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Abstract 
The Mann-Kendall test associated with the Sen’s slope is a very widely used non-parametric method for 

trend analysis. It requires serially uncorrelated time series, yet most of the atmospheric processes exhibit 15 

positive autocorrelation. Several prewhitening methods have therefore been designed to overcome the 

presence of lag-1 autocorrelation. These include a prewhitening, a detrending and/or a correction of the 

detrended slope and the original variance of the time series. The choice of which prewhitening method 

and temporal segmentation to apply has consequences for the statistical significance, the value of the 

slope and of the confidence limits. Here, the effects of various prewhitening methods are analyzed for 20 

seven time series comprising in-situ aerosol measurements (scattering coefficient, absorption coefficient, 

number concentration and aerosol optical depth), Raman Lidar water vapor mixing ratio, and tropopause 

zero degree temperature levels measured by radio-sounding. These time series are characterized by a 

broad variety of distributions, ranges and lag-1 autocorrelation values and vary in length between 10 and 

60 years. A common way to work around the autocorrelation problem is to decrease it by averaging the 25 

data over longer time intervals than in the original time series. Thus, the second focus of this study 

evaluates the effect of time granularity on long-term trend analysis. Finally, a new algorithm involving 

three prewhitening methods is proposed in order to maximize the power of the test, to minimize the 

amount of erroneous detected trends in the absence of a real trend and to ensure the best slope estimate 

for the considered length of the time series. 30 

Keywords: Seasonal Mann-Kendall test, Theil-Sen’s slope, prewhiten, detrend, autocorrelation 

 

1. Introduction 
 

To estimate climate changes and to validate climatic models, long-term time series associated with 35 

statistically adapted trend analysis tools are necessary. The basic requirements needed to apply specific 

statistical tools are usually well described, but end-users often do not systematically test if the properties 

of their time series fulfill these requirements. An inappropriate usage of the statistical tools may lead to 
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misleading conclusions. It may also happen that a time series does not meet the complete criteria of any 

of the statistical tools. In that case, the statistical tool must be adapted or different methods with 40 

complementary strengths and weaknesses must be used. 

The time series properties that can cause misuse of statistical tools for trend analysis primarily concern 

the statistical distribution, the autocorrelation, missing data or periods without measurements, the 

presence of seasonality, irregular sampling, the presence of negatives and the rules applied in the case of 

data below-detection limits. A large number of trend analysis tools such as the whole family of least mean 45 

square and generalized least squares methods are parametric methods and, consequently, require 

normally distributed residues. Unfortunately, many atmospheric measurements, which strongly depart 

from the normal distribution, do not meet this requirement so that non-parametric methods have to be 

used. Non-parametric techniques are commonly based on rank and assume continuous monotonic 

increasing or decreasing trends. The Mann-Kendall (MK) test associated with the Sen’s slope is the most 50 

widely applied non-parametric trend analysis method in atmospheric and hydrologic research (Gilbert, 

1987; Sirois, 1998). While it has no requirement on data distribution, it must be applied on serially 

independent and identically distributed variables. The second condition of homogeneity of distribution is 

not met if a seasonality is present, but it can be solved by using the seasonal Mann-Kendall test developed 

by Hirsch et al. (1982). The first condition of independence is not met if the data are autocorrelated, which 55 

is often the case for atmospheric variables that are controlled by autocorrelated physical or chemical 

processes. To correctly analyze autocorrelated and not normally distributed errors, two different 

strategies are usually applied.  

The first strategy tends to decrease the amount of autocorrelation by aggregating time series into 

monthly, seasonally, yearly bins or even in longer periods.  However, coarser time granularities (e.g., due 60 

to longer averaging periods) do not ensure that autocorrelation is removed. Moreover, the aggregation 

implies a decrease of the information density in the time series, such as the diurnal or seasonal cycles, the 

variance of the data and to some extent the data distribution. The aggregation conditions (length of the 

time unit, making the time unit consistent with the observed seasonality, starting phase of the time series 

and the averaging method) may influence the trend results (de Jong and de Bruin, 2012; Maurya, 2013) 65 

in what is called the Modifiable Temporal Unit Problem (MTUP).  

The second strategy focuses on the development of algorithms to reduce the impact of the 

autocorrelation artifacts on the statistical significance of the MK test and on the Sen’s slope. Two kinds of 

algorithms are usually used: (i) the prewhitening of the data to remove the autocorrelation and (ii) 

inflation of the variance of the trend test statistic to take into account the number of independent 70 

measurements instead of the number of data points (the autocorrelation reduces the number of degrees 

of freedom in tests).  

In this study, the effects of various prewhitening methods on the MK statistical significance and on the 

slope are analyzed for time series of in situ aerosol properties, aerosol optical depth, temperature levels 

(tropopause and zero degree temperature levels) and remote sensing water vapor mixing ratio. This study 75 

also analyses the effect of the time granularity on the MK statistical significance, on the strength of the 

slope and on the confidence limits of various atmospheric compounds for the atmospheric time series 

listed above. Additionally, a new methodology combining three prewhitening methods and called 3PW is 

proposed in order to handle correctly the autocorrelation without decreasing the power of the test, while 

still computing the correct slope value. 80 
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2. The Mann-Kendall methodology (prewhitening methods) 
 

The MK-test for trends is a non-parametric method based on rank. The calculated S statistic is normally 

distributed for a number of observation N>10 and the significance of the trends is tested by comparing 

the standardized test statistic Z=S/[var(S)]0.5 with the standard normal variate at the desired significance 85 

level. For N≤10, an exact S distribution has to be applied (see e.g., Gilbert, 1987). Hirsch et al. (1982) 

extend the Mann-Kendall test to take seasonality in the data into account as well as the existence of 

multiple observations for each season. A global or yearly trend can be considered only if the seasonal 

trends are homogeneous at the desired confidence level (Gilbert, 1987). Confidence limits (CL) are defined 

as the 100x(1-p) percentiles of the standard normal distribution of all the pairwise slopes computed during 90 

the Sen’s slope estimator, where p is the chosen confidence limit. 

 

2.1   The problem of the autocorrelation in the MK-test 
 

The MK-test determines the validity of the null hypothesis H0 of the absence of a trend against the 95 

alternative hypothesis H1 of the existence of a monotonic continuous trend. While no assumptions are 

needed about the data distribution (i.e., the definition of a non-parametric test), the MK-test does require 

that the data are serially independent, namely the absence of autocorrelation in the time series. Statistical 

tests are prone to two types of error. The first is an incorrect rejection of the null hypothesis H0 (a “type 

1 error”). This error is related to an erroneously high statistical significance leading to false positive cases. 100 

The second is an incorrect acceptance of the null hypothesis H0 (a “type 2 error”). This error can be 

understood as the power of the test being too low leading to false negative cases. 

The adverse effect of positive autocorrelation in time series on the number of type 1 errors was suggested 

by Tiao et al. (1990) and Hamed and Rao (1998) and later simulated (Kulkarni & von Storch, 1995, Zwang 

and Zwiers, 2004, Blain, 2013, Wang et al., 2015a, Wang et al., 2015b, Hardison et al., 2019). All these 105 

studies clearly showed that positive autocorrelation in time series significantly increases the number of 

type 1 errors, whereas prewhitening procedures increase the number of type 2 errors. Larger lag-1 

autocorrelation (ak1) leads to higher percentage of type 1 errors and to a larger bias in the Sen’s slope. 

Zwang and Zwiers (2004) also show that the occurrence of both types of error largely depends on the 

length of the time series, with longer periods leading to a strong reduction of errors and to a lower bias 110 

in the trend slope estimation. 

A popular solution to get rid of the autocorrelation problem in the MK-test is to aggregate the time series 

in order to decrease ak1. While the use of coarse time granularity effectively decreases the 

autocorrelation, the suppression of autocorrelation is not guaranteed, even in monthly or yearly 

aggregations. Moreover, aggregation greatly decreases the number of observations N and can potentially 115 

affect the MK-test errors, the slope biases and the CLs.  

Two kinds of statistical procedures were developed to correct the MK-test for autocorrelation in the data. 

The variance correction approaches (Hamed and Rao, 1998; Yue and Wang, 2004; Hamed 2009; Blain, 

2013) consider inflating the variance of the S statistic so that the number of independent observations 

instead of the total number of observations is taken into account. These approaches appear to preserve 120 
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the pre-assigned significance level and the power of the MK-test in the absence of trend but not in the 

case of correlated time series and in the presence of a trend (Yue et al., 2002; Blain, 2013). The 

prewhitening approaches consider removing the lag-1 autoregressive (AR(1)) process in the time series 

prior to applying the MK-test. Several algorithms with various strengths and disadvantages have been 

published, and are described in the next section. Since negative autocorrelations are rare in atmospheric 125 

processes, only positive autocorrelations are taken into account in this study. Several studies have shown 

that the prewhitening methods are also applicable in case of negative serial correlations but with 

dissimilar consequences (Rivard and Vigneault, 200, Yue and Wang, 2002,  Bayazit et al., 2004, Wang et 

al., 2015b). 

 130 

2.2  The prewhitening methods 
 

This section describes all the prewhitening methods known to the authors. The advantages and 

disadvantages of each method are summarized in Table 1. It has to be noted that, for all the methods 

proposed, the prewhitening can be applied only if ak1 is statistically significant (ss) following a normal 135 

distribution at the two-sided 95% confidence interval. The first implemented prewhitening method 

(hereafter called PW) simply removes the lag-1 autocorrelation ak1
data from the original data X at the time 

t: 

𝑋𝑡
𝑃𝑊 = 𝑋𝑡 − 𝑎𝑘1

𝑑𝑎𝑡𝑎𝑋𝑡−1   (1) 

This PW method results in a low amount of type 1 errors, but the existence of real trends, either positive 140 

or negative, can lead to an over-/underestimation of ak1
data, which will reduces the power of the test. A 

further procedure called trend-free prewhitening (TFPW) consists of removing the autocorrelation on 

detrended data. Yue et al. (2002) published the most commonly used method that consists of: i) 

estimating the Sen’s slope 𝛽data on the original data; ii) removing the trend to obtain a detrended time 

series Adetr (eq. 2); iii) removing the lag-1 autocorrelation ak1
detr on Adetr to  generate a detrended 145 

prewhitened time series Adetr-prew (eq. 3); and  iv) adding the trend back in to generate the processed time 

series to evaluate (i.e., 𝑋𝑡
𝑇𝐹𝑃𝑊−𝑌) (eq. 4): 

𝐴𝑡
𝑑𝑒𝑡𝑟 = 𝑋𝑡 − 𝛽  

𝑑𝑎𝑡𝑎𝑡  (2) 

𝐴𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= 𝐴𝑡
𝑑𝑒𝑡𝑟 − 𝑎𝑘1

𝑑𝑒𝑡𝑟𝐴𝑡−1
𝑑𝑒𝑡𝑟  (3) 

𝑋𝑡
𝑇𝐹𝑃𝑊−𝑌 = 𝐴𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
+ 𝛽  

𝑑𝑎𝑡𝑎𝑡  (4) 150 

 

This approach is called trend-free prewhitening (TFPW-Y) and restores the power of the test, albeit at the 

expense of an increase of type 1 errors. The original idea of Wang and Swail’s (2001) was intended to 

implement the MK test on the prewhitened series, rather than on the prewhitened detrended series, as 

it was given by Eq.(8). If the prewhitened series are detrended, then trends will not be identified. Wang 155 

and Swail’s (2001) propose an iterative TFPW method to mitigate the adverse effect of trend on the 

accuracy of the lag-1 autocorrelation estimate. This iterative procedure consists of: i) removing ak1
data 

from the original time series and correcting the prewhitened data for the modified mean (eq. 5); ii) 
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estimating the Sen’s slope 𝛽prew on the prewhitened data 𝐴𝑐𝑜𝑟,𝑡
𝑝𝑟𝑒𝑤

; iii) removing the trend (𝛽prew) estimated 

on the PW data from the original data to obtain a prewhitened detrended time series 𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 (eq. 6); and 160 

iv) applying iteratively i-iii until the ak1 and slope differences become smaller than a proposed tiny 

threshold of 0.0001 (eq. 7).   

𝐴𝑐𝑜𝑟,𝑡
𝑝𝑟𝑒𝑤

= 𝑋𝑡
𝑃𝑊−𝑐𝑜𝑟 = (𝑋𝑡 − 𝑎𝑘1

𝑑𝑎𝑡𝑎𝑋𝑡−1)/(1 − 𝑎𝑘1
𝑑𝑎𝑡𝑎)  (5) 

𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 = (𝑋𝑡 − 𝛽  

𝑝𝑟𝑒𝑤𝑡)  (6) 

𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= (𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 − 𝑎𝑘1

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

 
𝐴𝑐𝑜𝑟,𝑡−1

𝑑𝑒𝑡𝑟
  
)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
)  (7) 165 

𝑋𝑡
𝑇𝐹𝑃𝑊−𝑊𝑆 = 𝐴𝑐𝑜𝑟,𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
    (8) 

after n iterations until  𝑎𝑘1
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤,𝑛−1

− 𝑎𝑘1
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤,𝑛

< 0.0001 𝑎𝑛𝑑 𝛽𝑝𝑟𝑒𝑤,𝑛−1 
− 𝛽𝑝𝑟𝑒𝑤,𝑛 <

0.0001. Note that the use of a higher threshold up to 0.05 does not significantly modify the results 

obtained on the considered time series. 

Wang and Swail’s (2001) TFPW method (TFPW-WS) restores the low number of type 1 errors without 170 

decreasing the power of the test (Zhang and Zwiers, 2004). The factor (1-ak1
detr-prew)-1 is needed to ensure 

that the prewhitened time series possesses the same trend as the original time series. The preliminary 

step of the first iteration in the TFPW-WS method (removing ak1
data from the original time series and 

correcting the prewhitened data for the modified mean eq. (5)) corresponds to the standard PW method 

but with the same correction factor ensuring a similar trend between the prewhitened and the original 175 

time series. This method called PW-cor is, to the knowledge of the authors, not referenced in the literature 

but is a potential method tested in this study. 

Finally, Wang et al. (2015a) proposed a further approach in order to correct TFPW-Y for both the elevated 

variance of slope estimators and for the decreased slope caused by the prewhitening. Practically, the 

variance of Adetr-prew (i.e., 𝜎𝐴
2) is restored to the variance of X (i.e., 𝜎𝑋

2) to generate the AVC
detr-prew time series: 180 

𝐴𝑉𝐶,𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= 𝐴𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

∗
𝜎𝑋

2

𝜎𝐴
2  (9) 

The slope estimator 𝛽data is decreased in the case of positive autocorrelation by the square root of the 

variance inflation factor (VIF) to obtain the corrected slope 𝛽𝑉𝐶
𝑑𝑒𝑡𝑟(eq. 11). Matalas and 

Sankarasubramanian (2003) provided a simple way to compute the limiting values of VIF for a sufficiently 

large sample size and a first order autocorrelation: 185 

𝑉𝐼𝐹 ≈ (1 + 𝑎𝑘1
𝑑𝑒𝑡𝑟)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟)  (10) 

So that 

𝛽𝑉𝐶
𝑑𝑒𝑡𝑟 = 𝛽  

𝑑𝑎𝑡𝑎/√(1 + 𝑎𝑘1
𝑑𝑒𝑡𝑟)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟)  (11) 

and 

 190 

𝑋𝑡
𝑉𝐶𝑇𝐹𝑃𝑊 = 𝐴𝑉𝐶,𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
+ 𝛽𝑉𝐶

𝑑𝑒𝑡𝑟𝑡  (12) 
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Statistical simulations by Wang (2015a) showed that this new variance corrected prewhitening method 

(VCTFPW) leads to more accurate slope estimators, tends to mitigate the inflationary type 1 errors raised 

by autocorrelation and preserves to some extent the power of the test. 195 

 

2.3   A new algorithm (3PW) involving three prewhitening methods 
 
As described in sect. 2.2 and Table 1, each of the presented prewhitening methods has a specific 

advantage: the low sensitivity to type 1 errors for PW, the high-test power for TFPW-Y, and the unbiased 200 

slope estimate for VCTFPW. TFPW-WS has both a low type 1 error and a high test power, but requires 

more computing time due to the iteration process. Here, we propose a new algorithm (3PW), described 

in Fig. 1, which combines the advantages of each prewhitening method:  

● The ak1
data

 of the original time series is calculated. If it is not ss, the MK test is applied on the 

original time series. If ak1
data is ss, PW, TFPW-Y and VCTFPW are applied in order to obtain three 205 

prewhitened time series that are thereafter named after the specific prewhitening method for 

purposes of clarity. 

● The MK-test that defines the statistical significance is applied on the PW and TFPW-Y data. If both 

tests are ss or not ss, the trend is considered as ss or not ss, respectively. If TFPW-Y is ss but not 

PW, the trend is considered as a TFPW-Y false positive (due to the higher sensitivity to type 1 210 

errors of TFPW-Y) and the trend has to be considered as not ss. If PW is ss but TFPW-Y is not, then 

the trend is considered as a PW false positive and the trend has to be considered as not ss. The 

probability P for the statistical significance is given by the higher probability between PW and 

TFPW-Y. 

● The Sen’s slope is then computed on the VCTFPW data in order to have an unbiased slope 215 
estimate. 

 

3. Experimental 
 
In order to have a broader view of the effects of the various PW methods, several very different time 220 
series (Table 2) were used: three surface in-situ aerosol properties (absorption coefficient, scattering 
coefficient and number concentration) measured at Bondville (BND), a remote, rural station in Illinois, 
USA; the aerosol optical depth (AOD) measured at Payerne (PAY) on the Swiss plateau; the tropopause 
and the zero-degree temperature levels measured by radio-sounding launched at PAY; and the water 
vapor mixing ratio at 1015 m measured by remote sensing at PAY. The shortest time series (AOD and 225 
water vapor mixing ratio) cover only 10 years (y) of measurements while the longest time series cover 60 
y. The three in-situ aerosol properties are Johnson-distributed and diverge strongly from a normal 
distribution. The other time series exhibit distributions that also diverge from a normal distribution but to 
a lower extent, such that some of them have residuals of a least mean square fit, which are normally 
distributed. The values of some of the time series span over several orders of magnitude and the 230 
scattering and absorption coefficients time series contains negative values due to detection limit issues in 
very clean conditions. The time series of the zero-degree temperature level also includes negative 
altitudes, since it is interpolated to altitudes lower than sea level in the case of negative ground 
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temperature at PAY (S. Bader et al., 2019)).  All the data have high ak1
data at the daily time granularity and 

exhibit clear seasonal cycles with maxima in summer.  235 

Trend analyses were applied on several periods. For all the data sets, the last 10-year period (e.g. 2009-

2018 for the BND aerosol scattering coefficient) is considered first and then further possible multi-decadal 

periods (e.g. the last 20 y (1999-2018), 30 y (1989-2018)) up to 60 y for the radio-sounding time series. 

For the in-situ aerosol properties, tests with 4 to 9 y periods are also computed in order to illustrate the 

problems of trend analysis on very short time series.  The number of data points in the time series (N) 240 

depends on the length of the period and on the time granularity. The choice of temporal segmentation to 

address seasonality for the seasonal MK-tests can also affect N and was evaluated by segmenting the time 

series into months and meteorological seasons for time granularities up to one month. The MK-test was 

also applied on the complete time series without considering seasonality (no temporal segmentation) for 

comparison purposes, even though, properly, seasonal MK-tests must be used when seasonal cycles are 245 

present. 

To assess the statistical significance, the two-tailed p-values are computed. For a more comprehensive 

presentation of the results, the statistical significance is presented here as 1 minus p-value so that the ss 

at a 95% confidence level is effectively given by ss=0.95. If not further specified, the ss of the trend and of 

ak1
data is given at the 95% confidence level, whereas CL and Xhomo are given at the 90% confidence level. 250 

The slopes (in percent) are normalized by the median of the data. Periods of at least 10 y and trends on 

these periods are further called decadal periods and decadal trends. 

 

4. Results and discussion 
 255 

As explained in the methodology section (Sect. 2), the trend results (e.g., the ss, the slopes and the CL) 

depend on a number of factors, the most important ones being the prewhitening method, the number of 

data points in the time series and the presence of autocorrelation. The choice of the prewhitening method 

clearly affects the ss, the slope and the CL. Analysis choices such as the time granularity, the length of the 

analyzed period and the temporal segmentation to address seasonality affect ak1
data, N and the variance 260 

of the time series. There is a pronounced interdependency among these variables involving critical choices 

in the presentation of the results. Some general plots are first presented to provide insights into the 

primary results for some of the time series. They are followed by a more detailed analysis of the effects 

of the prewhitening method, the time granularity, the temporal segmentation, the length of the data 

series and the number of data points in the time series.  265 

MK trend results (Fig. 2) of the aerosol number concentration, the aerosol scattering coefficient, the 

tropopause level and the AOD are plotted as a function of the time granularity for the MK-test and for all 

the prewhitening methods. The discrepancy between the results computed with no temporal 

segmentation and for two different temporal segmentations to address seasonality (four meteorological 

seasons and 12 months) can be estimated from the inserted boxplots. The three aerosol properties exhibit 270 

decreasing trends while the results of the tropopause level time series indicate a positive trend. The 

negative aerosol slopes are related to the decreasing aerosol load in Western Europe and North America 

(Collaud Coen et al., 2020, Yoon et al., 2016). The increasing tropopause level trend is related to global 
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warming (Xian and Homeyer, 2019). The results of the trends will not be further described and discussed, 

since this study is only focused on the methodology of the trend analysis. 275 

The common features for all the time series considered here are: 

● The MK, TFPW-Y, TFPW-WS and PW-cor methods result in similar slopes. 

● As described in Wang et al. (2015a), the absolute value of the VCTFPW slopes lies between the 

TFPW and the PW slope values. The absolute value of the PW slopes is always smaller than the 

TFPW slope values. 280 

● Large time aggregations usually lead to not ss ak1
data and, consequently, prewhitening methods 

do not need to be applied to those cases. The ak1
data of all prewhitening methods is not ss for 

three-month aggregations of the tropopause level and AOD datasets and for one-year aggregation 

of the aerosol scattering coefficient and AOD. The ak1
data of the aerosol number concentration 

remains ss until the one-year aggregation. 285 

● CL are smaller for finer time granularities in the presence of ss ak1
data. 

● CL of MK, PW and TFPW-Y, which remove the lag-1 autocorrelation without compensation for the 

mean values and the variances of the original time series, are smaller than for VCTFPW, PW-cor 

and TFPW-WS. PW-cor and TFPW-WS have the highest CL. 

● The ss often decreases for coarser time granularities occasionally leading to not ss trends for some 290 

of the prewhitening methods. PW, TFPW-WS and VCTFPW methods become not ss at finer time 

granularities than TFPW-Y and MK due to their lower number of false positives. 

● The slope discrepancies between prewhitening methods are larger than the discrepancies that 

occur when different temporal segmentations (months or meteorological seasons) are applied for 

a defined prewhitening method. 295 

Apart from these general observations, there are features that depend on the time series, such as the 
effects of the applied temporal segmentation to address seasonality, the similarity of MK slopes with 
TFPW slopes, and the time granularity leading to not ss ak1

data. For example, the very low number of data 
points in the AOD time series (about 65 per year) corresponds to an average of one data per 5 days; there 
is consequently a very high amount of missing values for time granularities finer than this measurement 300 
frequency and this induces higher CL for time granularities of 1-3 days than granularity of 10 days. 

 

4.1  Effects of the prewhitening methods  
 

As predicted theoretically, the ss depends on the prewhitening method, with higher ss for the MK and 305 

TFPW-Y methods that are related to higher type 1 errors (false positives), while PW and VCTFPW have a 

lower ss and a lower test power. This is verified on the individual time series, e.g., for the aerosol number 

concentration results presented in Fig. 3a. The yearly trend was computed for all periods (from 5y to 24y) 

at all considered time granularities (1 day to 1 month for the meteorological season temporal 

segmentation), leading to 40 trends. The results show that:  310 

● The MK-test ss without prewhitening has a median of 1, with the ss for the upper quartile and 

upper whisker also equal to 1 and thus within the 95% confidence level so that only 5 trends 

out of 40 evaluated (i.e., 12.5%) are not ss.  



9 
 

● The TFPW-Y ss has a median slightly lower than 1 and only 3 trends (7.5%) outside the 95% 

confidence level.  315 

● The TFPW-WS ss has a median of 0.996 which is lower than MK and TFPW-Y. The lower 

quartile for TFPW-WS, is 0.89, which is outside the 95% confidence level and indicates that 

32.5% of the trends are not ss. 

● The results of both PW and PW-cor are similar to the TFPW-WS with median ss of 0.995, a 

lower quartile of 0.84 and 32.5% of the trends are not ss. 320 

● The VCTFPW ss has the lowest median (0.98), first quartile (0.83) and lower whisker (0.63) 

leading to 37.5% of trends being not ss.  

Similar results are found for all time series, but with less difference amongst the methods when the trends 
are obviously present or absent and more differences for weak trends. 

According to Monte-Carlo simulations presented in the literature (e.g. Yue et al., 2002, Wang et al., 2015a, 325 

Hardison et al., 2019), TFPW-Y leads to a high number of false positives. Since this study deals with 

measured data, the rate of false positives is defined as trends that are ss with TFPW-Y but not ss with PW, 

since the latter is the method with the lowest rate of type 1 error. Figure 3b shows that the number of 

false positives depends, as expected, on the strength of the slope and on ak1
data. Weaker trends (smaller 

slopes in percent) are usually associated with lower ss and consequently lead to a larger number of false 330 

positives. The impact of the PW and TFPW-Y depends largely on ak1
data absolute values, i.e., higher ak1

data 

leads to stronger modification of the original time series with lower means (e.g., the mean of Xt
PW is less 

than the mean of Xt) and reduced variances for positive ak1
data. The highest ak1

data values (between 0.85 

and 0.9) found in the time series studied lead to 60% to 100% false positives while ak1
data values between 

0.8 and 0.85 lead to at least 40%  false positives.  335 

To obtain a better view of the weakness of each MK-test, the percentage of false positives taking each of 

the prewhitening method as reference are reported in Table 3 for all the datasets. PW-cor has by 

definition the same ss as PW, so that their performances are given in the same column. PW has to be used 

as the best reference for false positives because it is the prewhitening method with the lowest sensitivity 

to type 1 errors (Zhang and Zwiers, 2004, Yue et al., 2002, Blain, 2013, Wang et al. 2015a), whereas the 340 

consideration of the other prewhitening methods as reference allows for the evaluation of the 

discrepancy in ss among the methods. For the decadal trends, MK, TFPW-Y and VCTFPW have 32-47% of 

false positives taking PW as reference. This suggests that about two thirds and half of the trends 

determined using TFPW-Y and VCTFPW, respectively, are false positives. TFPW-WS has less than 2% of 

false positives, so that it can be considered to have equivalent performance as PW.  For the trends on 345 

short periods, the lower amounts of false positive for MK and TFPW-Y are due to the overestimation of 

the slopes with these tests (see section 4.4) leading to trends that are more robust and enhanced ss. The 

unbiased estimate of the VCTFPW slope produces similar amounts of errors for the short-term trends as 

for the decadal trends. The percentage of false positives is similar if TFPW-WS is considered as the 

reference. If MK or TFPW-Y is taken as reference, PW and TFPW-WS have a very low number of false 350 

positive independent of the length of the period, leading to the conclusion that few cases remain 

uncertain. Note that 5-10% of cases have different ss at the 95% confidence level if MK or TFPW-Y is used 

as reference, indicating that estimation of the ss using these two methods can have a slight impact on the 

results. Finally, all the prewhitening methods have a higher number of false positive if VCTFPW is 

considered as the reference because the added slope at the end of the VCTFPW procedure is smaller than 355 

the initial slope and leads to less detectable trends. Note also that the percentage of false positives of PW 
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and TFPW-WS remains low (≤ 4%) for all the chosen reference. For the time series considered in this study, 

the following conclusions can be made: 1) PW (and PW-cor) performs very well with a small (≤ 3.5%) 

number of false positives if other prewhitening methods are considered as reference; 2) TFPW-WS has a 

very low number of false positives (less than 2% if PW is taken as the reference); 3) VCTFPW exhibits high 360 

rate of type 1 errors and should consequently not be used to determine the ss; and 4) The difference in 

ss between MK and TFPW-Y is related to only 5-10% of the trends. 

The effects of the prewhitening method on the slope (Fig. 2 and 4) also follow the theoretically deduced 

assumptions: 

● The slope estimated on the original data is always enhanced by the positive ak1
data, which adds 365 

a multiple of the t-1 value to the t value (e.g., Eqn 1 and 3). By removing the autocorrelation, 

PW leads to a strong decrease in the absolute value of the slope that becomes smaller than 

the MK slope. The CLPW are also somewhat decreased (Fig. 5) due to the decreased mean and 

variance of the prewhitened time series, relative to the original dataset.  

● Due to the detrending procedure, the absolute values of the TFPW-Y slope are larger than the 370 

PW slopes and similar to the MK slope values (Fig. 2), even if a tendency to have larger TFPW-

Y than MK slopes are observed (Fig. 4b). The CLTFPW-Y are similar to the CLPW because the 

variance and mean are similar for both the PW and TFPW-Y prewhitened time series. 

● Due to the corrected slope and variance, the absolute values of the VCTFPW slopes are much 

smaller than the TFPW-Y slopes but larger than the PW slopes.  375 

These theoretical assumptions are validated in all cases with the ss trends analyzed in this study. The 

water vapor mixing ratio and the zero degree level both have a very high autocorrelation (about 0.9 at 

one-day time granularity). In such cases, the removal of the autocorrelation can lead to not ss trends and 

the absolute values of the VCTFPW slope are not always larger than PW slope values.   

The slope difference among the methods depends directly on ak1
data. A more nuanced estimate of the 380 

slope dependence is shown in Fig. 4 where the differences among the prewhitening methods are 
plotted. As already mentioned, the VCTFPW method largely mitigates the slope overestimate of the 
TFPW-Y method at large ak1

data so that the increase of the slope absolute value for increasing ak1
data 

does not exceed a factor of two (100% difference in Fig. 4a). The difference between VCTFPW and 
TFPW-Y slopes can reach 200-1000% for the largest ak1

data. The overestimation of the slope by TFPW-Y is 385 
much larger than the underestimation by PW if VCTFPW is taken as a reference for slope estimation. 
TFPW-Y slopes tend to be larger than MK slopes (Fig. 4b), with larger differences at high ak1

data leads. 
Finally, the slope difference between MK and both TFPW-WS and PW-cor does not depend on ak1

data 
and the TFPW-WS and PW-cor slopes are usually nearly identical as suggested by their similar 
relationship to the MK slope (Fig. 4c-d). 390 
 
The effects of the prewhitening method on CL (Fig. 5) are explained by their modification of the mean and 
the variance of the data. Removing the lag-1 autocorrelation leads to prewhitened data with a larger 
variance, but lower mean than the original time series. The correcting factor of (1-ak1)-1 used in the TFPW-
WS and PW-cor methods restores the mean (eq. 5), whereas the VCPWTF method restores the initial 395 
variance (eq. 9). All increases of the variance make the CL interval wider, whereas the decrease of the 
mean decreases the CL interval. CLTFPW-Y and CLPW are the narrowest due to lower mean and variance 
values while CLTFPW-WS and CLPW-cor are the widest due to larger variance induced by the prewhitening and 
a mean identical to the original data. CLVCTFPW are intermediate with a variance similar to the original data 
but a lower mean. 400 
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4.2  Effects of the time granularity 
 
Averaging is often used to decrease ak1

data in the time series. To investigate this, the ak1
data values are 

plotted as a function of the time granularity for the last 10 y of all the time series (Fig. 6a). The decrease 405 

of ak1
data with aggregation does not have a large impact until granularity is coarser than one-month. For 

one-month time granularity and less, aggregation leads to an ak1
data difference smaller than 0.2 in 5 of the 

time series. Three-month and one-year aggregation involve a sharper reduction of ak1
data. Additionally 

ak1
data for one-year aggregation is, for most of the time series, no longer ss and, sometimes, even negative. 

The decrease in ak1
data is not continuous with time granularity, with ak1

data often larger for 10 days or one 410 

month than for 3 days aggregation. These local minima can be explained by a competitive effect between 

the ak1
data decrease and a reduction of the measurement variance. For the 10 y period represented on 

Fig. 6, none of the ak1
data values are ss for a one-year time granularity. However, there are cases like the 

24 y time series of the aerosol number concentration where ak1
data is still ss for the one-year time 

granularity. In these cases, prewhitening methods have to be applied, which leads to the spread of the 415 

slopes for the various prewhitening methods visible on Fig. 2a.   

TFPW-Y and TFPW-WS remove the autocorrelation computed from the detrended data. Fig. 6b and 6c 
show the difference in ak1 between the original and the detrended time series as a function of the time 
granularity. The ak1

detr continuously increases with aggregation whereas ak1
detr-prew,n sometimes decreases 

(e.g., for one-month or three-months aggregations for scattering coefficient and number concentration, 420 
respectively). While the differences in ak1 from the original time series are larger for TFPW-WS than for 
TFPW-Y, they remain relatively small and exceed 0.05 only in few cases.  

Figure 7 presents the effect of the time granularity on ss of the trends for the zero degree temperature 
level for different periods (identified by colors) and various prewhitening methods (identified by symbols). 
MK and PW-cor are not included since their ss values are nearly identical to the TFPW-Y and PW ss values, 425 
respectively. As expected, TFPW-Y exhibits the highest ss, followed by TFPW-WS, while PW and VCTFPW 
exhibit the lowest ss. The ss always decreases at coarser time granularities for all prewhitening methods 
until ak1

data becomes not ss, usually at an average of 3 months. This decrease in ss is larger for the PW, 
TFPW-WS and VCTFPW than for TFPW-Y. For robust trends analyzed (e.g., the period of 40 y in Figure 7), 
the trend is ss at the 95% or 90% confidence level for the finest time granularity (3 days for PW and TFPW-430 
WS and 1 month for TFPW-Y ), but this is often not the case for weak trends.  

When ak1
data is not ss at high time granularity, the prewhitening methods can no longer be applied and 

the ss is similar for all methods. Without prewhitening, the ss is inversely proportional to the variance 

reduction caused by the aggregation. For TFPW-Y, the removal of the prewhitening due to not ss ak1
data 

at three months aggregation corresponds however to a decrease of the ss of the trend. The ak1
detr-prew,n of 435 

the 40 y period is ss for the one-year time granularity as can be seen by the TFPW-WS ss that is different 

than the ss of the other prewhitening methods (Fig. 7), leading to lower ss than without prewhitening. 

The increase of the ss with the period length is also obvious, with smaller differences between TFPW-Y 

and PW for longer periods. The longest period (40 y) and the finest time granularities (1-3 days) lead to 

no false positives for TFPW-Y, which is not the case for shorter periods or coarser time granularities.  440 

The effect of the time granularity on the slope strongly correlates with the ak1 time granularity 

dependence. A decrease of the autocorrelation with aggregation induces a reduction of the prewhitening 

effects on the slopes leading to a decrease in the differences between slopes (see Figs. 2 and 4). 
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The loss of ss with coarser time granularities is even more pronounced when evaluated for each month 

or meteorological season (Fig. 8).  This is due to the lower N per season (1/4 for meteorological season 445 

and 1/12 for months). Similarly, the decrease in the difference in slopes due to aggregation and the 

reduction of the prewhitening effects are both more pronounced when temporal segmentation is applied 

due to the reduction of the number of data points in each temporal segment. 

Fig. 8 clearly shows that the coarsest time granularities enhance the variability for the different temporal 

segmentation choices. For example, the interval between the minimum and maximum slopes is 2.3 larger 450 

for the monthly average than for the daily average for the scattering coefficient temporally segmented 

into  12 months (Fig. 8a) and 3.7 times larger for the absorption coefficient with meteorological seasons 

(Fig. 8b), respectively. In some cases, the sign of the slope changes with the time granularity when the 

trends are not ss. As already observed in Fig. 2, the CL also increase with time granularity due to the 

decrease in N. The effects of the time granularity on the ss, the slope and the CL are more pronounced for 455 

a monthly than for meteorological seasons temporal segmentation due N being three times lower for the 

months than it is for the seasons.  

 

4.3  Effects of temporal segmentation to address seasonality 
 460 
The division of the year into temporal segments is a necessary condition of the MK-test if the data exhibit 

a clear seasonality. Statistically, it is important to have equivalent segments with similar lengths to obtain 

similar N per segment. The time series presented in this study are all dependent on phenomena related 

to the temperature (e.g., atmospheric circulation, boundary layer height, source changes, etc.), and thus 

change with the meteorological seasons. The seasonality of time series primarily affected by other 465 

meteorological phenomena (e.g., the Asian monsoon, which is better characterized by dry and humid 

seasons, rather than the standard 4 meteorological seasons) have to be carefully studied in order to 

choose both the appropriate temporal segmentation and the appropriate time granularity. For example, 

a time granularity that does not respect the seasonal variation of a time series can lead to erratic results 

(de Jong and de Bruin, 2012).  470 

 

The effects of the chosen temporal segmentation to address seasonality are presented here for the 

VCTFPW slope and CL, but they are similar for the other methods as well. The effect of including temporal 

segmentation on the ss of the yearly trend is rather small with a difference of only 2-3% in the number of 

ss trends (not shown). The division into four meteorological seasons always results in the largest number 475 

of ss trends, while the division into 12 months is less powerful for short periods due to the low number of 

points for each month (N ≤ 10) for a 10 y period.  The application of no temporal segmentation, which 

does not met the MK-test requirements in the presence of a seasonality, is less powerful for decadal 

trends. No systematic effects due to the choice of temporal segmentation on the slope were found. 

Different temporal segmentation choices lead, most of the time, to comparable slopes. The effect of the 480 

prewhitening method is always much more pronounced than the effect of the choice of temporal 

segmentation. 

 

Figure 9 presents the CL intervals normalized by the trend slope as a function of the time granularity for 
the aerosol scattering coefficient without temporal segmentation (blue) or divided into monthly (green) 485 
or meteorological seasons (red) for several periods between 5 y and 24 y. Due to the decrease of N, finer 
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temporal segments induce an increase of the CL. In the case presented in Fig. 9, monthly segments have 
CL intervals four times larger than when seasonality is not considered and 2 times larger than 
meteorological seasons for the longest periods. It should be recalled, however, that not considering 
seasonality for time granularity finer than one-year is not allowed due to the observed seasonal variation 490 
in the aerosol scattering coefficient time series. 

In the case of a seasonal MK-test, yearly trend results can be considered only if the trends are 
homogeneous among the temporal segments (see Sect. 2.1). The division of the time series into four 
meteorological seasons leads to more homogeneous trends (three times and 25 times for decadal and 
short periods, respectively) at the 90% confidence level than the division into 12 months (Table 4). Thus, 495 
if meteorological seasons correspond to the observed temporal cycle of the studied time series then those 
seasons should be the preferred temporal division to consider rather than monthly divisions. Monthly 
segmentation could be considered when the observed variability of time series is shorter or longer than 
the 3 months length of a meteorological season.  

 500 

4.4  Effects of length of the time series  
 
As already stipulated under sect. 2.1, a special statistic that deviates from the normal statistic has to be 

applied to compute the statistical significance for N≤10. Shorter periods involve smaller N, and N is further 

affected by the choice of granularity. The special statistic has to be applied for trends computed on one-505 

year averages and period < 11 years (i.e., N≤10). Note: the effect of the natural variability of a data set on 

trends computed on short periods will not be directly discussed here, but only the statistical effect on the 

trends determined for the various time series studied here.  

Fig. 10 shows the effect of the reduction of the period length on the slope, the CL and the ss for the aerosol 
absorption coefficient dataset. The first obvious effect is that the absolute values of the slope are larger 510 
for shorter periods and there are large differences both for the individual months and meteorological 
seasons. Further, these large slopes for short time periods are associated with high CL and low ss. They 
are due to the cumulative effects of the predominant importance of the first and last years for short 
periods and to the low N in the time series. For the shortest period considered here (4y), the division of a 
daily time series into four meteorological seasons involves trends computed with N=360 (=4 years*3 515 
months*30 days) whereas monthly trends for the same time series are computed with N=120 (=4 years*1 
month*30 days). The reduction of N by a factor of three explains the larger and more variable slope values, 
the higher CL and the lower ss of the monthly trends compared to the meteorological season’s trends. 
The effects due to the reduction of N are minimized by the use of daily time granularity, but they are 
maximized by the use of larger aggregations leading for example to N=12 and 4, respectively, for monthly 520 
aggregation (hence the tendency for increases in CL with larger aggregation in Fig. 9). It should be noted 
that the influence of the length of the time series is usually more important than the choice of time 
granularity. For short time series, the yearly slopes can differ depending on the chosen temporal 
segmentation (see, e.g., the yearly slopes of 5y, 6y and 7y on Fig. 10). These results, then, support the 
standard recommendation of only computing long-term trends on time series of at least 10y. 525 
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4.5  Effects of the number of data points 
 530 

The number of data points N in the time series is a key variable underlying the effects of the time 

granularity, the temporal segmentation to address seasonality and the period discussed in the previous 

sections. Because a long-term trend analysis is statistically sound only for time series of at least a decade 

in length, only decadal and multi-decadal trends are considered in this section. Figure 11 is computed 

using 3PW (e.g., Fig. 1) for all decadal trends for all time series, temporal segmentation choices and time 535 

granularities and represents the percentage of ss trend as a function of slope and N categories. Fig. 11a 

shows that time series with robust trends, identified by high normalized slopes, need fewer data points 

to reach the 95% confidence level significance than time series with less robust trends. In contrast, weaker 

trends, identified by low normalized slopes, need at least several hundreds or even thousands of data 

points to become ss. In consequence, the smallest slopes need longer periods and finer time granularities 540 

to be identified as statistically significant. 

Figure 11 also clearly shows that small N leads statistically to larger normalized slopes and thus 

demonstrates that trends computed on short periods and with a long averaging time are usually greatly 

overestimated. The use of prewhitening methods with a large type 1 error will, in addition, falsely indicate 

ss trends (see Sect. 4.1 and Table 3). The use of MK or TFPW-Y tests on short, highly autocorrelated and 545 

highly aggregated time series will definitely produce false positive trends with high absolute slopes. 

The effects of the temporal segmentation to address seasonality and the time granularity on the 
confidence limits are primarily caused by the modification of N. The direct impact of N on CL as a function 
of slope robustness is plotted on Fig. 11b. As expected, weaker slopes and lower N lead to the largest CL 
with values of thousands percent of the slope for the worst cases. These high CL are not obviously related 550 
to a low ss if a prewhitening method with high type 1 error was used. 

 

5. Discussion 
 
The main effects of the various prewhitening methods on ak1, the slope, the ss and the CL can be 555 

summarized as follow: 

● ak1 depends mostly on the intrinsic characteristics of the time series and on the choice of  time 

granularity 

● The CL intervals depend primarily on the number of data points and, thus, the length of the time 

series, choice of time granularity and of temporal segmentation to address seasonality. 560 

● The ss depends mostly on the robustness of the slope, on the number of data points and on the 

prewhitening method. 

● The slope depends mostly on the prewhitening method, with PW leading to too low slopes and 

MK, TFPW-Y, TFPW-WS and PW-cor resulting in absolute values of the slope that are too high, 

considering VCTFPW as an unbiased slope estimate. 565 

 

The prewhitening methods presented here consider only the lag-1 autocorrelation. Atmospheric 

processes can, sometimes, be better represented by a higher order of autoregressive models with ss 

partial correlations at lags>1 (Table 2).  These higher order lag correlations could be considered by 
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prewhitening with the appropriate number of lags, but this was not tested during this study. Klaus et al. 570 

(2014) applied higher order autoregressive prewhitening to stable oxygen and hydrogen isotopes 

measured in precipitation and concluded that the ss is mostly decreased by higher order lags correlations 

whereas the slope is less affected. The effect of AR(2) (auto-regressive process of order 2) autocorrelation 

with  ak2= 0.2 on the type 1 and 2 errors of MK and TFPW-Y was found to be similar to strong AR(1) 

autocorrelation (Hardison et al., 2019) in Monte Carlo simulations, for slopes and residual variances 575 

derived from 124 ecosystem time series.  

Time series with a pronounced seasonality can also exhibit an ak1 seasonality. Tests were performed in 

order to compute ak1 for the various choices of the temporal segmentation instead of on the entire time 

series. This variant was not further pursued due to the difficulty in applying seasonal ak1, which were not 

always ss, leading to the application of the prewhitening method to only some of the temporal segments. 580 

These differences in the treatment of each segment yielded erratic results that could not be considered 

as homogeneous for a yearly trend. 

The slopes computed from the various prewhitening methods for the real atmospheric data sets 

considered here exhibit a large spread and only studies with simulated time series are able to provide 

insight into the slope bias of the methods. Yue et al. (2002) shows that TFPW-Y leads to a better estimate 585 

of the slope than PW, which systematically underestimated the real slope. Zhang and Zwiers (2004) 

compared the MK, PW and TFPW-WS methods for various slope and ak1 strengths as well as for various 

periods (30-200 years). They show that PW underestimates the slope for all slope strengths and periods 

for positive ak1, with the biases being larger for higher autocorrelation.  They also note that the biases did 

not decrease with the length of the time series. In contrast, they find that MK and TFPW-WS overestimate 590 

the slope for period < 200 y and high ak1. In this case they showed that, while the biases are also larger 

for higher autocorrelation, they are significantly lower for long periods (200y), allowing calculations of 

almost unbiased slope estimates. These Monte Carlo simulations used yearly time granularity so that their 

N corresponds to the length of the period.  Their evaluation of the importance of N is not as nuanced as 

presented in our study in which N could be larger than the number of years in the time series for time 595 

granularities < 1 y.  

The results of our study should be compared to the shortest periods (30 y) of the Zhang and Zwiers (2004) 

results, where they found an underestimation of the slope by PW and an overestimation by MK and TFPW-

WS.  Wang et al. (2015a) showed that the VCTFPW method leads to root mean square errors (RMSE) of 

the slope lower than the RMSE for TFPW-Y slopes for all slopes and ak1 values for a time series period of 600 

30 y. A longer period of 60 y results in lower VCTFPW RMSE only for small slopes. Finally, a recent study 

(Hardison et al., 2019) shows that both generalized least squares model and the Sen’s slope of MK-tests 

(MK and TFPW-Y) consistently overestimate the trend slope with strong ak1 and short periods (up to 80% 

for 10 y and 21% for 20 y). The spread of the estimated slopes increases with ak1 and is mediated by the 

length of the period. This suggests that the choice of the VCTFPW method as an unbiased estimator for 605 

time series shorter than 100 years is probably a better choice than TFPW-Y, but has to be considered in 

the context of the CL size in order to obtain a better estimate of the real long-term trend.   

All the simulation studies described above report slope per year based on yearly aggregated time series. 

Their number of data points corresponds then to the time series length. In contrast, N as defined in this 

study, could be much larger for an equivalent time series length as we considered data aggregations 610 

between 1d to 1y. The shortest simulated periods were 10 y (Hardison et al., 2019, Yue and Wang, 2004, 
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Hamed, 2009), 20 y (Yue et al., 2002), 25 y (Bayazit and Önöz, 2007) and 30 y (Zhang and Zwiers, 2004, 

Wang et al., 2015a). All the recommendations of these authors about erratic results for “short periods” 

always concern decadal or even multi decadal trends and are, consequently, even more relevant for trend 

results for periods shorter than 10 y. 615 

Based on the results presented in this study as well as the findings from the literature referenced above, 

the following recommendations can be made: 

● A prewhitening method must be used on time series when ak1
data is ss. 

● The seasonal MK-test must be used on time series with a clear seasonal cycle. The chosen 

temporal segmentation to address seasonality for the MK-test has to be compatible with the 620 

observed seasonality of the time series. 

● Finer time granularities should be used in order to maximize the number of data points and will 

yield smaller confidence limits and larger ss. The choice of the time granularity must also be 

compatible with the observed seasonality of the time series. 

● Periods shorter than 10 y must be handled with great caution and periods shorter than 8 y 625 

should not be used for long-term trend analysis. 

● When describing trend results the sign of the slope should not be mentioned if it is not ss, 

because not ss trends cannot, by definition, be distinguished from zero trends. Moreover, not ss 

trends have a larger dependency on how the trends are computed (time granularity, period, 

prewhitening method, temporal segmentation to address seasonality,…). 630 

● In the presence of ss lag-1 autocorrelation, either 3PW (using both PW and TFPW-Y) or TFPW-

WS should be used to assess statistical significance.  MK, TFPW-Y alone and VCTFPW lead to a 

high number of false positives. 

● The slope should be corrected in order to take into account the effect of the prewhitening on 

the mean and the variance of the time series. We recommend the VCTFPW method to eliminate 635 

slope biases, at least for time series shorter than 30 y. 

● In presence of ss trends, the confidence limits must also be considered in order to assess the 

uncertainty in the slope. 

 

 640 

6. Conclusion 
 

Several prewhitening methods including solely prewhitening, the trend-free prewhitening from Yue et al. 

(2002) and from Wang and Swail (2001) as well as the variance-corrected trend-free prewhitening method 

of Wang et al. (2015a) were tested on seven time series of various in-situ and remote sensing atmospheric 645 

measurements. Consistent with the literature, the use of MK, TFPW-Y and VCTFPW results in a large 

amount of false positive results while TFPW-WS results in less than 2% of false positives if PW is considered 

as the reference. The power of the test is good for all the applied MK-tests for the time series considered 

here.  

The effect of choosing time granularities ranging from one day to one year was also evaluated since a 650 

common way to overcome the autocorrelation problem is to average time series to a coarser time 

granularity. It was found that the ak1
data

 could remain ss up to at least monthly granularity and was 
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sometimes still ss for yearly averages. Finer time granularities exhibit higher ak1
data leading to a larger 

difference of the estimated slope by the various prewhitening methods. MK, TFPW-Y, TFPW-WS and PW-

cor result in the largest absolute values of the slope and PW the smallest. VCTFPW slopes are found 655 

between these two extremes. The confidence limits are much broader for coarser time granularities and 

the ss is lower, so that ss at the 95% confidence level is rarely achieved. The main impact of keeping a fine 

time granularity is that it allows computation of the trends on a high number of data points, which 

improves the power of the test and decreases the uncertainties in the slope. 

Since all the time series studied exhibited clear seasonal cycles, two temporal segmentations (12 months 660 

and 4 meteorological seasons) were tested for the seasonal MK-test. The segmentation into four 

meteorological seasons resulted in more homogeneous trends among the segments, a necessary 

condition to compute yearly trends. The division into meteorological seasons also resulted in a higher 

number of data points available in each temporal segment relative to division into monthly segments. No 

systematic effect of the choice of temporal segment on the slope was observed and the difference 665 

between temporal segment choices was always much lower than the differences among the prewhitening 

methods. 

Finally, a new 3PW algorithm was proposed combining several prewhitening methods to obtain a better 

estimate of trend and statistical significance than would be achieved with any individual prewhitening 

method.  PW and TFPW-Y were used to compute the statistical significance of the trend and VCTFPW was 670 

applied to estimate the slope. This approach takes advantage of the low sensitivity of type 1 errors of PW,  

the high test power of TFPW-Y and the less biased slope estimated by VCTFPW. 

Code availability 

We provide, in dedicated Github repositories hosted within the “mannkendall” organization 

(https://github.com/mannkendall), a Matlab (DOI:10.5281/zenodo.4134618 ; 675 

https://github.com/mannkendall/Matlab), Python (DOI:10.5281/zenodo.4134435; 

https://github.com/mannkendall/Python), and R (DOI:10.5281/zenodo.4134632 ; 

https://github.com/mannkendall/R) implementation of the algorithm presented in Sec. 2. In particular, 

these open-source codes, distributed under the BSD 3-Clause License, allow the user to compute the MK 

test and the Sen’s slope with various prewhitening methods (3PW (default), PW, TFPW-Y, TFPW-WS and 680 

VCTFPW). The time granularity, period and temporal segmentation are chosen by the users during the 

preparation of the datasets. The level of the confidence limits for the MK test, the lag-1 autocorrelation, 

and the homogeneity between the temporal aggregation can also be defined by the user. The probability 

for the statistical significance, the statistical significance at the desired confidence level, the Sen’s slope 

and its confidence limits are returned as results. A set a common tests is used to ensure that both the 685 

Python and R implementations are consistent with the (original) Matlab implementation of the code. 
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Tables  
 

Table 1: Advantages and disadvantages of the MK-test and of the various prewhitening methods. 

Method How it works  Advantages/Disadvantages 

MK  Applied on the data without modification  High type I error 
 High test power 

 slope increased by ak1
data 

PW 
(Kulkarni &  von 
Storch, 1995) 

 Remove the autocorrelation   Low type I error 
 Low test power 
 Smaller absolute slope  

PW-cor 

 

 Remove the autocorrelation  
 Preserve the slope 

 Low type I error 
 Low test power 
 Similar slope as MK 

TFPW-Y  
(Yue et al., 2002) 

 Remove the slope 
 Remove the autocorrelation 
 Add the trend 

 High type I error 
 High test power 
 Larger absolute slope 

TFPW-WS  
(Wang & Swail, 
2001) 

 Apply TFPW iteratively until ak1
detr-prew and the 

slope stay constant: 
 Remove the autocorrelation 
 Compute the slope 
 Remove the trend from the original 

data 
 Remove the final ak1

detr-prew 

 Low type 1 error 
 High test power  
 Similar slope as MK 

VCTFPW 
(Wang, 2015) 

 Remove the trend 
 Remove the autocorrelation  
 Correct the variance  similar to initial 

variance 
 Add the trend with corrected slope 

 Middle type I error 
 Medium test power 
 Unbiased slope estimate 

 

 820 
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Table 2: Description of the time series: time series with units, monitoring station, period, instrument type, 
original granularity, ranges (1 and 99 percentiles (1%ile and 99%ile)), mean, median and standard deviation 
(STD), lag-1 autocorrelation of the observations (ak1

data) and number of ss partial autocorrelations for the 
10 y period (order), number of data in the 10y period (N) and reference.  825 

Time series Station Period Instrument Granularity 1%ile 
99%ile 

Mean 
Median 
STD 

ak1
data 

 order 
N reference 

Aerosol 
scattering coef. 
[Mm-1] 

BND 1995-2018 TSI 
Nephelometer 

1 h  6.57 
167.80 

43.51 
33.04 
33.85 

0.60 
2 

3485 Sherman 
et al., 
2015 

Aerosol 
absorption 
coef. [Mm-1] 

BND 1995- 2018 PSAP and CLAP 1 h 0.51 
11.06 

3.40 
2.85 
2.30 

0.53 
2 

3431 Andrews 
et al., 
2019 

Aerosol number 
concentration 
[cm-3] 

BND 1995-  2018 CPC 1 h 283 
11636 

4139 
3674 
2517 

0.58 
2 

2979 Laj et al., 
2020 

Aerosol optical 
depth 

PAY 2006-2015 PFR 1 h 0.025 
0.285 

0.126 
0.113 
0.064 

0.72 
2 

641 Nyeki et 
al., 2019 

Tropopause 
level [m] 

PAY 1958-2018 Radio-sonde 12 h 7540 
14660 

11178 
11280 
1425 

0.70 
2 

3636 Brocard et 
al., 2013 

Zero degree 
level [m] 

PAY 1958-2018 Radio-sonde 12 h -859 
4437 

2333 
2457 
1208 

0.89 
3 

3640 Brocard et 
al., 2013 

Water Vapor 
Mixing ratio 
[g/kg]  

PAY 2009-2018 Ralmo Lidar 0.5 h 1.41 
11.88 

5.90 
5.57 
2.63 

0.88 
3 

2868 Hicks-Jalali 
et al., 
2019 

PSAP=Particle Soot Absorption Photometer, CLAP=Continuous Light Absorption Photometer, CPC=Condensation Particle Counter, 
PFR=Precision Filter Radiometer. 

 

Table 3: Percent of false positives for all data sets relative to a reference test for the MK-tests and 
prewhitening methods for periods of at least 10y (decadal trends) or smaller than 8y. N is the number of 830 
considered trends. PW should be considered as the best reference so that the results are given in bold. MK, 
TFPW-Y and VCTFPW have a higher number of type 1 errors and should not be considered as reference so 
that these results are given in italic. 

 

 835 
 
 
 
 
 840 
 
 
 
 
 845 
 

Period  MK TFPW-Y TFPW-WS PW/PW-cor VCTFPW 

≥ 10y 
N=2219 

 32.5 37.1 1.7 reference 47.0 

 31.8 36.1 reference 0.7 46.4 

 reference 9.4 0.2 0.3 26.4 

 5.0 reference 0.2 0.2 24.8 

 15.7 18.4 4.0 3.5 reference 

< 8y 
N=1067 

 16.0 14.1 0.7 reference 36.6 

 15.9 13.9 reference 0.5 36.7 

 reference 3.0 0.1 0.0 28.1 

 5.0 reference 0 0.0 29.7 

 8.4 8.1 1.3 1.1 reference 
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Table 4: Percentage of yearly trends with homogeneous temporal segments as a function of the type of 
segment (month or season), of the prewhitening method and of the length of the periods based on all 
seven time series considered in this study. 850 

 

Period Method Months Meteorological seasons 

≥ 10y 
N=115 

VCTFPW 26.1 % 80.0 % 

TFPW_Y 25.2 % 86.1 % 

< 8y 
N=55 

VCTFPW 5.5 % 74.5 % 

TFPW_Y 5.5 % 80 % 
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Figures 

 855 

Figure 1: Scheme of the new 3PW algorithm. αMK is the desired confidence limit for the MK test and αhomo 

the desired confidence limit for the homogeneity test between temporal segments. The values applied 

for this study are αMK=0.95 and αhomo=0.90. 
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 860 

 

Figure 2: Slope and confidence limits as a function of the time granularity for MK and the five 

prewhitening methods (indicated by colors) for a) the aerosol number concentration for the 24 y period, 

b) the aerosol scattering coefficient for the 10 y period, c) the tropopause level altitude for the 50 y 

period, and d) the AOD for the 10 y period. Larger symbols indicate ss trends and confidence limits are 865 

plotted only without time segmentation for clarity purposes. Inserted boxplots indicate the median, the 

quartiles and the whiskers of the ratio between the slopes computed with no temporal segmentation 

(year) and with the temporal segmentation of 12 months (month) over the slopes computed with the 

temporal segmentation of four meteorological seasons. 

 870 



26 
 

 

Figure 3 a) Statistical significance of trends as a function of the prewhitening methods for the aerosol 
number concentration for the yearly trends computed from four meteorological seasons time 
segmentation, for all periods (5y to 24y) and all time granularities (1 day to 1 month). This represents 40 
trends. The median is represented by the red line, the boxes are the 25% and 75% percentiles, the whiskers 875 
the 0.7 and 99.3 percentiles and the red plus signs the outliers. Some outliers are not on the figure for 
purposes of clarity.   

 b) Number of TFPW-Y false positives as a function of ak1
data and slope categories for all the computed 

trends of all time series for all decadal periods. Categories with less than 3 points are not plotted. 

 880 
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Figure 4: Slope differences as a function of ak1
data from the original data for all datasets, granularities 

and periods and for meteorological season time segmentation: a) PW minus VCTFPW slope (filled dots) 

and TFPW-Y minus VCTFPW slope (open squares) normalized by the VCTFPW slope, b) MK slope minus 885 

TFPW-Y slopes, c) MK minus TFPW-WS slopes and d) MK minus PW-cor slopes. The slope difference in b) 

c) and d) are normalized by MK slope. Not ss trends (PW taken as reference) are not plotted since the 

slopes cannot be distinguished from zero trend. Note the different y-axis ranges on these plots. 

 

 890 

Figure 5: Distribution of the confidence limit intervals of the slope for the trend in aerosol number 

concentration for all periods (5y-24y) and time granularities (1 day-1 month) as a function of the method 

for the meteorological season temporal segmentation. Box-whisker plotting as described for figure 3a. 
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 895 

Figure 6: a) Lag-1 autocorrelation (ak1
data) of the original data as a function of the time granularity for 

the 10 y time series of all parameters, bigger symbols correspond to ss ak1
data,  b) ak1 difference between 

the original data and the TFPW-Y data, and c) ak1 difference between the original data and the TFPW-

WS data.  For b) and c) only ss cases are plotted because prewhitening methods are not applied when 

ak1 is not ss. 900 

 

 

Figure 7: Statistical significance of the trends as a function of the time granularity and prewhitening 

methods for the zero degree level time series for 10y, 20y and 40y periods without temporal 

segmentation to address seasonality. The horizontal red and black lines correspond to the threshold of 905 

95% and 90% confidence levels, respectively.   
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Figure 8: VCTFPW slope (dots) and CL (vertical lines) as a function of the time granularity for the division 910 

of the time series into a) 12 months for the 10 y aerosol scattering coefficient and b) into four 

meteorological seasons for the 10 y aerosol absorption coefficient. Larger symbols indicate statistically 

significant slopes computed from 3PW. 

 

 915 

Figure 9: Confidence limits of  VCTFPW as a function of the time granularity for various periods of the 

aerosol scattering coefficient time series. Blue represents for no consideration of seasonalities; red 

represents time segmentation into four meteorological seasons and green into 12 months. The color 

shading corresponds to the length of the period from 5 y (lightest) to 24 y (darkest). 
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Figure 10: VCTFPW slopes (dots) and CL (vertical lines) as a function of various periods ending in 2018 for 

the daily aerosol absorption coefficient for the division of the time series into a) 12 months and b) four 

meteorological seasons. Colors represent time period lengths and bigger symbols represent ss trends. 925 

 

 

Figure 11: a) The percentage of 3PW ss trends (sect. 2.3) and b) mean confidence limits normalized by 

the slope as a function of slope normalized by the median and N categories for all time series, 

granularities and time segmentations and all period of at least a decade. The slopes are binned regularly 930 

(bin size = 0.5%) but N categories are irregular. Cells with less than 3 results were discarded in panel a). 


