of the 
topic, I encourage the authors to continue their work and, if the results allow it, to resubmit a 
revised manuscript.  
 
We have added an analysis (in the first two paragraphs of section 4 along with the figure 8) to 
demonstrate that the Neural Network retrieves the surface pressure and XCO2 from the spectral 
information and not by simply reproducing the training material.  



Conversely, we do not follow the reviewer suggestion to analyze fine scale structures such as 
plume.  First, our first NN attempt only uses a single FOV rather than the 8 cross-track FOV, 
so that we lack the imagery capabilities that are most useful to identify plumes.  Second, this 
would be a full additional study and is clearly out of the scope of this first paper on the subject. 
 
 
General comments: I have some concerns about the suitability of the input parameters to the 
ANN. As described in my specific comment L86-L88, potentially important information is 
rejected from the spectra.  
See our answer to the specific comment 
 
The training data set spans over the same four-year (2015-2018) time period as the test data 
set and the authors emphasize that this allows XCO2 variations of about 2%. If it is important, 
that the training covers all possible CO2 concentrations, it is questionable, if a representative 
training data set can be found suitable also to analyze future OCO-2 data because CO2 is 
continuously increasing from year to year. What happens when applying the ANN to data from 
April 2020 including unprecedented largeCO2 concentrations due to the continuous year-to-
year increase of atmospheric CO2? Would the ANN still give reasonable results when training 
only with data from 2015? ANNs are more or less black boxes in the sense, that it is not easily 
possible to find out which physical relationships they have learned.  
The NN approach must use a training dataset that is representative of the observations to which 
it is applied.  Thus, the NN that we have trained with 2015-2018 data would generate poor 
results when applied to 2020 observations. We acknowledge that this is a limitation of the 
approach.  However, there has not been real time application of OCO-2 observations so far, so 
that we do not see that as a strong limitation. We have added a brief paragraph in this sense in 
section 4 (lines 324 to 327) 
We certainly agree that the approach is a black-box so that its capabilities can only be judged 
empirically.  This is what we attempt in the paper. 
 
As CO2 is well mixed and long-lived, it is easy to make a relative good guess of its concentration 
without using any measurements. As an example, by estimating XCO2 only from latitude and 
time one can achieve already a good agreement with TCCON.  
Nevertheless, nothing new can be learnt about CO2 from such estimates. Therefore, it is crucial 
to prove that the ANN’s XCO2 is primarily coming from the absorption depth within the 
spectra. This, however, has not been done.  
We certainly agree that a good a priori can be obtained from the latitude and time.  We are well 
aware of this fact and this is why we do not provide any information on the location and time 
as input to the ANN.  We agree that some indirect information about the latitude and day-in-
the-year may be extracted from the observation geometry (We clarified this point in lines 112 
to 115 of the revised manuscript).  Conversely, there is no such indirect information on the 
longitude and the year of observation (i.e. the viewing geometry is the same from one year to 
the next, and for all longitudes at a given time).  Thus, the ability of the NN to accurately 
retrieve the ≈2 ppm increment from year to year as well as the zonal gradients is necessarily 
derived from the spectra and not from the other input data. We explained this in details in the 
second paragraph of section 4 (starting at line 278). 
 
One could confront the ANN with simulated spectra and show that it is indeed able to follow 
the simulated variations of the CO2. Such simulations could also be used to derive an estimate 
for the column averaging kernels, e.g., for different solar zenith angles. Additionally, one could 
apply the ANN to small scenes (with basically constant observation geometry) from which it is 



known that they include isolated CO2 plumes (see Nassar et al. (2017), or Reuter et al. (2019) 
for examples). Than it could be analyzed in how far the ANN is capable to follow theXCO2 
enhancements and in how far the results agree with those of ACOS.  
We have added a section to demonstrate that the NN does not only mimic the training data and 
provides additional information (see the first two paragraphs in section 4 and the figure 8).  
Conversely, we have not followed the reviewer suggestion to analyze XCO2 plumes, as 
discussed above. 
 
There are indications for over fitting: as the authors state, the maps in Fig.5 show biases in the 
test data set which do not exist for the training data set.  
There is little doubt that there is over fitting of the training dataset (as we mentioned in line 
106) and this is why we pay attention to have independent training and evaluation data.   
 
Conventional full physics algorithms allow (and usually require) post filtering by analyzing, 
e.g., the spectral fit quality but also quantities such as the posteriori XCO2 error estimate. Is 
this also possible for an ANN approach? 
No.  The NN approach is a black box and it does not allow, to our knowledge, a posterior error 
estimate.  This is made clear on lines 322-323 
 
The TCCON validation seems to be not state of the art. For example, it does not consider the 
averaging kernels. For the ANN this is because they have not been computed, but for the 
TCCON and ACOS they are available. Which metrics have been used to quantify the 
performance? Usually, the average single sounding precision and the station-to-station biases 
are computed as a minimum set of parameters describing the quality. Please note that a low 
scatter could potentially also be observed when simply ignoring the satellite data which always 
add instrumental noise. This should also be considered/discussed when comparing CAMS 
(including no instrumental noise) with TCCON. Please specify what is meant with the different 
measures of agreement that are used throughout the manuscript (trueness, accuracy, precision, 
skill, quality).  
We agree that we do not use the averaging kernel as this information is not directly available 
for the NN.  We have attempted to improve the manuscript and make clear the various 
comments of the reviewer stated here (this is discussed in lines 313-321 of the revised 
manuscript) 
 
Specific comments: 
 
L19: Please define what exactly is meant with precision (at least within the main text).  Is it, 
e.g., the standard deviation of the retrieved values or the standard deviation of the difference 
to a truth? 
 
We feel that there is a clear definition to precision that refers to the standard deviation to some 
other measure.  Here, we do not want to use the term accuracy as we recognize there may be 
some bias in the validation dataset that we use.  We have made a few changes in the text at line 
294 to remove ambiguity 
 
L42-L44: “Similarly...” This paragraph reads like a description of the light path proxy method, 
e.g., used by Schneising et al. (2008). However, the idea of full physics algorithms is 
fundamentally different to this. Because of wavelength dependencies of the surface reflection 
and of the scattering properties (e.g., optical thickness), the light path is different in the O2 and 
CO2 bands. Therefore, full physics algorithms use theO2 band to infer knowledge on the 



scattering particles or processes which allow to estimate the light path in the CO2 band from 
measurements in the O2 and CO2 band (see, e.g., Butz et al. (2011), Cogan et al. (2012), O’Dell 
et al. (2018), Reuter et al.(2017), Yoshida et al. (2013)). However, it is correct, that some (not 
all) full physics algorithms also retrieve the surface pressure. 
 
We certainly agree with this description of the XCO2 retrieval algorithm.  However, our text 
only gives a rough introduction and provides a reference for a more detailed description for 
interested readers.  We do not feel there is anything misleading in the two sentences  
 
L45: Molecular (Rayleigh) scattering is not a main difficulty as it is well known. The main 
problems are aerosols and clouds (see publications cited in my last comment). 
 
We agree.  The use of “molecules” was inappropriate in the sentence and has been changed to 
“particles” (see line 45 of the revised manuscript) 
 
L49: Please describe what is meant with “have been optimized”.   
 
 
We meant “estimated for a best fit between the measured and modeled spectra”. The sentence 
has been changed to “The radiative transfer models that are used for the retrieval leave 
significant residuals between the measured and modelled spectra, even after the XCO2 and 
aerosol amount have been inverted for a best fit” (see line 49) 
 
L53: Why do you consider the signal to be the deviation from the prior? Shouldn’t the signal 
be rather the actual variability. 
The deviation from the prior is the innovation, i.e. the information that is really brought by the 
observation.  If the variability is already known (as for the growth rate or even a large fraction 
of the seasonal cycle), it cannot be considered as a signal brought by the observation. 
 
L65-L67: RT models can simulate the radiance usually extremely accurate. However, the input 
to the RT models (e.g., unknown scattering phase functions, surface BRDF) and approximations 
needed to meet the requirements on the computational efficiency are the problems. 
Additionally, there may be unknown instrumental effects (uncertainties in the instrumental line 
shape function, polarization sensitivity, stray light, etc.). 
Agreed.  We added “In addition, there may be some wrong assumptions and unknown 
instrumental defect that are not accounted for in the forward modeling.” (lines 67-69) 
 
L71: “The evaluation results show...” should be moved to the discussion. 
Agreed (done) 
 
L76: Why footprint #4 not #7 or #3? Do the results critically depend on the used footprint? 
There is no reason to select one rather than the others.  We have not analyzed whether the results 
depend on the footprint but see no reason why it would. 
 
L77: Please discuss if this issue principally will render ANN approaches impossible for 
glint observations and if not, outline potential solutions. 
The text clearly says that the doppler effect that is significant for the glint -but not so for nadir- 
observation introduce a complication (see first paragraph of section 2). Whether this makes the 
ANN approach impossible for the glint observation cannot be answered before it is attempted.  



Since then, we have had excellent results with the glint observation, but this is not in the scope 
of the present paper. 
 
L80: Have you attempted to remove/mask the most affected pixels? 
Yes.  We have removed the pixels on the edge of the spectra, as mentioned in the text (see line 
86 and following) 
 
Sec.2: Please describe which OCO-2 data exactly has been used. Which version and where can 
be obtained from? 
Quality flags and XCO2 estimates are from Lite V9r whereas the spectra are obtained from 
product L1B v8r.  This information is added to the manuscript (lines: 52, 116, 122 and 160) 
 
 
L86-L88: Dividing by the maximum is potentially not ideal because this maximizes the influence 
of instrumental noise or outliers due to cosmic rays and, additionally, it does not account for 
slopes in the spectrum. Such effects could be reduced by, e.g., dividing by the 90% percentile 
of the, e.g., 100 left-most spectral points.  
 
We agree that the results presented in the paper are for a first attempt that is open to 
improvements.  In practice, we do not divide by the maximum, as incorrectly mentioned in the 
text, but by something that is similar to the reviewer suggestion: The normalization is based on 
the mean radiance of the 90-95 percentile range.  This is now properly mentioned in the text at 
line 90. 
 
 
However, my main concern here is another: Dividing by the maximum radiance removes 
important information from the spectrum. Namely the information on albedo (as mentioned in 
the manuscript). As discussed in the literature (see provided references of full physics 
algorithms), unknown scattering properties introduce among the largest uncertainties in XCO2 
retrievals. Knowledge of the albedo is important to infer knowledge of scattering properties. 
Consider an atmosphere with a surface pressure of 1000 hPa and a scattering layer at 500hPa, 
reflecting 1% or the incoming radiation. Let CO2 absorb 80% of the radiance along the light 
path (sun-surface-satellite). This means about 40% will be absorbed along the light path sun-
scattering layer-satellite. In the case of an albedo of 100%, the average absorption would be 
only slightly less than 80%. In the case of an albedo of 0%, the average absorption would 
amount 40%. This means, the relative depth is not a good measure for the number of particles 
in the total column. If you would normalize by the solar incoming radiance instead of the 
maximum radiance you would retain information on albedo, and therefore, also on scattering. 
Additionally, it shall be noted that, the light path in the O2 band can significantly differ from 
that in the CO2 band because of differences in the albedo and scattering properties. 
 
Although we agree with the reviewer comments, NOT dividing by the albedo also causes issues.  
We felt that it would help the NN training to use input radiances that vary little outside of the 
absorption band.  Our results indicate that fairly accurate results are obtained with such choice.  
We certainly agree that the NN approach can be further improved in the future, by us or others.  
Still, the results obtained with our configuration are, we feel, sufficiently interesting and novel 
to deserve publication 
 
L91: The influence of the azimuth should be discussed in the results section. 
We felt it fits better as it is.  We have not moved this very short discussion 



 
L95: 2557 input neurons are quite a lot and results in a rather complex ANN. Often one tries 
to reduce the dimensionality of the input data by performing, e.g., a PCA. This can probably 
also help the ANN to generalize instead of memorize. Why have you decided to use the full 
dimensionality of the input? 
There is no indication that the PCA does a better job than the ANN itself to retain all the 
information that is available.  Use the full dimensionality of the input, which retain all potential 
information, seems like a natural choice to us 
 
L96: Why 500 hidden neurons? Is there a rule of thumbs to select a suitable number of hidden 
neurons? Please discuss how your results depend on the complexity of the network topology. 
Do you use a so called bias neuron? 
We made a few attempts with a different number of neurons.  With 50 neurons, the results were 
clearly of lower quality.  With a larger number of neurons, the training time became 
significantly larger.  The number of neurons could be optimized in the future.  We added two 
sentences starting at line 101 in the manuscript. 
  
 
L100: Preventing the ANN from over training is certainly important. However, I’m not sure if 
it is a good idea to stop iterating before convergence is reached. Could the fact that 
overtraining happens for more than 100 iterations hint at a too complex network topology. 
Would it be an option to prevent from over fitting by choosing a less complex network with 
fewer hidden neurons? Additionally, a plot showing the convergence behavior would be nice 
to have (e.g., RMSD performance of the training and test data vs. number of iterations). 
Note that there is never a full convergence of the network so that a subjective choice of iteration 
stop is necessary.  We do make such convergence plots (see below).  We did not feel it provide 
significant information.  To follow the reviewer suggestion, the convergence plot was added to 
the appendix (figure A1) and mentioned in the text at line 104 and following. 
 
 
L103-L104: It is an important point whether the ANN uses information of time and position of 
the observation or not. Therefore, please discuss, in how far the observation geometry can 
provide the ANN indirectly with information on the position and/or time of the observations.  
The observation geometry varies with the latitude and the season so that the NN may infer some 
location information from this input. Conversely, it is the same for one year to the next and, at 
a given date, for all longitudes.  Thus, there is no information on the longitude or the year of 
observation in the geometry parameters that are provided to the network. We clarified this point 
at the lines 110 to 115 of the revised manuscript.   
 
Which parameters do you mean with “observation geometry” (is, e.g., surface elevation 
included)? 
The observation geometry is the sun zenith angle and the relative azimuth.  The surface 
elevation is not included (this has also been clarified at line 1110) 
 
L104-L106: CO2 does not only have a seasonal variation, but it is also continuously increasing 
from year to year. Therefore, when having in mind a potential application to future data, the 
ANN will usually have to deal with concentrations larger than used for the training. How would 
the ANN behave in such cases? This could, e.g., be answered by confronting the ANN with RT 
simulated radiances. 



We certainly agree that the NN approach cannot be used to process observations that have been 
obtained later (or earlier) in time than the training dataset.  This point is added in the discussion 
section around line 325. 
 
L113: Why do you use ppm as unit for surface pressure? 
Typo corrected.  Thanks 
 
L123: As mentioned in L121, surface based measurements have been used. 
This was a mistake.  We meant that no TCCON (surface based remote sensing) observations 
have been used.  It is corrected.  Thanks 
 
L125: Model pressure usually includes water vapor. However, XCO2 is the dry-air column-
average. Therefore, strictly speaking, you would have to compute the weights according to the 
pressure difference corrected for the water vapor content. 
Although it was not explicit in the manuscript, all pressures in the atmospheric transport model 
that our CAMS product uses (LMDz) are dry air pressures.  Thus, there is no need for a 
correction for the water vapor.  We have made it clear in the revised version by adding the 
sentence “Note that the model layers use “dry” pressure coordinates so that there is no need for 
a water vapor correction in the vertical integration” (line 143 and following). 
 
L128-L137: Interpolating only within the sorted spectrum is a good idea. However, the surface 
reflectance can introduce significant slopes within the spectra which may significantly change 
the rank of the spectral pixels. How large is the impact of this effect? 
We have not attempted to quantify this effect 
 
L166-L171, Fig.3: Why do you use for Fig.3 (left) only soundings where an ACOS retrieval has 
been made? This drastically reduces the number of cloudy soundings. From Fig.3 (left), I would 
estimate, that the ANN is capable to derive the surface pressure for definitively cloudy cases 
nearly bias free with a standard deviation of better than 5hPa.In cases of clouds that are not 
optically extremely thin, the spectra should not include significant information on the surface 
pressure. Additionally, the light path is shortened which can usually be interpreted as low 
surface pressure. Please discuss why the ANN is still capable to derive the surface pressure so 
well. 
We have acknowledged that our current version of the NN is not independent from the ACOS 
product.  In particular, it uses the results from the Cloud detection algorithm.  Only the 
observation that have been through this detection are used.  The “Definitely Cloudy” soundings 
that are used here have been declared “clear” by the first cloud detection process.  There is little 
doubt that the results would not be the same for the observations that are truly cloudy.  Note 
also that the “cloudy” observations in Figure 3 are rare. 
We have added a clarification in the text: “Note also that the observations used hare have all 
been classified as “clear” by the ACOS pre-processing.  Thus, most OCO-2 observations are 
not used here and Figure 3 should not be interpreted as the ability to retrieve the surface pressure 
in cloudy conditions” 
 
L175: I would suggest to also show the corresponding figure for XCO2. If it turns out that the 
ANN is also capable, to derive XCO2 in definitively cloud contaminated scenes, I would also 
suggest to add a discussion where this information is coming from. 
See comment above that the “cloudy” observations here is only a very small fraction -probably 
very specific- of the cloudy observations 
 



L181-L190: How have you accounted for the column averaging kernels? At least for ACOS and 
TCCON, this information is available and should be used.  
We have not used the averaging kernels. 
 
Additionally, the usage of TCCON data should be described in Sec.2 and it should be mentioned 
in the main text, where the TCCON data can be obtained from and when they were downloaded. 
This information was added in the legend of Table 1  
 
L206-L210: I have some concerns with this arguing. If you chose a very complex network 
topology, the ANN might be well able to reproduce CAMS (including systematic persistent 
biases). If the ANN is too simple, it may not be able to follow the actual CO2 variability. I have 
the impression that this paragraph implicitly assumes that the network complexity is “just 
right” so that the ANN was not able to learn biases of CAMS but still generalized enough to 
follow the actual CO2. 
We certainly do not claim that the NN complexity is “just right”.  We only give the results for 
the configuration that we have chosen.  As for the argument, it seems clear that if the difference 
between CAMS and the NN have a random structure, they cannot be used to improve the flux 
estimates.  If they have a spatio-temporal structure, then there is some hope towards that 
objective. Two sentences have been added to manuscript at line 238 to clear up. 
Note also the discussion in the next paragraph that the structures in the surface pressure are a 
bad signal toward that objective 
 
L214: Please discuss why you observe a more or less persistent bias pattern in the even months 
but not significant differences in the odd months (used for the training). The fact that the 
training data set performs significantly better than the test data set usually hints at over fitting. 
There is no doubt that there is over-fitting of the data that are used for the training.  This is 
inevitable and this is the reason why we attempt to clearly distinguish the training and 
evaluation dataset. 
 
L215: In L206-L210 you suggest that XCO2 difference may come from model deficiencies. Why 
do you interpret the surface pressure differences as ANN biases? 
Although we do expect biases in the XCO2 modeling (because our knowledge of the surface 
fluxes is far from perfect), we do not expect such biases in the numerical weather modeling of 
the surface pressure.  Numerous studies have shown that the surface pressure accuracy is better 
than 1 hPa. 
 
Fig.5, 7, A1, A2: Please also show the even month used for the training because significant 
differences between even and odd months, can hint at a potential over fitting.  
There is over-fitting of the training dataset.  This is inherent to the method.  As a consequence, 
the even month differences are very small and provide no relevant information 
 
The shown differences are in the order of 0.5%. What is the expected impact of neglecting the 
averaging kernels? 
Unfortunately, we do not have this information 
 
L237: The presented material does not allow this conclusion. Please, particularly, see my 
specific comments related to the validation method, the used input data for the ANN, and the 
lack of a prove that the ANN’s XCO2 variability is indeed primarily coming from the spectral 
information. 



We have added some material to show that the information comes primarily from the spectral 
information.  We hope this material is sufficient to convince the reviewer that, indeed, we have 
enough information for the conclusion that the NN approach allows a high precision.  Also note 
the use of the verb “indicate” and not “demonstrate” 
 
L238-L239: Please define precision. For which product there is no independent truth (surface 
pressure or XCO2)? 
This comment applies to both, at the scale of the FOV footprint.  The relative accuracy of the 
“truth” surface pressure (numerical weather mode) is certainly better than that of the XCO2.  
We have changed the sentences to  
However, there are indications that the accuracy on the surface pressure is better than 3 hPa 
RMS, while the precision (StdDev) of XCO2 is better than 0.8 ppm.  Indeed, the data used for 
the product evaluation has its own error that is difficult to disentangle from that of the estimate 
based on the satellite observation. 
 
L260-L263: I would have concerns with both options: i) If the OCO-2 spectra do not include 
information on, e.g., the upper most CO2, the ANN’s AKs will have no sensitivity here 
independently from the used training data. ii) AKs usually differ from L2 algorithm to 
algorithm. I would suggest to compute typical AKs by confronting the ANN with simulated 
spectra for different observation geometries.   
We have added a sentence line 320 as per the reviewer suggestion.  The various options must 
be analyzed and tested, but it is clearly out of the scope of the present paper.  We agree the 
reviewer suggestion has potential, but may lead to significant computer requirement. 
 
 
Technical corrections: 
L11,43: column integrated CO2 dry air mole fraction -> column-average dry-air mole fraction 
of CO2 
L13: uses a full -> is a so called full 
L38: During -> Along 
L63: Comprehensive -> Representative 
L124: observations -> observation 
Done (all of the above) 
 
Fig1: Please add a legend for the dashed/dotted yellow and red lines. The visibility of these 
lines is poor. The caption or the axis should include the information which models have been 
used? rˆ2 -> r2 
Corrected 
 
L182, L184: TCCON network -> TCCON 
L183: Fourier Transform Infrared -> Fourier transform infrared 
Corrected (both) 
 
L183: tuned against -> calibrated with 
“Calibration” assumes that experimental conditions are controlled (“under specified 
conditions” see https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf), 
which is not possible with remote sensing. “Tuning” is appropriate here. 
 
L184: “tuning” do you mean “bias correction”? 
Corrected 



 
L186: “neither...nor” do you mean “either...or”? 
No.  we mean the target mode that is neither nadir nor glint (and that is difficult to handle with 
the NN approach) 
 
Fig.3: Please increase the font size. 
 
Fig.4: Please increase the font size. TCCON station names should start with uppercase letters. 
 
Fig.5, 7, A1, A2: The font size is too small, white is ambiguous (snow/ice or delta_p =0), green 
is not explained. 
All corrected 
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Reviewer 2 (Chriss O’Dell) 
 
 
Review of David et al., “XCO2 estimates from the OCO-2 measurements using a neural 
network approach.”, by Chris O’Dell. 
 
This work details a fast, artificial neural network (NN) approach to retrieving surface pressure 
and the column-mean dry air mole fraction of CO2(XCO2) from high-spectral resolution 
measurements in the near-infrared from the Orbiting Carbon Observatory-2 (OCO-2). 
Traditionally, the most accurate XCO2 retrievals have been from semi-physical(“Full-
physics”) retrievals. These are typically iterative, and typically include accurate calculations 
of multiple-scattering from thin layers of clouds and aerosols, which makes them exceedingly 
slow. They also tend to be subject to importance biases (of order 1ppm) due to forward model 
errors(such as spectroscopic or instrument calibration). A neural-network approach is 
extremely appealing because it automatically solves the speed problem (NN’s are very fast, 
likely tens of milliseconds per retrieval, vs. minutes for a typical FP approach), and may solve 
some of the bias problem as well, because they simply train on the “right answer”, and do not 
have to know the details of spectroscopy or instrument models. 
 
We fully agree with this summary and comment 
 
General Comments: 
This work is the first serious effort to use NN’s as applied to the XCO2 retrieval problem, and 
the author’s mostly do a good job. However, there are a number of weaknesses and 
methodological problems in this work that need to be strengthened before I can recommend 
publication. I see this is a “major revision”, but ultimately I believe this work can and should 
be published, as I believe (for the reasons above) that NN’s hold great promise as applied to 
the XCO2-from-satellites problem. 
We hope the reviewer can be convinced by our additions and corrections in the paper, together 
with some of our answers below 
 
Most significantly, as the first reviewer pointed out, it is difficult to ascertain from the 
manuscript alone exactly what the NN algorithm has learned. The authors trained it on a model 
(CAMS), and as a first validation, tested it against the same model. Using alternating months 
as training vs. testing is helpful, but the model certainly has deficiencies that are persistent 
longer than a month in certain regions, so testing well vs. that same model simply is not a 
validation. The only other real validation given is against TCCON, which seemed to perform 
well but because of TCCON’s lack of good global coverage, again it is very hard to tell how 
well the model performs globally in any real sense.  
We have added a discussion and further analysis (beginning of the discussion section) to answer 
the reviewer comment  
 
I am also worried about having to re-train the model every year to deal with the ~2 ppm secular 
increase, which over a mere 4 years is roughly equal to the entire global variability of XCO2.  
This is definitely a weakness of the NN approach that we do not try to hide.  Unfortunately, we 
see no way to fix this weakness.  Note however that most scientific studies achieved with the 
OCO-2 dataset apply to “old” observations so that the ability to process the data in near real-
time does not appear essential.  We have added a paragraph in the discussion section on this 
comment. 
 



I believe it would make their argument much stronger if they ran their algorithm on a few select 
powerplant cases where the enhancement in the plume is reasonable well-constrained. This is 
possible for power plants with good bottom-up emissions estimates, and cases where the wind 
speed is reasonably well-known. See for instance Nassar et al. (2017) for some sample cases. 
If the NN doesn’t see a plume at all, we know that it hasn’t been properly trained; if it does, it 
will dramatically bolster the arguments in this work. Arguing that just because the NN doesn’t 
have direct access to location or time information does not mean it cannot indirectly learn other 
relationships that allow it to appear to learn well. This is a hypothesis, not a proof that it has 
learned what you think it did. 
Although we agree that the analysis over plant plumes is something that must be done 
eventually, it is clearly out of the scope of the paper that is a first try at using the NN approach.  
As described in the manuscript, we use a single footprint so that our output dataset does not 
have the “imagery” information that is most useful for the plume.  In addition, the identification 
of plumes in the observation dataset, the use of an atmospheric transport model, and the analysis 
of each case would be a full study in itself.   
 
Related to this, I’m somewhat concerned by training on CAMS and then considering to use the 
resulting XCO2 to correct CAMS. To show that your method works, you almost need to run a 
full (and fairly complicated) OSSE where you have a true world, a CAMS-like model world 
with some CO2 errors (spatially and temporally correlated), train on the latter, and then see if 
you can recover the former with the NN. I don’t see how this is guaranteed to work, honestly. 
How do you know that you won’t somehow reproduce systematic errors in CAMS by using the 
NN approach? You state in the text that you tacitly assume that CAMS errors are not correlated 
OCO-2 spectra in given areas and for given months. But because the CAMS errors (likely of 
order 1 ppm) are of a similar magnitude as the XCO2 signal, it is important to point out that 
this is merely an assumption, and more extensive validation (or a detailed OSSE study) is 
necessary to prove it.  
To answer this reviewer concern (that are somewhat similar to those of the first reviewer), we 
have added a full section in the paper (lines 278-290, and figure 8).  We hope it can convince 
the reviewers 
 
Also, you claim to use the “ACOS cloud flag”, which you say has values 0,1,2, or 3, as a way 
to define both your training and testing data sets. I think you mean “Preprocessing 
Results/cloud_flag_idp” in the L2Std file. If this is correct, please know that this flag is little 
used by the community. In fact, I’ve never heard of anyone using it, actually. It was defined 
about a decade ago for GOSAT and not really touched since then (I verified this with the author 
of the code that defines it). It has never been carefully validated and it appears to be extremely 
restrictive (“co2_ratio_idp”must be between 0.99 and 1.01 to pass, which is extremely 
restrictive and appears to cutout entire regions of the globe).  Further, using outcome_flag=1 
is also quite restrictive. Can you please comment on these flags, and why you didn’t use the far 
simpler ACOS xco2_quality_flag, which is widely used by the community and is the generally 
adopted quality flag to use? In the plot below, I have attempted to show the differences between 
the two approaches for May 2016. I had to match the L2Std files(v8r) to the Lite files(v8), so 
there may be some differences to what you used in your work, but the general conclusion is that 
you miss a great deal of data with the highly restrictive data set you are working with. Thus, 
because it is so restrictive, it may be a far easier task than what ACOS tries to do, which is get 
the best error possible for the xco2_quality_flag = 0 dataset, which is roughly 6 times bigger.  
 
We agree that our description of the cloud flags and quality flags used in our study was unclear.  
We have attempted to correct that.   



In practice, we do use only observations with xco2_quality_flag=0.  This was not mentioned in 
the manuscript which is a clear oversight (corrected) 
The selection Outcome_flag=1 is used for the training.  We have analyzed the Psurf precision 
statistics as a function of the outcome flag (Figure 3).  Since there are no significant difference, 
the evaluation data and the maps are based on the data with no restriction on the outcome flag. 
As for the cloud flag, we indeed refer to the Preprocessing Results/cloud_flag_idp.  We were 
not aware that this flag was not used by the community.  For the training, we only use 
cloud_flag=3 (absolutely clear) which is roughly half of the dataset.  The analysis of the result 
precision as a function of this flag (Figure 3) indicates that the results obtained for cloud flag=2 
are not significantly different than those with cloud flag=3.  On the other hand, those with cloud 
flag=0 or 1 are significantly poorer.  As a consequence, we have retained the observations with 
cloud flag of 2 or 3, which are 96% of the dataset.  Although the cloud flag is not used in the 
community (as explained to us by the reviewer) it seems that it has some value (cloud flag =0 
or 1 is of lesser quality).  In the previous version of the manuscript, we used, for the evaluation, 
only data with cloud flag =3.  As a consequence, the number of soundings is significantly 
increased (a factor of ≈2) and the statistics are slightly changed. 
This is described in lines 121-126 
 
 
Finally, in section 2 please give the sources of ACOS/OCO-2 data you used with more 
specificity. What specific versions and datasets of OCO-2 did you use? V8r, or just V8? Did 
you use L2Std files, L2Diafiles, Lite files, etc?  
This information is now provided line 120 (L2 Lite V9r and the associated warn level and flags 
from v8r L2lite, and L1b from v8r) 
 
What you train on is pretty critical. I think you should at the very least show a sounding density 
map of your training (and testing) set.  
The map requested by the reviewer has been added in the supplementary (figure A2) 
 
Further, I think you should carefully explain your reasoning on how you choose the filtering. 
You must at least mention the xco2_quality_flag, and ideally you would retrain (or at least test) 
using this, if you aren’t going to define your own quality flags. If you choose to train using very 
restrictive (clear-sky conservative) filters, please explain this is more detail.  Also, both 
outcome_flag and warn_level (which you use for filtering) come from the ACOS L2FP product 
(cloud_flag_idp comes from a fast, preprocessor code, the IMAP-DOASPreprocessor, or IDP). 
It would be much better if you could avoid this entirely, because currently you are throwing 
away all the soundings that didn’t converge or were skipped by the ACOS team, which relies 
on all the peculiarities of our specific algorithm. To make a useful NN algorithm, it ultimately 
must be independent of any full physics algorithm, unless you want to train on soundings that 
pass some smaller subset of data that includes L2FP quality flags, but test on a more complete 
set of soundings that doesn’t use any L2FP quality flags. But you do not appear to do this. 
We certainly agree that, eventually, it will be necessary to become independent of the ACOS 
preprocessing.  This is mentioned explicitly in the discussion section.  Conversely, at this stage, 
we feel it is desirable to process the exact same dataset as that successfully processed by ACOS.  
This allows a meaningful comparison of the product precision and accuracy. 
We have added a few sentences to explain which flags are used, and why we selected those at 
the beginning of page 4 of the revised manuscript. 
 
 
Specific Comments: 



L20, Abstract: I don’t think TCCON is a “sunphotometer”. That kind of implies more moderate 
resolution measurements. How about “reference ground-based spectrometer” or something 
similar? 
We changed photometer to spectrophotometer.  We do not think there is any need to be more 
specific in the abstract.  Most readers will know exactly what we are referring to and those who 
do not can get the information in the paper. 
 
L80: Please clarify “a limited set of spectral elements”. Make clear these are the solar 
(Fraunhofer) lines you’re talking about. 
Done 
 
L85(near there): Do you try to mask deep solar lines as well (to remove their Doppler effects)? 
Please clarify, with a why or why not. 
We have added the sentence : “Conversely, we do not remove the spectra that are affected by 
the deep solar lines, and let the NN handle these specific features”.   
 
L90 (near there): Might you include the polarization angle directly to the NN, in addition to / 
instead of the relative azimuth? That might work even better. 
Thanks.  We take this suggestion for a future evolution of the algorithm. 
 
L96: As the readers of this article are likely not NN experts, please discuss the pros and cons 
of # of hidden layers vs. # of neurons. Also please discuss how was the number 500 chosen or 
optimized. 
An earlier version of the NN approach used only 50 hidden neurons and led to less accurate 
results.  A higher number or neurons led to much higher training time.  We made a few tests, 
but there was no attempt for an exhaustive analysis and optimization.  This could be done for 
the future although we are satisfied by the current version. We have added two sentences on 
this subject (line 122) 
 
L113: I think you mean “1 hPa”, not “1ppm”.  
Yes.  The typo is corrected 
 
L125: XCO2 is defined as weighted by the number of dry air molecules per square meter in 
each layer, not the pressure width. This can be shown to be roughly proportional to dP * (1-q) 
for a given layer (e.g., O’Dell et al., 2012), where dP is the pressure width and q is the specific 
humidity in kg/kg. Please recalculate your model XCO2 using this more standard formulation, 
if possible, or defend your non-traditional XCO2 definition. The differences are generally small 
(tenths of a ppm), so it is defensible, but if you can be correct, it is best to do so. 
 
Although it was not explicit in the manuscript, all pressures in the atmospheric transport model 
that our CAMS product uses (LMDz) are dry air pressures.  Thus, there is no need for a 
correction for the water vapor.  We have made it clear in the revised version (line 143). 
 
 
L138/Figure 1: This is supposedly for the evaluation dataset, but includes N=381k soundings? 
In section 2, you say the evaluation dataset only includes 155k soundings. So something is 
wrong –please explain or fix. 
 
For the training, we use only the highest quality data as indicated by the outcome flag and cloud 
detection flag.  We then apply the trained NN to a larger fraction of data, with no restriction on 



the outcome flag and a less strict restriction on the cloud flag (2 or 3).  The difference between 
155k and 381k is entirely explained by these criteria selection. 
We certainly agree that it was poorly explained and we have modified the text for better clarity. 
 
 
 
L138-152: Based on Fig 5, there appears to be some problem in the surface pressure retrieval 
over mountains, specifically a high bias generally in these regions (visible over the Tibetan 
Plateau and the U.S. Rocky Mountains). Please discuss.  
In the original version of the paper (second paragraph of section 3), we wrote “…although there 
is some indication of biases for the lowest pressures that are under-represented in the training 
dataset.”  We have added “These biases affect the observations over high elevation surfaces 
such as the Tibetan Plateau or the US Rocky Mountains”  
I suggest that including the surface elevation in the NN may be a good idea, though technically 
it shouldn’t be necessary. 
Indeed, it does not appear to be necessary, although it would be easy to do so 
 
Regarding TCCON comparison: It would be useful to include the following statistics for ACOS, 
NN, and CAMS vs. TCCON: Overall Mean, Overall StdDev, and Stddev of Station mean biases. 
These are useful to evaluate accurate vs. TCCON in simple statistics. See for example Fig 18b 
in O’Dell et al (2018). It shows a mean bias of Nadir Land observations vs. TCCON of 0.30ppm, 
and a stddev of 1.04 ppm (it has not calculated the stddev of the station-level mean biases; some 
groups do this, others not). Finally, it doesn’t look like you’re applying the averaging kernel 
(AK) correction when comparing ACOS to TCCON. This typically makes the stddev about 0.1 
ppm better. If you do not make this correction, please point this out in the text. 
We have added the overall statistics in the text, and the station by station statistics in Table 1.  
Indeed, we do not use the AK for the validation.  We make that clear in the revised version of 
the manuscript. 
 
 
Fig4: Please include a horizontal dashed line so we can see the zero-level.  Also, please be 
clear in the caption or the text if the ACOS and NN are sounding-matched. Typically, when we  
compare ACOS to TCCON, which use all xco2_quality_flag=0 data. If you were to do this, it 
may change your results for ACOS vs. TCCON (though better vs. worse, I’m not sure). 
We have added the line as suggested in the manuscript.  We only use data with a quality flag 
of zero at all step of the study. This is now made clear in the manuscript. 
 
Technical/Grammatical: 
L92: “Although, the NN technique”à“Although the NN technique” 
L124: “For each OCO-2 observation” 
L129: “cosmic flux anomaly”à“cosmic ray flux anomaly” 
L151: “lowest pressure” “lowest pressures” 
L181: please replace “classical” with “standard” or “traditional” 
L250: “that are described in this paper.” 
Done (thanks !) 
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Abstract. The OCO-2 instrument measures high-resolution spectra of the sun radiance reflected at the Earth surface or 10 

scattered in the atmosphere.  These spectra are used to estimate the column-averaged dry air mole fraction of CO2 (XCO2) 

and the surface pressure.  The official retrieval algorithm (NASA’s Atmospheric CO2 Observations from Space retrievals 

- ACOS) is a full physics algorithm and has been extensively evaluated.  Here we propose an alternative approach based 

on an artificial neural network (NN) technique.  For the training and evaluation, we use as reference estimate (i) the 

surface pressures from a numerical weather model and (ii) the XCO2 derived from an atmospheric transport simulation 15 

constrained by surface air-sample measurements of CO2. The NN is trained here using real measurements acquired in 

nadir mode on cloud-free scenes during even months and is then evaluated against similar observations of odd months.  

The evaluation indicates that the NN retrieves the surface pressure with a root-mean-square error better than 3 hPa and 

XCO2 with a 1-sigma precision of 0.8 ppm.  The statistics indicate that the NN, that has been trained with a representative 

set of data, allows excellent accuracy, slightly better than that of the full physics algorithm.  An evaluation against 20 

reference spectrophotometer XCO2 retrievals indicates similar accuracy for the NN and ACOS estimates, with a skill that 

varies among the various stations.  The NN-model differences show spatio-temporal structures that indicate a potential 

for improving our knowledge of CO2 fluxes. We finally discuss the pros and cons of using this NN approach for the 

processing of the data from OCO-2 or other space missions. 

1. Introduction 25 

During the past decades, natural fluxes have absorbed about half of the anthropogenic emissions of CO2 (Knorr, 2009), 

but there is large uncertainty on the spatial distribution of this sink over time and therefore on the processes that control 

it. A growing network of high-precision atmospheric CO2 measurements has been used together with meteorological 

information to constrain the sources and sinks of CO2 using a technique known as atmospheric inversion (e.g., Peylin et 

al., 2013), but the lack of data in large regions of the globe like the tropics does not allow monitoring these fluxes with 30 

enough space-time resolution.  Early attempts to complement this network with satellite retrievals from sensors that were 

not specifically designed for this purpose were not successful (Chevallier et al., 2005), but a series of dedicated 

instruments have been put in orbit since the Greenhouse Gases Observing Satellite (GOSAT, Yokota et al., 2009) and the 

second Orbiting Carbon Observatory (OCO-2 Eldering et al., 2017a), launched in 2009 and 2014, respectively, and still 

operated at the time of writing. This new and evolving constellation is directly supported by Japanese, US, Chinese and 35 

European space agencies (CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team, 2018). All 

missions have adopted the same CO2 observation principle that consists in measuring the solar irradiance that has been 
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reflected at the Earth’s surface in selected spectral bands. Along the double atmospheric path (down-going and up-going), 

the sunlight is absorbed by atmospheric molecules at specific wavelengths.  The resulting absorption lines on the measured 

spectra makes it possible to estimate the amount of gas between the surface and the top of the atmosphere. CO2 shows 

many such absorption lines around 1.61 and 2.06 µm that are used to estimate the CO2 column.  Similarly, the oxygen 

lines around 0.76 µm are used to estimate the surface pressure and can also be used to infer the sunlight atmospheric path, 50 

leading to the column-averaged dry air mole fraction of CO2, referred to as XCO2 (O’Brien and Rayner, 2002, Crisp et 

al., 2004). 

One main difficulty in the retrieval of XCO2 from the measured spectra results from the presence of atmospheric particles 

that scatter light and change its atmospheric path.  Accounting for aerosols, in particular, is challenging because aerosols 

are very variable in amount and in vertical distribution. Another major difficulty results from modelling errors. The 55 

radiative transfer models that are used for the retrieval leave significant residuals between the measured and modelled 

spectra, even after the XCO2 and aerosol amount have been inverted for a best fit (Crisp et al., 2012; O’Dell et al., 2018).  

As a consequence of the various uncertainties in the retrieval process, raw XCO2 retrievals show significant biases against 

reference ground-based retrievals (Wunch et al., 2011b, 2017).  These biases, together with the comparison against 

modelling results, led to the development of empirical corrections to the retrieved XCO2.  In the case of the OCO-2 v8r 60 

retrievals generated by NASA’s Atmospheric CO2 Observations from Space (ACOS), these corrections amount to 

roughly half that of the “signal”, i.e. of the difference between the prior and the retrieved XCO2 (O’Dell et al. 2018). 

The limitations in the full-physics retrieval method, despite considerable efforts and progresses (e.g., O’Dell et al. 2018, 

Reuter et al. 2017, Wu et al., 2018 in the case of OCO-2), encourage developing alternative approaches.  Here, we want 

to re-evaluate the potential of an artificial neural network technique (NN) to estimate XCO2 from the measured spectra. 65 

A NN-based technique was already used by Chédin et al. (2003) for a fast retrieval of mid-tropospheric-mean CO2 

concentrations from some meteorological satellite radiometers. These authors trained their NNs on a large ensemble of 

radiance simulations made by a reference radiation model and assuming diverse atmospheric and surface conditions. NN-

based approaches are also commonly used for the retrieval of other species from various high-spectral-resolution satellite 

radiance measurements because of their computational efficiency (e.g., Hadji-Lazaro et al. 1999). 70 

A NN approach requires a large and representative training dataset.  A standard method for problems similar to that 

discussed here is to use a radiative transfer model and to generate a large ensemble of pseudo observations based on 

assumed atmospheric and surface parameters.  However, as mentioned above, the radiative transfer models have 

deficiencies that are rather small, but nevertheless significant with respect to the high precision objective of the CO2 

measurements.  In addition, there may be some wrong assumptions and unknown instrumental defects that are not 75 

accounted for in the forward modeling.  We thus prefer to avoid using such radiative transfer models and rather base the 

training on a fully empirical approach (see, e.g., Aires et al., 2005).  We use real OCO-2 observations together with 

collocated estimates of the surface pressure and XCO2.  The retrievals from the NN approach are evaluated against model 

estimates of surface pressure and XCO2, as well as observations from the Total Carbon Column Observing Network 

(TCCON, Wunch et al., 2011).  In the following, section 2 presents the approach while section 3 describes the results.  80 

Section 4 discusses the results and the way forward. 

2. Data and method 

Our NN estimates XCO2 and the surface pressure from nadir spectra measured by the OCO-2 satellite over land.  OCO-

2 has eight cross-track footprints (e.g., Eldering et al., 2017), but we only use footprint #4 in the following for simplicity. 
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If successful, the same approach can be applied to all footprints.  The focus on nadir measurements here is motivated by 

the complication introduced by the Doppler effect in glint mode, which is the other pointing mode for OCO-2 routine 100 

science operations: the absorption lines affect pixel elements that vary among the spectra.  These variations of the position 

of the absorption line may cause additional difficulty to the NN training.  The solar lines in the nadir spectra are also 

affected by Doppler shifts due to the motion of the Earth and satellite relative to the sun, but this concerns a limited set 

of spectral elements that are affected by the solar (Fraunhofer) lines. The development of a glint-mode NN is therefore 

left for a future study. 105 

We use spectral samples in the three bands of the instrument (around 0.76, 1.61 and 2.06 µm). They have footprints of ~ 

3 km2 on the ground. In principle, each band is described by 1016 pixel elements but some are marked as bad either 

because some of the corresponding detectors died at some stage or because of known temporary or permanent issues. We 

systematically remove 15 pixel elements that are flagged in about 80% of the spectra and 478 pixels in the band edges. 

Conversely, we do not remove the spectra that are affected by the deep solar lines, and we let the NN handle these specific 110 

features.  Because the information in the spectrum is mostly in the relative depth of the absorption lines, and not in their 

overall amplitude, we normalize each spectrum by a radiance that is representative of the offline values (i.e. the mean of 

the 90-95% range for each spectrum).  This essentially removes the impact of the variations in the surface albedo and in 

the sun irradiance linked to the solar zenith angle.  Other choices for the input may be attempted in the future. 

As input to the NN, we add the observation geometry (sun zenith angle and relative azimuth). The sun zenith angle drives 115 

the atmospheric pathlength and is then required for the interpretation of the absorption line depth in terms of atmospheric 

optical depth. The azimuth was not included in our first attempts but, when included, it led to a significant improvement 

in the results. Although the NN technique does not allow for a clear physical interpretation, we assume that the 

information brought by the relative azimuth is linked to the polarization of the molecular scattering contribution to the 

measurements that varies with the azimuth. 120 

The NN exploits these 2557 input variables to compute 2 variables only: XCO2 and the surface pressure. It is structured 

as a Multilayer Perceptron (Rumelhart et al. 1986) with one hidden layer of 500 neurons that use a sigmoid activation 

function.  The number of hidden layers is somewhat arbitrary and based on a limited sample of trials.  Lower quality 

estimates were obtained with 50 neurons whereas the training time increased markedly for 1000 neurons and more.  The 

weights of the input variables to the hidden neurons and the weights of the hidden variables to the output variables are 125 

adjusted iteratively with the standard Keras library (Chollet, 2015).  Figure A1 in the appendix illustrates the convergence 

process.  The NN cost function (aka loss) becomes fairly constant for a test dataset after about 100 iterations, while it 

continues to decrease for the training dataset, indicating an over-fitting of the data. The iteration is stopped when there is 

no decrease of the test loss for 50 iterations.  There is a factor of 3 to 4 between the loss of the training dataset and that 

of the test, which confirms the over-fitting of the former. 130 

Note that the NN estimate does not use any a priori information on surface pressure or the CO2 profile after the training 

is done.  Also, no explicit information is provided on the altitude, location or time period of the observation.  The NN 

estimates are therefore only driven by the OCO-2 spectrum measurements, together with the observation geometry (sun 

zenith and relative azimuth).  The observation geometry varies with the latitude and the season so that the NN may infer 

some location information from this input. Conversely, it is the same from one year to the next and, at a given date, for 135 

all longitudes.  Thus, there is no information on the longitude or the year of observation in the geometry parameters that 

are provided to the network.   
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The NN training is based on OCO-2 radiance measurements (v8r) acquired during even months between January 2015 

and August 2018. The 4-year period allows varying the global background CO2 dry air mole fraction by ~ 2%, as much 155 

as typical XCO2 seasonal variations in the northern extra-tropics (see, e.g., Fig. 1 of Agustí-Panareda et al., 2019). Our 

evaluation dataset is based on observations during the odd months of the same period. In both cases, we make use of 

XCO2 estimates and the quality control filters of the ACOS L2Lite v9r products: only observations with 

xco2_quality_flag=0 are used.  We also consider the warn level, outcome flag and cloud_flag_idp that are provided in the 

v8r L2lite and L2Std files.  For the training of the NN, we only use the best quality observations, i.e. those with a warn 160 

level lower or equal to 2, a cloud_flag of 3 (very clear) and an outcome flag of 1. This choice is based on an evaluation 

of the surface pressure estimates that is described below (with the description of Figure 3). This distinction leads to about 

131 000 observations for the training.  For the evaluation of the NN estimates, we use less restrictive criteria and accept 

observations with outcome_flag of either 1 and 2, and cloud_flag of 2 or 3.  These choices are justified below.  The spatial 

distribution of the observations that are used for the training is shown in Figure A2 of the appendix.  The training dataset 165 

covers most regions of the globe with the exception of South America.  The underrepresentation of this sub-continent 

stems for both the high cloudiness and impact of cosmic rays that leads to missing pixel elements (see below). 

For the reference surface pressure (training and evaluation), an obvious choice is the use of numerical weather analyses 

corrected for the sounding altitude.  Indeed, the typical accuracy for surface pressure data is on the order of 1 hPa (Salstein 

et al. 2008).  For convenience, we use the surface pressure that is provided together with the OCO-2 data and that is 170 

derived from the Goddard Earth Observing System, Version 5, Forward Processing for Instrument Teams (GEOS5-FP-

IT) created at Goddard Space Flight Center Global Modeling and Assimilation Office (Suarez et al. 2008 and Lucchesi 

et al. 2013).  There is no such obvious choice for XCO2 as there is no global-scale highly-accurate dataset of XCO2 and 

we thus rely here on best estimates from a modelling approach.  We use the CO2 atmospheric inversion of the Copernicus 

Atmosphere Monitoring Service (CAMS, atmosphere.copernicus.eu, last access: 28 January 2020, Chevallier et al., 175 

2010); version 18r2). This product was released in July 2019 and contributed, e.g., to the Global Carbon Budget 2019 of 

Friedlingstein et al. (2019). It results from the assimilation of CO2 surface air-sample measurements in a global 

atmospheric transport model run at spatial resolution 1.90° in latitude and 3.75° in longitude over the period 1979-2018 

and using the adjoint of this transport model.  Neither satellite retrievals nor TCCON observations were used for this 

modelling.  For each OCO-2 observation, XCO2 is computed from the collocated concentration vertical profile, through 180 

a simple integration weighted by the pressure width of the model layers.  Note that the model layers use “dry” pressure 

coordinates so that there is no need for a water vapor correction in the vertical integration.  The GEOS5-FP-IT surface 

pressure and the XCO2 from CAMS are used both for the training and the evaluation, although using independent datasets 

(odd and even months). 

Many measured spectra lack one or several spectral pixels. This is particularly the case over South America, as a 185 

consequence of the South Atlantic cosmic ray flux anomaly that impacts the OCO-2 detector in this region. We therefore 

devised a method to interpolate the spectra and to fill the missing pixels. Our method first sorts all spectral pixels as a 

function of the measured radiance in a large number of complete measured spectra. The pixel ranks are averaged to 

generate a rank representative of the full dataset.  Then, when a pixel element is missing in a spectrum, we look for its 

typical rank and we average the radiances of the two pixel elements that have the ranks just above and below.  The 190 

procedure is applied even when several pixel elements are missing in a spectrum, except when these are successive in the 

typical ranking.  The procedure described here fills the missing elements, and the NN can then be applied to the corrected 

spectrum to estimate the surface pressure and XCO2. 
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3. Results 

Figure 1 shows a density histogram of the GEOS5 FP-IT surface pressure analysis and of the NN estimate for the 

evaluation dataset (odd months).  Clearly, there is an excellent agreement between the two over a very wide range of 210 

surface pressures.  There is no significant bias and the standard deviation is 2.9 hPa.  The equivalent ACOS v8r retrieval 

shows a bias of 1.5 hPa and a standard deviation of 3.4 hPa, slightly larger than that of the NN approach. Note that the 

ACOS statistics are those of the ACOS retrieval-minus-prior statistics (see Section 2). Interpreting them in terms of error 

is counter-intuitive because the Bayesian retrieval is supposed to be better than the prior, but in practice radiation 

modelling errors lead to a different interpretation (see, e.g., the discussion in Section 4.3.4 of O’Dell et al. 2018).  215 

Both NN and ACOS correlations with GEOS5 FP-IT are very high (0.997 and 0.996) although the best fit shows a very 

small deviation from the 1:1 line.  Interestingly, the best fit deviations from the 1:1 line are of opposite sign (slopes 0.99 

and 1.01).  The results of the NN are surprisingly good given the simplicity of the approach and given that the NN estimate 

does not use any a priori information or ancillary information such as the surface altitude or temperature profile, contrarily 

to the ACOS estimate.  The quality of the NN results for the estimate of the surface pressure is a first demonstration of 220 

the potential of the approach.  Note that the retrieval accuracy holds over a very large range of surface pressures (the 

relative variations of XCO2 are much smaller), although there is some indication of biases for the lowest pressures that 

are under-represented in the training dataset.  These biases of ≈5 hPa affect the observations over high elevation surfaces 

such as the Tibetan Plateau or the US Rocky Mountains. 

Figure 2 is similar to Figure 1 but for XCO2. There is no significant bias between the NN estimate and the CAMS model, 225 

while the standard deviation is 0.84 ppm.  The bias-corrected ACOS retrievals show a slight bias against the CAMS 

model and the standard deviation (1.14 ppm) is larger than that of the NN approach.  Note that the statistics given here 

are affected by CAMS modelling errors that may eventually be corrected with the help of the satellite information. The 

best fit slope deviations from the 1:1 line are larger than for the surface pressure: the slopes are 0.93 for the NN and 0.87 

for ACOS. 230 

Figure 1 and 2, together with the quantitative assessment of the precision are given for the observations that are clear 

according to ACOS (Cloud Flag=2 or 3), that have a warn level of 2 or less, that may include missing pixel elements, and 

that have an outcome flag of 1 or 2.  This choice is based on a prior performance analysis. We have analyzed how the 

performance of the NN approach varies with the quality indicators. For this objective, we have compared the retrieved 

surface pressure against the value derived from the numerical weather data, as in Figure 1, and we have evaluated the 235 

statistic of their difference as a function of the quality flags. First (figure not shown), there is no significant difference 

between the cases when the measured spectra are complete and those when one or several missing pixel elements have 

been interpolated with the method described above.  Conversely, the statistics vary with the cloud flag and the warn level, 

as shown in Figure 3.  We only use the spectra for which an ACOS retrieval is available. Among those, and according to 

the flag cloud_flag_idp, about 53% are labeled as “very clear” while 43% are “probably clear”.  The statistics are slightly 240 

better for the former than they are for the latter.  Conversely, the rather rare “definitely cloudy” and “probably cloudy” 

show deviations that are significantly larger. This result was well expected since our NN did not learn how to handle 

clouds in the spectra, so that all “definitely cloudy” and “probably cloudy” soundings are outside the domain covered by 

the training dataset.  Note also that the observations used here have all been classified as “clear” by the ACOS pre-

processing.  Thus, most OCO-2 observations are not used here and Figure 3 should not be interpreted as the ability to 245 

retrieve the surface pressure in cloudy conditions. Most (78%) of the observations have a warn level of 0.  The deviation 

statistics increase with the warn level, both in terms of bias and standard deviation. In comparison, the difference in the 
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statistics for an outcome flag of 1 and 2 are small.  Besides, more than half of the ACOS retrievals have an outcome flag 

of 2 which encourages us not to reject those for further use.  Based on this analysis, we retain all spectra that are very 

clear (cloud flag of 2 or 3) and that have a warn level of 2 or less. 265 

We have made a similar figure as Figure 3 but based on the XCO2 estimates (not shown).  Although the results are similar 

in terms of sign (i.e. increase of the deviations with the warn levels), the signal is not as obvious (there is less relative 

difference between a warn level and another, or for the various cloud flags).  Our interpretation is that the relative accuracy 

of the surface pressure that is used as a reference estimate is much better than that of the NN retrieval, whereas the 

accuracy of the XCO2 from CAMS is not much better than that of the NN.  As a consequence, variations in the accuracy 270 

of the NN do not show up as clearly for XCO2 than they do for the surface pressure. 

A standard method to evaluate an algorithm that estimates XCO2 from spaceborne observation is the comparison of its 

products against estimates from TCCON retrievals.  These estimates use ground-based solar absorption spectra recorded 

by Fourier transform infrared spectroscopy and have been tuned with airborne in-situ profiles (Wunch et al. 2010).  To 

take advantage of the full potential of the TCCON retrievals for the bias-correction and validation of the XCO2 estimates, 275 

the OCO-2 platform can be oriented so that the instrument field of view is close to the surface station.  The ACOS full-

physics algorithm can handle these spectra that are acquired in neither nadir nor glint geometries, but the NN was trained 

solely on nadir spectra and cannot be applied yet to the observations acquired in target mode.  We thus have to rely on 

nadir measurements acquired in the vicinity of TCCON sites. In the following, we use nadir measurements that are within 

5 degrees in longitude and 1.5 degrees in latitude to the TCCON site.  The XCO2 estimates (either from ACOS, the NN, 280 

or the model sampled at the OCO-2 measurement location) are averaged for a given overpass.  Similarly, we average the 

TCCON estimates of XCO2 within 30 minutes of the satellite overpass.  No attempt was made to correct for the different 

weighting functions of the surface and spaceborne remote sensing estimates.  The comparisons are shown in Figure 4 for 

each TCCON station of Table 1.    

Overall, the biases and standard deviations of the differences to TCCON observations are -0.34±1.40 ppm for the NN, -285 

0.47±1.49 ppm for ACOS and 0.04±1.09 ppm for CAMS.  Statistics per stations are provided in Table 1. Two stations, 

Paris and Pasadena, show a large negative bias for both estimates, which may be interpreted as the impact of the city on 

the atmosphere sampled by the TCCON measurement, while the atmosphere sampled by the distant satellite may be less 

affected.  Conversely, there is no such negative bias for other stations that are located close to large cities, such as Tsukuba 

that is in the suburb of the Tokyo Metropolitan area.  Zugspitze is rather specific due to its high altitude.  The comparison 290 

against TCCON indicates that the NN approach has a similar performance as ACOS, if not better.  The dispersion is larger 

for one versus the other for some stations, while the opposite is true for others.  Note also that the CAMS model performs 

better than both satellite retrievals for most stations.  This observation provides further justification to the use of this 

model for training the NN. 

The evaluation of the algorithm performance is limited by the distance between the satellite estimate and its surface 295 

validation. This is inherent to the use of nadir-only observations that are seldom located close to the TCCON sites.  A 

reduction of the distance results in less coincidences, which leads to a validation dataset of poor representativeness. Note 

that the CAMS model was sampled at the location of the satellite observations, so that the higher performance of the 

model versus the satellite products cannot be caused by a higher proximity to the TCCON station. 

We now investigate whether the model-minus-NN differences are purely random or contain some spatial or temporal 300 

structures.  This question is important as, if the differences show a random structure, there is little hope to use these data 

to improve the surface fluxes used in the CAMS product.  Conversely, if the XCO2 differences do show some structures, 
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they can be attributed to surface flux errors in the CAMS product that may then be corrected through inverse atmospheric 

modelling.  There is no certainty, however, as a spatial structure in the NN-minus-CAMS difference can also be 

interpreted as a bias in the satellite estimate. 325 

We first show (Figure 5) the difference between the NN estimate of the surface pressure and that from the numerical 

weather analyses. These are monthly maps of the NN-minus-CAMS difference for the 3 years of the period at a 5°×5° 

resolution.  We only present the odd months as the others months have been used for the training, and therefore do not 

show any significant differences.  There are very clear spatial patterns of a few hPa which are not expected and should 

be interpreted as a bias in the NN approach.  The biases over the high mountains and plateaus have already been 330 

mentioned.  In addition, positive biases tend to occur in the high latitudes, and negative biases toward the tropics.  The 

structures show additional spatial and temporal patterns and are therefore more complex than just a latitude function.  The 

same figure but based on the ACOS retrievals (Figure A3) displays large-scale structures with different spatial patterns: 

the surface pressure bias is mostly negative over the Northern latitudes and positive over the low latitudes.  A histogram 

(Figure 6) of the monthly differences such as those shown on Figure 5 confirms that the amplitude of the surface pressure 335 

biases is larger with ACOS than it is with the NN. The NN (resp. ACOS) surface pressure bias is -0.33 hPa (resp 1.39 

hPa) and the standard deviation is 2.12 (resp. 2.79 hPa). 

Figure 7 is similar as Figure 5 but for XCO2 difference between the NN estimate and the CAMS model.  As for the 

surface pressure, there are clear spatial patterns, with amplitudes of 1 to 2 ppm.  The question is whether these are mostly 

linked to monthly biases in the CAMS model or to the NN.  The first hypothesis is of course more favorable as it would 340 

indicate that the satellite data can bring new information to constrain the surface fluxes.  However, the analysis of the 

surface pressure that shows biases of several hPa suggests that the NN XCO2 estimate may also show biases with spatially 

coherent patterns.  Interestingly, the patterns vary in time and are not correlated with those of the surface pressure.  Further 

analysis, in particular atmospheric flux inversion, is necessary for a proper interpretation of the NN-CAMS differences. 

The differences of ACOS estimates to the CAMS model also show patterns of similar amplitude as those in Figure 7 345 

(Figure A4).  However, there is no clear correspondence between these patterns and those obtained using the NN product.  

The differences between the satellite products and the CAMS model are small, but these contain the information that may 

be used to improve our knowledge on the surface fluxes.  The absence of a clear correlation between the spatio-temporal 

pattern from the NN and ACOS approaches indicate that their use would lead to very different corrections on the surface 

fluxes, if used as input of an atmospheric inversion approach.  Figure 6, top, shows the histogram of these monthly-mean 350 

differences.  The histograms are very similar for the two satellite products, although the standard deviation of the 

difference to the CAMS model is slightly larger for ACOS than it is for the NN approach (0.89 vs 0.83 ppm). 

4. Discussion and Conclusion 

The use of the same product for the NN training and its evaluation may be seen as a weakness of our analysis.  One may 

argue that the NN has learned from the model and generates an estimate (either the surface pressure or XCO2) that is not 355 

based on the spectra but rather on some prior information.  Let us recall that the NN input does not contain any information 

on the location or date of the observation.  This is a strong indication that the information is derived from the spectra as 

the NN does not “know” the CAMS value that corresponds to the observation location. Yet, the NN input also includes 

the observation geometry (sun angle and azimuth) that is somewhat correlated with the latitude and day-in-the-year.  One 

may then argue that the NN learns from this indirect information on the observation location and then generates an 360 

estimate that is based on the corresponding CAMS value.  However, since the observation geometry is exactly the same 
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from one year to the next, there is no information, direct or indirect, on the observation year in the NN input.  Thus, the 

XCO2 growth rate, that is accurately retrieved by the NN method (see Fig. 7), is necessarily derived from the spectra.  A 

similar argument can be made on the spatial variation across the longitudes. 

To further demonstrate that the NN retrieves XCO2 from the spectra rather than from the prior, we made an additional 380 

experiment.  The training is based only on even months.  As a consequence, the prior does not include any direct 

information on the odd months.  For the odd months, the best prior estimate here is a linear interpolation between the two 

adjacent even months.  We can then analyze how the NN estimate compares with the CAMS product, that accounts for 

the true synoptic variability, and a degraded version of CAMS that is based on a linear interpolation between the two 

adjacent months.  This comparison is shown in Figure 8.  The center figure compares the true CAMS value and that 385 

derived from the temporal interpolation.  As expected, both are highly correlated (the seasonal cycle and the growth rate 

are kept in the interpolated values) but show nevertheless a difference standard deviation of 0.89 ppm.  This value can be 

interpreted as the synoptic variability of XCO2 that is present in CAMS but is not captured in the interpolated product.  

The comparison of the NN estimate against CAMS (right) and the interpolated CAMS (left) shows significantly better 

agreement to the former.  Thus, the NN product does reproduce some XCO2 variability that is not contained in the training 390 

prior.  It provides further demonstration that the NN estimates relies on the spectra rather than on the time/space variations 

of the training dataset. 

The results shown above indicate that the NN approach allows an estimate of surface pressure and XCO2 with a precision 

that is similar or better than that of the operational ACOS algorithm.  The lack of independent “truth” data does not allow 

a full quantification of the product precision and accuracy.  However, there are indications that the accuracy on the surface 395 

pressure is better than 3 hPa RMS, while the precision (standard deviation) of XCO2 is better than 0.9 ppm.  The data 

used for the XCO2 product evaluation has its own error that is difficult to disentangle from that of the estimate based on 

the satellite observation.  It may also contain a bias that is propagated to the NN through its training. 

One obvious advantage of the NN approach is the speed of the computation that is several orders of magnitude higher 

than that of the full physics algorithm.  This is significant given the current re-processing time of the OCO-2 dataset 400 

despite the considerable computing power that is made available for the mission. It also bears interesting prospects for 

future XCO2 imaging missions that will bring even higher data volume (e.g., Pinty et al., 2017).  

Another advantage is that the NN approach described in this paper does not require the extensive de-bias procedure which 

is necessary for the ACOS product (O’Dell et al 2018, Kiel et al. 2019).  Per construction, there is no bias between the 

NN estimates and the dataset that is used for the NN training.  The NN approach requires therefore less effort and 405 

manpower.  

There are however a number of drawbacks for the NN approach that is described in this paper. 

One obvious drawback is the use of a CO2 model simulation in the training while the main purpose of the satellite 

observation is to improve our current knowledge on atmospheric CO2 and its surface fluxes. Our argument is that, 

although the CAMS simulation used here has high skill (as demonstrated in Figure 4), it may have positive or negative 410 

XCO2 biases for some months and some areas.  These biases are independent from the measured spectra so that the NN 

training will aim at average values.  As a consequence, the NN product could in principle be of higher quality than the 

CAMS product, even though the same model has been used as the reference estimate for the training (see, e.g., Aires et 

al., 2005). 
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Another drawback of the NN approach is that it does not directly provide its averaging kernel. The averaging kernel 

vector reports the sensitivity of the retrieved total column to changes in the concentration profile (Connor et al., 1994). It 

is a combination of physical information (about radiative transfer) and of statistical information (about the prior 425 

information). It is needed for a proper comparison with 3D atmospheric models (e.g., Chevallier 2015). When comparing 

with model simulations, for instance for atmospheric inversion, we may wish to neglect the NN implicit prior information: 

this hypothesis leads to a homogeneous pressure weighting over the vertical, as this is the product that the NN was trained 

to simulate. Alternatively, we could decide to neglect the difference in prior information between the NN and the full 

physics algorithm and use typical averaging kernels of the latter. A third, more involving, option would be to perform a 430 

detailed sensitivity study of the NN, based on radiative transfer simulations.  

Similarly, the current version of our neural network does not provide a posterior uncertainty. A Monte Carlo approach 

using various training datasets could be use in the future for such an estimate.  

Also, the NN that was developed cannot be safely used to process observations that are acquired later than a few weeks 

after the last data of the training dataset, in order to keep the application within the variability range of the training data 435 

and despite the CO2 growth rate. Therefore, the use of the neural network approach for near real time applications would 

require frequent updates of the training phase. 

We acknowledge the fact that the NN product that is evaluated here is not fully independent from the ACOS product.  

Indeed, we use the cloud flag and the quality diagnostic from ACOS to select the spectra that are of sufficient quality.  If 

we aim at some kind of operational product, there is a need to design a procedure to identify these good quality spectra.  440 

One option would be to compare the surface pressure retrieved by the NN to the numerical weather analysis estimate, and 

to reject cases with significant deviations (e.g. differences larger than 3 hPa). 

Despite these drawbacks, the results presented here do show that a neural network has a large potential for the estimate 

of XCO2 from satellite observations such as those of OCO-2, of the forthcoming MicroCarb (Pascal et al. 2017) or the 

CO2M constellation (Sierk et al. 2018) that aims at measuring anthropogenic emissions.  It is rather amazing that a first 445 

attempt leads to trueness and precision numbers that are similar or better than those of the full physics algorithm. There 

are several ways for improvement: one is to provide the NN with some ancillary information such as the surface altitude 

or a proxy of the atmospheric temperature.  Another one is to train the NN with model estimates (such as those of CAMS 

used here) but that have been better sampled for their assumed precision, for instance through a multi-model evaluation. 

Also, one could train the NN with observations acquired during a few days of each month, rather than the even months 450 

as done here, so that the evaluation dataset would provide a better evaluation of the seasonal cycle. 

Our next objective is to attempt a similar NN approach but for the measurements that have been acquired in the glint 

mode.  As explained above, the glint observations may be more difficult to reproduce by the NN than those acquired in 

the nadir mode.  However, we have been very much surprised by the ability of the NN with the nadir data, and cannot 

exclude to be surprised again.  Last, we shall analyze the spatial structure of the NN retrievals in regions that are expected 455 

to be homogeneous and in regions where structures of anthropogenic origin are expected (e.g., Nassar et al., 2017; Reuter 

et al., 2019). 
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 695 

Figure 1: Density histogram of the surface pressure retrieved from the OCO-2 satellite measurements against that derived 

from GEOS-FP-IT.  The left figure is for the NN approach while the right figure is for the ACOS v9r retrieval (using the 

official bias-correction).  The figure insets provide the number of data points, the bias, the standard deviation, the equation 

of the best linear fit and the correlation.  The yellow line is the 1:1 line whereas the red dotted line is the best linear fit. 

 700 

 

 

 

 

Figure 2: Same as Figure 1 but for XCO2. In this case, the reference data is the CAMS v18r2 simulation.  705 
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Figure 3: Statistics on the difference between the surface pressure retrieved by the NN approach and that derived from 

the weather analyses, as a function of various quality parameters.  In these figures, the red line is the median, the boxes 710 

indicate the 25 and 75% percentiles and the whiskers indicate the 5-95% range.  The left figure shows the statistics as a 

function of the cloud flag, the middle figure is as a function of the warn level, while the right figure is as a function of the 

outcome flag. 

 

Figure 4: Statistics of the differences between the NN retrieval (red), the CAMS model (green) or the bias-corrected 715 

ACOS retrievals (blue) and the TCCON retrievals.  The boxes indicate the 25-75% percentiles and the median is shown 

by the horizontal line within the box.  The whiskers indicate the 5-95% percentiles. Stations are ordered by increasing 

latitudes. The numbers below the station name indicate the number of individual observations and coincidence days used 

for the statistics.  The references of the various TCCON observations are provided in table 1. 

 720 
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Figure 5: Difference between the NN estimate of the surface pressure and the numerical weather analyses.  The 

differences have been averaged at monthly and spatial 5°×5° resolutions.  The results are shown for 3 years and only for 725 

the months that were not used for the training. 

 

 

 

Figure 6: Histogram of the monthly mean differences, at 5° resolution (such as those shown in Figure 5), between the 730 

satellite retrievals and the CAMS model.  The top figure is for XCO2 while the bottom figure is for the surface pressure.  

The blue line is for the NN product while the orange line is for ACOS. 

 

 

 735 
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Figure 7: Same as Figure 5 but for the difference between the XCO2 estimated by the NN approach and that derived 

from the CAMS model. 740 

 

Figure 8: Scatter plots of XCO2 estimated by the NN, the CAMS model, and the CAMS model that has been interpolated 

in time from adjacent months (see text for details). Note that the number of points is less than in Figure 2 because the 

edge months could not always be interpolated. 

 745 
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Table 1: TCCON stations used in this paper (Figure 4).  The data have been obtained from the tccondata.org web site at 
during the summer of 2019. 

 

Stations [ lat ; lon ] Altit
ude 
[m] 

Reference Biases 

NN/ACOS/CAM 

Std Dev 

NN/ACOS/C
AM 

Lauder [ -45.04 ; 169.68 ] 370 Sherlock et al. 2017 -0.48/-0.25/0.076 0.43/1.51/0.16 

Wollongong [-34.41 ; 150.88] 30 Griffith et al. 2017 0.60/-0.20/0.42 1.21/1.32/0.60 

Reunion [ -20.90 ; 55.49 ] 90 De Maziere et al. 2017 -0.08/-0.90/0.13 -/-/- 

Darwin [ -12.43 ; 130.89 ] 30 Griffith et al. 2017 0.19/-0.69/0.23 0.80/1.09/0.72 

Manaus [ -3.21 ; -60.6] 50 Dubey et al. 2017 -0.25/-0.05/0.34 0.43/1.04/0.26 

Izana [ 28.3 ; -16.48 ] 2300 Blumenstock et al. 2017 -1.35/-1.14/-1.48 0.18/0.92/0.0 

Hefei [ 31.90 ; 118.67 ] 30 Liu et al. 2018 -1.47/-1.58/-1.01 1.11/1.76/0.63 

Saga [ 33.24 ; 130.29 ] 10 Shiomi et al. 2017 -1.36/-1.03-1.15 0.57/1.22/0.59 

Pasadena [ 34.14 ; -118.13 ] 240 Wennberg et al. 2017 -2.12/-1.87/-1.41 1.57/1.64/1.17 

Edwards [ 34.96 ; -117.88 ] 700 Iraci et al. 2017 0.07/0.41/0.50 1.00/1.01/0.64 

Tsukuba [ 36.05 ; 140.12 ] 30 Morino et al. 2017 0.42/1.43/1.05 2.13/2.53/1.61 

Lamont [ 36.6 ; -97.49 ] 320 Wennberg et al. 2017 -0.03/-0.38/0.16 1.07/1.21/0.94 

Rikubetsu [43.46 ; 1473.77 ] 390 Morino et al. 2017 -0.57/-0.84/0.47 0.84/1.07/0.98 

Parkfalls [ 45.94 ; -90.27 ] 440 Wennberg et al. 2017 -0.41/-0.75/0.11 1.15/1.01/0.72 

Zugspite [ 47.42 ; 11.06 ] 2960 Sussmann and Rettinger 2017 -0.85/-1.14/-0.83 1.45/1.85/1.36 

Garmisch [ 47.48 ; 11.06 ] 740 Sussmann and Rettinger 2017 0.40/0.28/0.43 0.98/1.29/0.62 

Orleans [ 47.97 ; 2.11 ] 130 Warneke et al. 2017 -0.35/0.13/0.66 1.06/1.38/0.67 

Paris [ 48.85 ; 2.36 ] 60 Te et al. 2017 -1.29/-1.24/-0.62 1.30/1.66/1.23 

Karlsruhe [ 49.1 ; 8.44 ] 110 Hase et al. 2017 0.26/0.21/0.75 0.80/1.29/0.55 

Bremen [ 53.10 ; 8.85 ] 7 Notholt et al. 2017 0.30/-0.07/0.36 1.11/1.02/0.45 

Bialystok [ 53.23 ; 23.02 ] 180 Deutscher et al. 2017 -0.11/-0.32/0.33 1.31/1.30/0.42 

Sodankyla [ 67.37 ; 26.63 ] 190 Kivi et al. 2017 0.26/0.24/0.61 0.79/1.36/0.80 

Eureka [80.05; -86.42] 600 Strong et al. 2017 -1.02/-1.50/-2.16 1.01/2.25/0.41 

	  750 
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Appendix 

 

Figure A1: Illustration of the iterative convergence of the NN during its training.  The loss is an indicator of the difference 

between the NN estimate and the dataset.  One dataset is used for the best estimate of the NN weights whereas another 

independent one is used for the evaluation of the NN capability.  The NN is stopped when there is no further reduction of 755 

the loss for the test dataset for 50 iterations.  The weight for the NN are those obtained for the lowest loss of the test 

dataset (iteration 167 on the figure). 

 

 

Figure A2: Spatial density of the observation that have been used for the training (top) and validation (bottom) 760 
processes. 

 

 

 

 765 
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Figure A3: Same as Figure 5 but for the surface pressure retrieved by the ACOS algorithm.  The mean bias over the full 

period (µ) is removed so that the differences are centered on zero. 

 

 770 

 
Figure A4: Same as Figure 7 but for the XCO2 retrieved by the ACOS algorithm. The mean bias over the full period (µ) 

is removed so that the differences are centered on zero. 

 

 775 


