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Abstract. In atmospheric chemistry retrievals and data assimilation systems, observation errors associated with satellite radi-
ances are chosen empirically and generally treated as uncorrelated. In this work, we estimate inter-channel error covariances for
the Infrared Atmospheric Sounding Interferometer (IASI) and evaluate their impact on ozone assimilation with the chemistry
transport model MOCAGE (MOdele de Chimie Atmosphérique a Grande Echelle). The method used to calculate observation
errors is a diagnostic based on the observation and analysis residual statistics already adopted in many Numerical Weather
Prediction centers. We used a subset of 280 channels covering the spectral range between 980 and 1100 cm™! to estimate
the observation-error covariance matrix. This spectral range includes ozone-sensitive and atmospheric window channels. We
computed hourly 3D-Var analyses and compared the resulting O3 fields against ozonesondes and the measurements provided
by the Microwave Limb Sounder (MLS) and by the Ozone Monitoring Instrument (OMI).

The results show significant differences between using the estimated error covariance matrix with respect to the empirical
diagonal matrix employed in previous studies. The validation of the analyses against independent data reports a significant im-
provement, especially in the tropical stratosphere. The computational cost has also been reduced when the estimated covariance

matrix is employed in the assimilation system, by reducing the number of iterations needed for the minimizer to converge.

1 Introduction

Ozone is an important trace gas that plays a key role in the Earth’s radiative budget (Iglesias-Suarez et al., 2018), in the
chemical processes occurring in the atmosphere, and in climate change (United Nations Environment Programme [UNEP]
2015). Tropospheric ozone also behaves as a pollutant with negative effects on vegetation and human health (UNEP2015,
2015). The stratospheric ozone is, nevertheless, a vital component of life on the Earth since it protects the biosphere from
harmful ultraviolet solar radiation (WMO, 2014). Therefore, monitoring the atmospheric ozone has been a subject of numerous
research studies and projects (e.g. Monitoring Atmospheric Composition and Climate (MACC) project (Inness et al., 2013)).
O3 surveillance is carried out through numerical forecast models and observational systems. The information arising from
these two sources is, thereafter, combined with the data assimilation techniques to improve the system state and forecasts.
Remote soundings from satellites are an essential component of an observational network (Clerbaux et al., 2009). Several

remote sensors relying on thermal emission of the Earth and the atmosphere have demonstrated their ability to provide ap-
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propriate information for total columns or vertical profiles of atmospheric gases such as water vapour, carbon dioxide, and
ozone (Clarisse et al., 2008; Clerbaux et al., 2009; Irion et al., 2018). Furthermore, the role of thermal infrared sounders does
not typically end at the monitoring of atmospheric gases. A large number of applications have taken advantage of these mea-
surements: the estimation of meteorological parameters (clouds, temperature, and humidity) and climate change studies (e.g.,
MacKenzie et al. (2012)). Infrared Atmospheric Sounding Interferometer (IASI) is one of these thermal infrared sounders
onboard Metop-A which provides global scale observations for a series of key atmospheric species (Clerbaux et al., 2009).

Data assimilation has been introduced relatively recently in atmospheric chemistry, in the stratosphere (Fisher and Lary,
1995) and for the troposphere (Elbern et al., 1997). Chemical fields estimated by chemistry transport models (CTM) are
combined with observations to construct a more accurate description of the atmospheric composition evolution (Lahoz et al.,
2007). Numerous studies have been conducted assimilating satellite retrievals of ozone (Emili et al., 2014; Massart et al., 2009).
However, the quality of analyses might be influenced by the prior information used for the retrievals. A recent study (Emili
et al., 2019) attempted to assimilate satellite radiances directly in a CTM to overcome this issue. In chemical assimilation
systems that assimilate radiances directly, but also in most of the current satellite retrieval algorithms (Dufour et al., 2012),
the observation errors are empirically adapted from the nominal instrumental noise and assumed to be uncorrelated. This
assumption is questionable since we use a radiative transfer model that may introduce similar errors among different spectral
channels (Bormann et al., 2010). In other words, an error dependency between channels of the band used is likely to be
introduced. The interchannel error correlations might originate from observation operator errors. They can also arise from
the instrument calibration and some practices of quality control (Bormann et al., 2010; Waller et al., 2016; Geer, 2019).
The representation errors (Janji¢ et al., 2018) may also introduce correlations. Liu and Rabier (2003) have shown that the
assimilation can lead to sub-optimal analysis errors when observation-error correlations are neglected.

The weight given to the observation in the assimilation process is determined by its error covariance matrix R.. Therefore,
its estimation plays a crucial role in the assimilation results. While most chemical assimilation systems assume the observation
error to be uncorrelated, many Numerical Weather Prediction (NWP) centers have estimated non-diagonal observation-error
covariances for satellite instruments such as Atmospheric Infrared Sounder (Garand et al., 2007; Bormann et al., 2010), IASI
(Stewart et al., 2009; Bormann et al., 2010; Weston et al., 2014; Campbell et al., 2017; Bathmann et al., 2020) and the Spinning
Enhanced Visible and Infrared Imager (Waller et al., 2016). The results found in the literature for the meteorological applica-
tions incite us to account for a correlated observation error for the chemical assimilation system as well. Indeed, the studies
mentioned above show that the inter-channel observation errors are correlated and taking such correlated errors into account
in the assimilation leads to improved analysis accuracy. Additionally, Emili et al. (2019) has highlighted some issues when
assimilating radiances in a chemistry transport model (increase of the ozone analysis errors compared to the control simulation
at some specific altitudes), which might be due to too simplistic observation errors. The main objective of this study is, thus, to
improve the ozone analysis accuracy within a chemistry transport model, by the mean of using more realistic observation-error
covariances for IASI ozone-sensitive channels.

The estimation of R is not straightforward, but a number of statistical methods are already evaluated in the literature.

Desroziers et al. (2005) have proposed an estimation based on the observation and analysis residual statistics. By assuming
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gaussian errors and no correlations between observation and background errors, the error covariance matrix is provided by
the statistical average of observation-minus-background times the observation-minus-analysis residuals. This method has been
used in many studies to estimate the observation errors and inter-channel error correlations (Garand et al., 2007; Weston et al.,
2014; Bormann et al., 2016; Tabeart et al., 2020; Coopmann et al., 2020).

In the present work, we estimate observation errors and their inter-channel correlations for IAST using the Desroziers method.
We evaluate, then, their impact on ozone assimilation in a CTM (MOCAGE). The paper is organized as follows. The CTM, the
radiative transfer model, the assimilation algorithm, the data, and the experimental framework are described in section 2. The
estimation of R is discussed in section 3. Then, the impact on data assimilation is reported in section 4 and validation against

independent data is discussed in section 5. Finally, the summary and conclusions are given in the last section.

2 Methods and data
2.1 Methods
2.1.1 Chemistry Transport Model

MOCAGE (MOdele de Chimie Atmosphérique a Grande Echelle) is the CTM used in this study. It is a three-dimensional
CTM providing the space and time evolution of the chemical composition of the troposphere and the stratosphere. Developed
by Centre National de Recherches Météorologiques (CNRM) at Météo France (Josse et al., 2004), it was used for a large
number of applications such as satellite ozone assimilation (Massart et al., 2009; Emili et al., 2014), climate (Teyssedre et al.,
2007) and air quality (Martet et al., 2009). MOCAGE provides a number of optional configurations with varying domains,
geometries and resolutions, as well as multiple chemical and physical parametrization packages.

A global configuration with a horizontal resolution of 2° and 60 hybrid levels from the surface to 0.1 hPa was used. The
vertical resolution goes from about 100 m in the boundary layer, to about 500 m in the free troposphere and to almost 2 km in
the upper stratosphere. MOCAGE is forced by meteorological fields from numerical weather prediction models such as Météo-
France global model ARPEGE (Action de Recherche Petite Echelle Grande Echelle, (Courtier et al., 1991)), limited area model
AROME (Application de la Recherche a I’Opérationnel a Méso-Echelle), and ECMWF NWP model and assimilation system
(Integrated Forecast System, IFS) for air quality predictions and ARPEGE-Climat (Déqué et al., 1994) for climate simulations.
In our study, the ECMWF IFS meteorological forecasts fields are used. For the chemical scheme, we adopted RACMOBUS
which bundle the stratospheric scheme (Lefevre et al., 1994) and the tropospheric scheme (Stockwell et al., 1997) including

about 100 species and 300 chemical reactions.
2.1.2 Radiative Transfer Model

Remote sensing instruments measure, within a certain wavelength range, the intensity of electromagnetic radiation passing
through the atmosphere (radiances). Radiative transfer models are used to simulate the radiation measured by the satellite as a

function of atmospheric state, to be able to compare the model state to the observed radiances.
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In our study, IASI radiances are simulated using the radiative transfer model RTTOV (Radiative Transfer for TOVS), which
was developed initially for TOVS instruments (Saunders et al., 2018). Giving an atmospheric profile of temperature, water
vapour and, optionally, trace gases, aerosols and hydrometeors, together with surface parameters and a viewing geometry,
RTTOV simulates radiances in the infrared and microwave spectrum. For IASI, it can reproduce radiances with an accuracy
of less than 0.1 K (Matricardi, 2009). In this paper, we use the same version used by Emili et al. (2019), i.e. version 11.3
(Saunders et al., 2013). The radiative transfer computations are performed in clear-sky conditions and aerosols are neglected.
The surface skin temperature, 2 m temperature, 2 m pressure, and 10 m wind vector are taken from IFS forecasts. The land
surface emissivity is based on the RTTOV monthly TIR emissivity atlas (Borbas and Ruston, 2010) and the Infrared Surface
Emissivity Model (ISEM) (Sherlock, 1999) is used over the sea. Other chemical variables (CO,, CHy4, CO, N5O) were set to
the reference profiles of RTTOV.

2.1.3 Assimilation algorithm

The variational data assimilation system of MOCAGE was developed jointly by CERFACS and Météo France in the framework
of the European project ASSET (ASSimilation for Envisat data) (Lahoz et al., 2007). It has been used in several studies such
as chemical data assimilation research (Emili et al., 2014; Massart et al., 2009), aerosol data assimilation (Sic et al., 2015)
and tropospheric-stratospheric exchange using data assimilation (El Amraoui et al., 2010). The MOCAGE data assimilation
system is flexible and allows multiple assimilation options, for example, the choice of the variational method (3D-Var, 4D-
Var), the representation of the background-error covariance, and the type of observation assimilated. It is also used to produce
operational air quality analyses for the European Project CAMS (Marécal et al., 2015).

The background-error covariance matrix is divided into two distinct parts, the diagonal matrix of the standard deviations
and the correlation matrix. The latter, allowing to spatially smooth the assimilation increments, is modeled through a diffusion
operator (Weaver and Courtier, 2001).

The 3D-Var implementation has been used with hourly assimilation windows. The variational cost function is minimized
using the BFGS (Broyden— Fletcher—Goldfarb—Shanno) algorithm (Liu and Nocedal, 1989). The system is preconditioned with
the square root of the B-matrix. The control vector includes only Skin Surface Temperature (SST) and ozone.

As we mentioned before, the aim of this work is to evaluate the impact of the estimated observation-error covariances on the
ozone analysis. Hence, in order to be able to compare our results to those that have been already discussed and validated, we
kept exactly the same configurations as those used in Emili et al. (2019) in terms of model, radiative transfer, and assimilation

algorithm parameters. The summary of these configurations is given in table 1.
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2.2 Data
2.2.1 IASI

IASI is one of the instruments operating onboard the polar-orbiting satellite Metop-A, B and C launched by the European
organization for the Exploitation of Meteorological Satellites (EUMETSAT). It is based on Fourier Transform Spectrometer
(FTS) and measures the spectrum emitted by the Earth-atmosphere system in the spectral range between 645 and 2760 cm ™!
(3.62 and 15.5 um) with a resolution of 0.5 cm™! after apodization, with a spectral sampling of 0.25 cm ~'. IASI scans the
Earth up to an angle of 48.3° on both sides of the satellite track. The cross-track is observed in 30 successive elementary fields of
view, each composed of 4 instantaneous fields of view corresponding to a 12 km of diameter footprint on the ground (Clerbaux
et al., 2009). The swath width on the ground is 2200 km which provides global Earth coverage twice a day. The measurements
provide information on atmospheric chemistry compounds such as Og, surface properties (Skin Surface Temperature SST),
and meteorological profiles (humidity and temperature).

1 was used. The channel

For this study, a subset of 280 channels covering the spectral range between 980 and 1100 cm™
selection is inherited from IASI Level 2 Og retrievals (Dufour et al., 2012; Emili et al., 2019). L1c data have been downloaded
from the EUMETSAT Earth Observation data portal (https://eoportal.eumetsat.int) in NETCDF format. Data files also con-
tain the co-located land/sea mask and cloud fraction values, obtained from the Advanced Very High-Resolution Radiometer

(AVHRR) measurements, also on board Metop-A.
2.2.2 MLS

The Microwave Limb Sounder (MLS) provides vertical profiles of several chemical components, by measuring the microwave
thermal emission from the limb of Earth atmosphere (Waters et al., 2006). More than 2500 vertical profiles are observed daily,
including trace gases with a vertical resolution of approximately 3 km. Several studies benefited from MLS products, notably
the ozone profiles in assimilation experiments (Emili et al., 2014; Massart et al., 2009), thanks to its low bias in the stratosphere
(<5%) (Froidevaux et al., 2008).

In our study, we use the ozone profiles retrieved from MLS (V4.2 Products) as independent data to validate our results. The
data have been downloaded from the Goddard Earth Sciences Data and Information Services Center (GES DISC) web portal

(https://disc.gsfc.nasa.gov).
223 OMI

The Ozone Monitoring Instrument (OMI) is a nadir-viewing, ultraviolet—visible (UV-VIS) spectrometer (Levelt et al., 2018).
It provides complete global maps of total column ozone on a daily basis. The OMI ozone data record starts in October 2004,
shortly after the launch of Aura (McPeters et al., 2015). The total column averaged over the month of the study (July 2010),
resulting from the OMI-TOMS version 8 algorithm (Bhartia, 2002), is used here to validate the results of the assimilation

experiments.
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2.2.4 Ozonesondes

Ozonesondes are in situ instruments carried by a radiosonde continuously transmitting the measurements as it ascends. The
profiles of O3 are provided up to an altitude that often exceeds 30 km (Jiang et al., 2007) with a vertical resolution of 150-200
m. They have been used for several applications such as validating satellite products (Jiang et al., 2007). In our study, vertical
profiles of ozone, collected and distributed by the Word Ozone Ultraviolet Radiation Data Centre (http://www.woudc.org), are

used to validate the model simulations.
2.3 Setup of the numerical experiments

The main purpose of this study is to estimate the IASI observation-error covariances and verify its impact on the quality of
the ozone assimilation results. The setup of the experiment in terms of the period of the study, the model configuration, the
choice of assimilated observations, and of the background-error covariance matrix is reported in table 1 . The observation-error
covariance matrix will be discussed in the the results section (Section 3).

The model was initialized with a zonal climatology and the spin-up time used is one month (June 2010). Then, our simula-
tions were performed for the month of July 2010. The ozone forecast-error standard deviation was assumed to be proportional
to the ozone concentration. In fact, Emili et al. (2019) have evaluated the standard deviation of the free model simulation against
independent data (profiles from ozonesondes and MLS), and found a small free forecast-error in the stratosphere, larger error
in the free troposphere and highest error close to the tropopause. This strategy was adopted previously by many studies (Emili
et al., 2014; Peiro et al., 2018; Emili et al., 2019). Emili et al. (2014) and Peiro et al. (2018) have used a percentage of 15%
in the troposphere and 5% in the stratosphere. In this study, we have adopted a detailed chemical scheme (discussed in section
2.1.1). This scheme was shown to reduce the model bias compared to scheme used in Emili et al. (2014) and Peiro et al. (2018)
(see Figure 4 in Emili et al. (2019)). Hence, we chose the same background error as in Emili et al. (2019) : 2% of the O3 profile
above 50hPa and 10% below. An important reason to keep the background errors similar to the setup of Emili et al. (2019) is
also that we wanted to exclusively examine the impact of R, as mentioned in the introduction.

The ozone background-error covariance matrix is split into a diagonal matrix filled with the standard deviation and a corre-
lation matrix modeled using a diffusion operator. The correlation, characterized by the length-scale, spreads the assimilation
increments in space. The configurations of horizontal and vertical length scales are described in table 1 .

The same preprocessing described in Emili et al. (2019) has been applied to our data before their use in the assimilation
system. In order to avoid any contamination from clouds, data were filtered using a cloud mask and only pixels with cloud
fraction less than or equal to 1 % were kept. The cloud fraction values are obtained from the AVHRR measurements onboard
Metop-A. Since the spatial resolution of MOCAGE is coarser than the pixel size, the number of ground pixels was reduced by
thinning the data using a grid of 1° x 1° of resolution and only keeping the first pixel that falls in every two grid boxes. A dy-
namical rejection of observations - with a threshold of 12 % - based on the relative differences between simulated and measured

values with respect to simulated values was considered. Some channels affected by HyO absorption (1008-1019,1028-1030,
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1064-1067,1072-1076,1089-1092 cm~') were removed. Pixels affected by aerosols are detected and then removed using the

index based on V-shaped sand signature as discussed in Emili et al. (2019).

Parameter Configuration in the assimilation system

Period of the study July 2010

Assimilation algorithm Hourly 3D-Var

Radiative transfer model RTTOV v11.3

Spectral window 980-1100 cm ~! of IASI from Metop-A

Ozone background Hourly 3D forecasts of MOCAGE

SST prior information ECMWEF IFS forecasts

Control vector O3 and SST

T, H5O fields ECMWEF IFS forecasts

IR Emissivity TIR atlas emissivity over land and ISEM model over sea

Observation-error covariance Both Desroziers method and the setup of Emili et al. (2019)

SST background-error standard deviation 4°C

0; Background error Vertically variable and computed as % of the background
profile (using a value of 2% above 50 hPa and 10 % below)

Exponential with a length scale set to 200 Km
O3 Background-error zonal correlation and reduced towards the pole to account for the increasing
zonal resolution of the regular latitude-longitude grid.
O3 Background meridional error correlation Exponential with a length scale set to 200 Km.
O3 Background-error vertical correlation Exponential with a length scale set to 1 grid point (vertical level).

Table 1 : Summary of the the configuration of MOCAGE assimilation system.

3 Restimation
3.1 Desroziers diagnostics

The observations used in the assimilation system could have a margin of error. We can identify two types of errors, systematic
and random errors. The systematic error is ordinarily corrected before the data assimilation process. In NWP, this type of errors
in satellite observations are in general corrected before assimilating the observations or within the data assimilation process
by VarBC scheme (Auligné et al., 2007). The key assumption is that the background state provided by the NWP system
is unbiased. This assumption is not valid in atmospheric chemistry applications, where models might have significant biases,

which is the case in our study (see figure 4 in Emili et al. (2019)). In such case, VarBC requires some independent data (anchor)
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to prevent the drift of the analyses to unrealistic values that might be introduced by the model bias. In our case, we control
tropospheric and stratospheric ozone. Identifying an anchor needs to be investigated carefully. Ozonesondes might be used as
an anchor in the troposphere and low stratosphere, but the number of profiles provided is limited spatially and temporally. This
might have an impact on the capacity of ozonesondes measurements to prevent the drift of the analyses due to the model bias.
Han and McNally (2010), used IASI channel 1585 as an anchor in the assimilation of ozone for NWP. Dragani and Mcnally
(2013), have used the same uncorrected channel as anchor and they showed that its impact was not sufficient to stabilize the
bias correction process for a long period. This aspect needs to be explored carefully in a separate study. On the other side,
a good understanding of sources of the measurement bias is a prerequisite to implement a bias correction scheme. VarBC in
NWP applications, for instance, needs to define a linear model with some predictors (Auligné et al., 2007). Before adapting
this approach in atmospheric chemistry framework, the possible sources of systematic errors in IASI ozone window need to be
assessed.

In atmospheric chemistry, we used to assimilate level 2 products of ozone (Massart et al., 2012; Emili et al., 2014; Peiro et al.,
2018). Only recently, the direct assimilation of IASI radiances has been introduced in our chemistry transport model (Emili
et al., 2019). Implementing a bias correction scheme requires careful diagnosis of the bias from observations monitoring. On
the other hand, choosing an anchor demands particular care and the choice depends on the full set of assimilated instruments.
In this work, which is not based on a preexisting operational setup, we do not assimilate other ozone instruments. Thus, we
had to assume that our observations are unbiased and we did not perform any bias correction. This assumption was adopted in
many chemical analysis’ studies before (e.g. Massart et al. (2012); Peiro et al. (2018); Emili et al. (2019)).

Random errors can arise from the measurements (e.g. instrumental error), forward model, representativeness error (e.g.
difference between point measurements and model representation), or quality control error (e.g. error due to the cloud de-
tection scheme missing some clouds within clear sky only assimilation). These types of errors should be accounted for by
the observation-error covariances matrix R. According to Weston et al. (2014), the instrument noise could be assumed to be
uncorrelated. However, the IASI measurements are apodized, which may introduce correlations between neighboring chan-
nels, particularly in our case where we are assimilating a subset of adjacent channels. The radiative transfer model may also
introduce correlations between channels. The error statistics from the instruments noise are known, while the characteristics of
other sources of error are not yet well understood.

In this paper, we estimate the total error using the statistical approach introduced by Desroziers et al. (2005) .

R =E[(y — H(x,))(y — H(x5))"]

Where x,, is the analysis state vector, X; is the background state vector, y is the vector of observations and H is the observation
operator that computes model counterpart in the observation space.

This method has been used to estimate observation errors and inter-channel error correlations (Stewart et al., 2009; Bormann
et al., 2016; Tabeart et al., 2020; Coopmann et al., 2020). It can potentially provide information on imperfectly known obser-
vation and background-error statistics with a nearly cost-free computation (Desroziers et al., 2005). However, this approach

assumes that the R and B matrices used to produce the analysis are exactly correct, which is almost never the case in practice.
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Furthermore, Desroziers diagnostics compute the total covariances, more efforts are needed to understand and distinguish the

sources of the error.
3.2 Error results

The Desroziers method was computed on the output of a 3D-Var experiment using a diagonal matrix R (with a standard
deviation of 0.7 mWm™2sr~'cm as in Emili et al. (2019)). The diagnosed R. could not be used directly in the assimilation
system. In fact, the estimated matrix was asymmetric and not positive definite. Similar unrealistic features in the diagnosed
covariance matrices were encountered in (Stewart et al., 2014; Weston et al., 2014) where an artificial inflation of observation
errors was applied. R needs to be a valid covariance matrix before being used in the 3D-Var assimilation system. Therefore, we
first symmetrize the estimated matrix by taking the mean of the original matrix and its transpose. Then we impose the negative
eigenvalues to be equal to the smallest positive eigenvalue as in (Weston et al., 2014; Tabeart et al., 2020). Another method
which consists of increasing all eigenvalues of R by the same amount was tested here to recondition the estimated matrix.
We favoured the first method since the standard deviation and the correlation values remain closer to the initially estimated
quantities.

Using outputs (analyses and forecasts) derived from a 3D-Var experiment that used a diagonal R-matrix (called hereafter
15t 3D-Var experiment) in the estimation process might have an impact on the diagnosed R-matrix. The matrix derived using
these outputs is called hereafter 1°¢ estimation. We performed another 3D-Var experiment (2"% 3D-Var experiment) using the
15t estimation. The outputs (analyses and forecasts) of this experiment (2% 3D-Var experiment) were used to estimate another
R-matrix called 2"¢ estimation. The standard deviation of the 2" estimation is larger than that of the 1°¢ estimation (not
shown). The same goes for correlations (not shown). It should be noted that the 274 estimation was positive definite, unlike
the 15% estimation where some unrealistic features were encountered. We have followed the same process to further estimate
two other matrices (37¢ and 4" estimation). The differences of the estimations in terms of standard deviation and correlations
became smaller as we reestimated the matrices, suggesting a sort of convergence of the estimation. We have adopted the 27¢
estimation for the results shown in this work. The reason for this choice will be discussed later (section 5.2).

Figure 1 presents the standard deviation diagnosed using the Desroziers approach (solid black line) and that used in Emili
et al. (2019) (dotted blue line). The latter was set equal to 0.7 mW m~2 sr—'cm for all channels, which is a common setting
for most TASI Oj retrievals (Dufour et al., 2012). At first glance, we note that the standard deviation used in previous studies
is highly underestimated for the SST sensitive channels and overestimated for some ozone-sensitive channels (around 1040
and 1050 cm ~!). The diagnosed standard deviation increases to reach 2 mW m~2 sr~! cm for SST sensitive channels (the
first and the last twenty channels of the band (980-1000 cm~! and 1080-1100 cm~!) and the channels between 1040 and 1045
cm™ 1) and varies from 0.2 to 1.4 mW m~2 sr~! cm for the ozone-sensitive channels. The radiance values for the observations
are greater for the SST channels than those of the ozone. The same goes for the corresponding background and the analysis
values. Since these diagnostics are based on observation, background and analysis residuals, a larger standard deviation for
the SST channels than for ozone channels might be expected. We have plotted the R standard deviation, the average of

observations, and the average of the background in the observation space on the same figure (not shown). We have noticed that
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Figure 1. Standard deviation estimated using (back solid line) and that

used in the previous studies (dotted blue line) (Emili et al., 2019) .

Figure 2. Correlation matrix estimated using the Desroziers method.

the estimated standard deviation has a very similar shape to that of the observed radiances or the equivalent of the background
in the observation space. This may suggest that the larger absolute error in the SST band compared to the ozone channels might
be explained by the large values of the observation and the background for the SST channels in comparison with respect to the
ozone channels. It could also be attributed to greater sensitivity to emissivity and representivity error.

The TASI instrumental error is provided by the CNES (Centre National d’Etudes Spatiales), taking into account different
known effects such as flight homogeneity and apodization effect (Le Barbier Laura, personal communication). The instrumental
error covariance matrix is computed as described in (Serio et al., 2020). This error remains smaller (about 0.2 mW m~2
sr~'cm) than that used in the previous studies (0.7 mW m~2 sr~'cm). Then, the large estimated standard deviation noticed in
our estimation might be due to the radiative transfer inputs error.

To investigate the off-diagonal part of R we present the diagnosed correlation matrix in Figure 2. The results show high
correlations between the majority of the channels (larger than 0.4). In particular, a very high correlation is observed among
SST sensitive channels (around 0.9 to 1). The regions of, relatively, lower correlation (around 0.4 to 0.7) represent the ozone
channels correlations and cross correlation between ozone and SST sensitive channels.

The high correlation found here was expected since previous studies have highlighted the same behaviour in this spectral
region (Bormann et al., 2010; Stewart et al., 2014; Bormann et al., 2016). In fact, the use of the same radiative transfer model
for all channels may introduce similar errors among these channels.

The diagnostic discussed above is based on a global estimation, without any distinction between the type of the surface (land

or sea) nor the time of the observation (day or night). Since the emissivity varies according to the type of the surface, and

10
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the skin temperature is strongly driven by the sun radiation, we evaluated R taking these differences into account. In terms of
standard deviation, the error over land reveals large values for the SST sensitive-channels in comparison with that estimated
over the sea which, in turn, reproduces a slightly different error in comparison with the global estimation (not shown). The
two surfaces introduce also a slightly different error regarding the ozone band. The same behaviour as the global estimation
is reproduced when the statistics were performed from the data measured separately from the day and from the night. The
variability in terms of correlations is more pronounced when the surface type is considered than in the case of the observation
time. The difference between the correlations estimated using all observations and pixels over the sea surface varies between
0 % and 40 % for the majority of the channels with values that can reach 60%. These differences are located around 1035 and
1060 cm~! which correspond to the regions of low correlations (not shown).

The separate treatment of land/sea covariance matrices did not yield significant differences in terms of assimilation results
comparing with the use of global estimation. Hence, we have adopted the global estimation in our study. The rationale for this

choice will be given during the discussion of the validation results (section 5.2).

4 Assimilation results
4.1 Ozone fields

In this section, we discuss the impact of the observation-error covariances estimated previously on the ozone analysis. To this
end, three experiments for the month of July 2010 were carried out:

1). model run without data assimilation called hereafter the free run (or Control), and noted in the rest of this paper Control-
Exp.

ii). 3D-Var assimilation of IASI radiances using a diagonal observation-error covariance matrix (as in Emili et al. (2019)). It
will be referred here by RdiagExp.

iii). 3D-Var assimilation of IASI radiances using a full matrix estimated with the Desroziers diagnostic noted hereafter by
RfullExp.

The first experiment (ControlExp) was run to evaluate the benefit of the assimilation experiments and to quantify the im-
provements of each of the two analyses when they are validated against independent data. The same setup of Emili et al. (2019)
was adopted for RdiagExp, which was taken as a reference to characterize the impact of accounting for the estimated R in the
third simulation (RfullExp).

Figure 3 shows the difference between the zonal average of the ozone analysis from the two assimilation experiments in
units of parts per billion volume (ppbv). The zonal values were averaged over the month of the study before performing the
difference. The impact of the estimated R varies with latitude. It varies also with the height, adding or reducing the amount of
ozone. Overall, the estimated R reduces the amount of ozone in the high latitudes of the free troposphere and the tropical high
stratosphere, whereas the amount is increased in the vicinity of the lower stratosphere. The maximum reduction of ozone is
larger than the amount added. The amount of ozone reduction reaches 600 ppbv, whereas the increase does not exceed 300 ppbv.

In high northern latitudes (30°N-90°N), a significant addition is found (300 ppbv) covering almost the whole stratosphere, in
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opposition to the other latitudes where the difference changes sign with altitude. On the other hand, a large reduction of ozone
is observed in the tropics at 20 hPa (more than 600 ppbv). We have performed a t-test to evaluate the significance of these
differences between the two experiments in terms of zonal averages. These were obtained by averaging the analysis over
the month of the study and over longitudes. We have used the standard deviation computed for each average to perform our
test. We have noticed that the majority of regions, especially where the differences are large (between 300 hPa and 10 hPa) are
statistically significant (not shown). To better understand the impact of the estimated R we validate the results with independent

data in the section of validation (section 5).
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Figure 3. The difference between the zonal average of the analysis (in ppbv) from the two assimilation experiments, averaged over the month

of the study (nonlinear colormap).

4.2 Surface skin temperature

The assimilated spectra include both ozone and surface skin temperature sensitive channels. The IFS skin temperature was taken
as a background in the assimilation process. We have computed the difference between the SST analysis and the background
at the end of each assimilation experiment (RdiagExp and RfullExp). The skin temperature is physically linked to the ozone
measured. In fact, the skin temperature interacts with the ambient atmosphere. An increase of SST can for example create a
convective movement impacting the transport of the ozone. However, the skin temperature is given only at the observation
location in this study and it is specified with values interpolated from NWP forecasts (IFS), whereas ozone is a 3D field issued

from the chemistry transport model. Hence, the estimation and potential account of error correlations between the two variables
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seems challenging in our system. In this work, we did not consider the background-error correlation that might exist between
O3 and SST.

Figure 4.a) shows the difference between the analysis of the SST given by RdiagExp and the IFS SST forecast whereas,
Figure 4.b) shows the difference between the analysis of the SST given by RfullExp and the IFS SST forecast. In terms of
geographical distribution, we notice that the differences are smaller through the tropics and mid-latitudes, especially over sea,
when the estimated R was adopted. Looking at the average values, RdiagExp decreases the surface skin temperature by about
0.55°C with respect to the background. The introduction of the estimated R decreases the difference between the SST analysis
and that of IFS to almost -0.18°C instead of -0.55 °C. The standard deviation was also reduced from 1.39 °C to 1.05 °C. Thus,
the use of the estimated R lets the SST analysis stay closer to the IFS forecasts. However, there is an increase in difference
on land using RdiagExp, mainly in Africa and South America. This increase in difference over the land seems related to the
dependence of observation errors on the surface. In fact, the number of observations over the sea represents almost 70% of the
total observations we have used in this study. Consequently, our SST analysis stays closer to background values (IFS forecasts)

over the sea than over the land.

Avg: -0.55 Max: 7.05 Min: -5.62 Std: 1.39 Avg: -0.18 Max: 7.56 Min: -5.1 Std: 1.05

(a) (b)
Figure 4. Difference (in °C ) between the IFS SST forecast and the analysis of the SST given by RdiagExp (with a diagonal matrix) (a), and

that given by RfullExp (with a correlated matrix) (b) averaged by box of 2°.

4.3 Computational cost

In our assimilation setup, the cost function is minimized hourly. For each window, the minimizer needs to converge after a
certain number of iterations. The cost of each iteration is dominated by the cost of the radiative transfer operators (tangent
linear, the adjoint model) and of the background-error covariance operators. When the observation error was assumed to be

uncorrelated (RdiagExp), the number of iterations needed for each hourly cycle is significantly higher than when the estimated
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observation-error covariance matrix is used. In fact, the introduction of the estimated R reduces the number of iterations from
150 (a fixed value to stop iterations if the convergence criteria were not attained to save computational time) to 89 iterations
in average. This means that the CPU time is reduced by more than 150% for each assimilation cycle. The convergence criteria
of the LBFGS algorithm is based on either the reduction of the cost function or the norm of its gradient below some given
small thresholds. For the RfullExp, the convergence is achieved due to the stationarity of the cost function (1st criterion). The
widespread correlations (high condition number) and larger variance of the estimated R matrix conduct to a downweight of
the observations and are likely the reason for the improved convergence in RfullExp. This increase of the convergence speed
was encountered in the Met Office 1D-Var system (Tabeart et al., 2020) where a correlated observation matrix was introduced
in the system. Moreover, in Tabeart et al. (2018) the matrix R and the observation-error variance appear in the expression
of the condition number of the Hessian of the variational assimilation problem, indicating that these terms are important for
convergence of the minimization function.

In an attempt to distinguish the impact of the variance on the convergence speed from that of the correlations, we have
performed three assimilation experiments using different R-matrices. The first experiment (15 experiment) employed R. that
was estimated from the analysis computed using a diagonal R-matrix.The minimizer takes 149 iterations in average to converge
(average computed for all the assimilation cycles of the month). We used the analysis given by the 15! experiment to estimate
another R-matrix. We have used this estimation to run another assimilation cycle (2”¢ experiment). We have noticed that
the minimizer needs about 89 iterations in average. We have modified the R-matrix of the 15 experiment by keeping its
correlations and replacing its standard deviation with that of R used in the 2"¢ experiment. The resulting matrix was used
to run a 3"¢ assimilation experiment. The minimizer needs about 90 iterations to converge. The results of the 3"¢ experiment

seem to suggest that updating the variance has a larger impact on the convergence speed.

5 Validation of O3 analyses
5.1 Total column

Figure 5 shows the difference of the ozone total column (in Dobson Unit (DU)) provided by OMI and that of the RdiagExp
(a) and that of RfullExp (b). At first sight, we note smaller differences over the tropics between the OMI total column and the
total column given by RfullExp in comparison with that given by the RdiagExp. This behaviour was expected since a large
reduction of the amount of ozone was observed in these regions (see Figure 3). In the high northern latitudes, the differences
were slightly increased when the estimated matrix was adopted. This is a consequence of the increase in the amount of ozone
encountered in these regions in the stratosphere, compared to the amount reduced in the same region in the troposphere (Figure
3). On the other hand, the global mean and the standard deviation of these differences are lower in the case of using the new
estimated matrix (10.1 DU as a mean and 6.3 as a standard deviation when the new estimated matrix was used instead of 10.6
DU as a mean and 7.3 as a standard deviation when a diagonal matrix was used). Hence, we conclude that the estimated matrix

R has slightly improved the results in terms of ozone total columns.
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a) OMI-Rdiagéxp: mean=10.6, std=7.3, max=44, min=-70 b) OMI-RfullExp: mean=10.1, std=6.3, max=38, min=-73
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Figure 5. (a) Difference of the ozone total column (DU) provided by OMI and that of the assimilation experiment RdiagExp,(b) and that of
RfullExp, averaged over the month of the study.

5.2 Vertical validation

In this section, we validate the two simulations against radiosoundings and MLS data. We use the root mean square error
(RMSE) as the main statistical indicator to quantify the accuracy of the experiments.

‘We compute the relative (to the control simulation) difference of RMSE with respect to radiosoundings and MLS averages
globally and for five different latitude bands. The difference is computed by subtracting the RMSE of each experiment from
that of the control simulation. Negative values indicate an improvement of the O3 profiles. It should be noted that the represen-
tativeness of the statistics given by the MLS in the stratosphere is better than that of the radiosoundings because the number of
profiles provided by MLS is much higher compared to the radiosoundings ones. Consequently, higher confidence is given to
the validation using the MLS data in the stratosphere.

Figure 6 reports the RMSE differences with respect to the radiosoundings. Considering the global RMSE (ALL), we notice

that the experiment with the estimated matrix improves the results above 150 hPa, around 400 hPa and near the surface.
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However, it also reduces the improvement from 30% (the case of using a diagonal matrix) to 15 % in the vicinity of UTLS
(100-300 hPa).

The issue of increasing the ozone analysis errors compared to the control simulation encountered in Emili et al. (2019) is
especially severe in the tropics (30S-30N). The use of the estimated R has substantially enhanced the results in this latitude
bands bringing the error from +15% to -2%. Apart from the vicinity of 50 hPa and 400 hPa, the results, in the tropics, were
improved over the entire vertical profile. Regarding other latitude bands, almost the same feature of the global validation is
found in the north hemisphere. The two experiments show almost the same behaviour in the southern latitudes, with a slight
improvement for RfullExp in the southern high latitudes (60°S-90°S).

The MLS validation in Figure 7 shows almost the same behaviour reported by radiosoundings validation in the tropical
stratosphere, where the reduction of error is remarkable. In the other latitude bands, MLS reports a similar behaviour of the
two experiments, with some small differences in northern hemisphere.

To evaluate the significance of the differences between the analyses of the two experiments with respect to MLS and ozone-
soundings measurements, we have performed the t-test of the differences between analyses and observations (ozonesondes then
MLS). We have noticed that for the ozonesoundings, the significance differs among vertical levels. The reduction of the error
between 20 and 50 hPa, and between 300 and 400 hPa reported in Figure 6 is statistically significant. For the low troposphere
the differences are not significant. Unlike the ozonesoundings results, the differences with respect to the MLS measurements
are statistically significant for all levels discussed in MLS validation.

All things considered, the introduction of the estimated R has globally improved the O3 profiles in the stratosphere and in
the free troposphere, especially in the tropics. In spite of its degradation in the vicinity of UTLS, the improvement remains
always advantageous with respect to the control run.

The matrix used for this study (see Sec. 3.2) will be now discussed in this section since the decision was also based on the
outcome of the assimilation experiments presented in this section. We performed sequentially three assimilation experiments
using the first, second and the third estimation of R (Sec. 3.2). The results of validation against radiosoundings and MLS
showed small differences (not shown). Therefore, to avoid the initial impact of using a diagonal matrix we have adopted
the second estimation (which uses the analyses derived from the experiment using the first estimation). In an operational
framework, we may estimate the matrix daily (weekly or monthly if the period of the study is considerably long) using the
analyses of the previous day (using the analysis of the previous week or month respectively ). In other words, we may use a
diagonal matrix to produce analyses for the first day or spin-up period, these analyses will be used to estimate the matrix that
will be used for the second day, and so on throughout the period of the study.

We have also discussed the type (sea/land) and the time (day/night) of the observations while estimating the matrices. To
check the impact of these differences on the assimilation results, we ran an additional assimilation experiment using the matrix
estimated considering the type of the surface of each observation (since the differences were more important than if the time of
the observation was considered). Only slight differences among the results have been noticed (not shown). This behavior might
be explained by the number of observations over the sea and over the land. In fact, the observations over the sea represent more

than 70% of the total of observations. The differences, in terms of standard deviation, of the global estimation and that using

16



5

pixels over the sea is very small in comparison with that using pixels over the land (not shown). The differences are also small
in terms of correlations in the case of the sea surface in comparison with the land surface (not shown). Hence, we consider that
the predominance of observations over sea averages out the potential differences caused by a separate land/sea specification of
R. Thus, for simplicity, it seems reasonable to adopt the global estimation of the matrix and neglect the effect of the time and

the type of the surface of the observations.
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Figure 6. Normalized difference of the RMSE with respect to the ozonesondes for the R estimated (green) and R diagonal (blue). The
difference of the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control for each experiment, divided
by the average profile of the ozonesondes. Negative values mean that the assimilation improved (decreased) the RMSE of the control

simulation, and positive values indicate degradation (increase) of the RMSE. (Vertical levels are in hPa).
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Figure 7. Normalized difference of the RMSE with respect to the MLS for the R estimated (green) and R diagonal (blue). The difference of

the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control of each experiment, divided by the average

profile of the MLS. Negative values mean that the assimilation improved (decreased) the RMSE of the control simulation, and positive values

indicate degradation (increase) of the RMSE. (Vertical levels are in hPa).
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6 Conclusions

The correct specification of the observation error becomes a critical issue to assimilate efficiently the increasing amount of
satellite data available in the recent years. We have estimated the observation errors and their inter-channel correlations for
clear sky radiances from IASI ozone-sensitive channels. We have evaluated, then, the impact of the estimated R on the SST
and ozone analysis within our 3D-Var assimilation system. The outcome has been compared with an assimilation experiment
where the observation-error covariance matrix was assumed to be diagonal and the standard deviation assigned empirically like
in previous studies. The results of the experiments were, then, validated against independent data: OMI, MLS and ozonesondes.

The Desroziers diagnostics were adopted here to estimate R. The diagnostics used the analyses derived from a variational
data assimilation experiment. The results have shown high correlations between the majority of the IASI spectral channels,
particularly among the SST sensitive channels.

Significant differences between the results of the experiments were encountered. The introduction of the estimated R reduces
the amount of ozone in the free troposphere and in the high tropical stratosphere, whereas ozone is added in the vicinity of the
lower stratosphere. A validation against OMI has shown that the results were closer to the observations when the estimated
matrix was adopted.

The validation against MLS and ozonesondes showed that the introduction of the estimated R has globally improved the
results in the stratosphere and in the free stratosphere especially in the tropics. In spite of a slight reduction in accuracy in the
vicinity of UTLS, the improvement remains always advantageous with respect to the reference assimilation. Concerning the
computational cost, the introduction of the estimated R significantly reduces the number of iterations needed for the minimizer
to converge.

In summary, accounting for an estimated R improves significantly the ozone assimilation results. This approach might be
adopted in the assimilation of other chemical species and also in Level 2 Og retrievals.

In this study, the estimation was computed without taking into account any distinction of the error sources and assuming
that the observation error was unbiased. More efforts will be needed to tackle these points. It should also note that we kept the
same experiment setup of Emili et al. (2019) in order to be able to quantify exclusively the impact of the R.. The background-
error matrix was still defined using a relatively simple and empirical method. Further research might be needed to perform a
better estimation of the background error. A new channel selection might also be performed to reduce the computational cost
and the information redundancy of the IASI spectrum. On the other hand, all the experiments are performed in the context
where aerosols are neglected and over one month. Including modeled aerosols within the radiative transfer may bring some

improvements to the analyses. These aspects will be covered in future research.
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