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Abstract. In atmospheric chemistry retrievals and data assimilation systems, observation errors associated with satellite radi-

ances are chosen empirically and generally treated as uncorrelated. In this work, we estimate inter-channel error covariances for

the Infrared Atmospheric Sounding Interferometer (IASI) and evaluate their impact on ozone assimilation with the chemistry

transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle). The method used to calculate observation

errors is a diagnostic based on the observation and analysis residual statistics already adopted in many Numerical Weather5

Prediction centers. We used a subset of 280 channels covering the spectral range between 980 and 1100 cm−1 to estimate

the observation-error covariance matrix. This spectral range includes ozone-sensitive and atmospheric window channels. We

computed hourly 3D-Var analyses and compared the resulting O3 fields against ozonesondes and the measurements provided

by the Microwave Limb Sounder (MLS) and by the Ozone Monitoring Instrument (OMI).

The results show significant differences between using the estimated error covariance matrix with respect to the empirical10

diagonal matrix employed in previous studies. The validation of the analyses against independent data reports a significant im-

provement, especially in the tropical stratosphere. The computational cost has also been reduced when the estimated covariance

matrix is employed in the assimilation system, by reducing the number of iterations needed for the minimizer to converge.

1 Introduction

Ozone is an important trace gas that plays a key role in the Earth’s radiative budget (Iglesias-Suarez et al., 2018), in the15

chemical processes occurring in the atmosphere, and in climate change (United Nations Environment Programme [UNEP]

2015). Tropospheric ozone also behaves as a pollutant with negative effects on vegetation and human health (UNEP2015,

2015). The stratospheric ozone is, nevertheless, a vital component of life on the Earth since it protects the biosphere from

harmful ultraviolet solar radiation (WMO, 2014). Therefore, monitoring the atmospheric ozone has been a subject of numerous

research studies and projects (e.g. Monitoring Atmospheric Composition and Climate (MACC) project (Inness et al., 2013)).20

O3 surveillance is carried out through numerical forecast models and observational systems. The information arising from

these two sources is, thereafter, combined with the data assimilation techniques to improve the system state and forecasts.

Remote soundings from satellites are an essential component of an observational network (Clerbaux et al., 2009). Several

remote sensors relying on thermal emission of the Earth and the atmosphere have demonstrated their ability to provide ap-
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propriate information for total columns or vertical profiles of atmospheric gases such as water vapour, carbon dioxide, and

ozone (Clarisse et al., 2008; Clerbaux et al., 2009; Irion et al., 2018). Furthermore, the role of thermal infrared sounders does

not typically end at the monitoring of atmospheric gases. A large number of applications have taken advantage of these mea-

surements: the estimation of meteorological parameters (clouds, temperature, and humidity) and climate change studies (e.g.,

MacKenzie et al. (2012)). Infrared Atmospheric Sounding Interferometer (IASI) is one of these thermal infrared sounders5

onboard Metop-A which provides global scale observations for a series of key atmospheric species (Clerbaux et al., 2009).

Data assimilation has been introduced relatively recently in atmospheric chemistry, in the stratosphere (Fisher and Lary,

1995) and for the troposphere (Elbern et al., 1997). Chemical fields estimated by chemistry transport models (CTM) are

combined with observations to construct a more accurate description of the atmospheric composition evolution (Lahoz et al.,

2007). Numerous studies have been conducted assimilating satellite retrievals of ozone (Emili et al., 2014; Massart et al., 2009).10

However, the quality of analyses might be influenced by the prior information used for the retrievals. A recent study (Emili

et al., 2019) attempted to assimilate satellite radiances directly in a CTM to overcome this issue. In chemical assimilation

systems that assimilate radiances directly, but also in most of the current satellite retrieval algorithms (Dufour et al., 2012),

the observation errors are empirically adapted from the nominal instrumental noise and assumed to be uncorrelated. This

assumption is questionable since we use a radiative transfer model that may introduce similar errors among different spectral15

channels (Bormann et al., 2010). In other words, an error dependency between channels of the band used is likely to be

introduced. The interchannel error correlations might originate from observation operator errors. They can also arise from

the instrument calibration and some practices of quality control (Bormann et al., 2010; Waller et al., 2016; Geer, 2019).

The representation errors (Janjić et al., 2018) may also introduce correlations. Liu and Rabier (2003) have shown that the

assimilation can lead to sub-optimal analysis errors when observation-error correlations are neglected.20

The weight given to the observation in the assimilation process is determined by its error covariance matrix R. Therefore,

its estimation plays a crucial role in the assimilation results. While most chemical assimilation systems assume the observation

error to be uncorrelated, many Numerical Weather Prediction (NWP) centers have estimated non-diagonal observation-error

covariances for satellite instruments such as Atmospheric Infrared Sounder (Garand et al., 2007; Bormann et al., 2010), IASI

(Stewart et al., 2009; Bormann et al., 2010; Weston et al., 2014; Campbell et al., 2017; Bathmann et al., 2020) and the Spinning25

Enhanced Visible and Infrared Imager (Waller et al., 2016). The results found in the literature for the meteorological applica-

tions incite us to account for a correlated observation error for the chemical assimilation system as well. Indeed, the studies

mentioned above show that the inter-channel observation errors are correlated and taking such correlated errors into account

in the assimilation leads to improved analysis accuracy. Additionally, Emili et al. (2019) has highlighted some issues when

assimilating radiances in a chemistry transport model (increase of the ozone analysis errors compared to the control simulation30

at some specific altitudes), which might be due to too simplistic observation errors. The main objective of this study is, thus, to

improve the ozone analysis accuracy within a chemistry transport model, by the mean of using more realistic observation-error

covariances for IASI ozone-sensitive channels.

The estimation of R is not straightforward, but a number of statistical methods are already evaluated in the literature.

Desroziers et al. (2005) have proposed an estimation based on the observation and analysis residual statistics. By assuming35
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gaussian errors and no correlations between observation and background errors, the error covariance matrix is provided by

the statistical average of observation-minus-background times the observation-minus-analysis residuals. This method has been

used in many studies to estimate the observation errors and inter-channel error correlations (Garand et al., 2007; Weston et al.,

2014; Bormann et al., 2016; Tabeart et al., 2020; Coopmann et al., 2020).

In the present work, we estimate observation errors and their inter-channel correlations for IASI using the Desroziers method.5

We evaluate, then, their impact on ozone assimilation in a CTM (MOCAGE). The paper is organized as follows. The CTM, the

radiative transfer model, the assimilation algorithm, the data, and the experimental framework are described in section 2. The

estimation of R is discussed in section 3. Then, the impact on data assimilation is reported in section 4 and validation against

independent data is discussed in section 5. Finally, the summary and conclusions are given in the last section.

2 Methods and data10

2.1 Methods

2.1.1 Chemistry Transport Model

MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) is the CTM used in this study. It is a three-dimensional

CTM providing the space and time evolution of the chemical composition of the troposphere and the stratosphere. Developed

by Centre National de Recherches Météorologiques (CNRM) at Météo France (Josse et al., 2004), it was used for a large15

number of applications such as satellite ozone assimilation (Massart et al., 2009; Emili et al., 2014), climate (Teyssèdre et al.,

2007) and air quality (Martet et al., 2009). MOCAGE provides a number of optional configurations with varying domains,

geometries and resolutions, as well as multiple chemical and physical parametrization packages.

A global configuration with a horizontal resolution of 2° and 60 hybrid levels from the surface to 0.1 hPa was used. The

vertical resolution goes from about 100 m in the boundary layer, to about 500 m in the free troposphere and to almost 2 km in20

the upper stratosphere. MOCAGE is forced by meteorological fields from numerical weather prediction models such as Météo-

France global model ARPEGE (Action de Recherche Petite Echelle Grande Echelle, (Courtier et al., 1991)), limited area model

AROME (Application de la Recherche à l’Opérationnel à Méso-Echelle), and ECMWF NWP model and assimilation system

(Integrated Forecast System, IFS) for air quality predictions and ARPEGE-Climat (Déqué et al., 1994) for climate simulations.

In our study, the ECMWF IFS meteorological forecasts fields are used. For the chemical scheme, we adopted RACMOBUS25

which bundle the stratospheric scheme (Lefèvre et al., 1994) and the tropospheric scheme (Stockwell et al., 1997) including

about 100 species and 300 chemical reactions.

2.1.2 Radiative Transfer Model

Remote sensing instruments measure, within a certain wavelength range, the intensity of electromagnetic radiation passing

through the atmosphere (radiances). Radiative transfer models are used to simulate the radiation measured by the satellite as a30

function of atmospheric state, to be able to compare the model state to the observed radiances.
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In our study, IASI radiances are simulated using the radiative transfer model RTTOV (Radiative Transfer for TOVS), which

was developed initially for TOVS instruments (Saunders et al., 2018). Giving an atmospheric profile of temperature, water

vapour and, optionally, trace gases, aerosols and hydrometeors, together with surface parameters and a viewing geometry,

RTTOV simulates radiances in the infrared and microwave spectrum. For IASI, it can reproduce radiances with an accuracy

of less than 0.1 K (Matricardi, 2009). In this paper, we use the same version used by Emili et al. (2019), i.e. version 11.35

(Saunders et al., 2013). The radiative transfer computations are performed in clear-sky conditions and aerosols are neglected.

The surface skin temperature, 2 m temperature, 2 m pressure, and 10 m wind vector are taken from IFS forecasts. The land

surface emissivity is based on the RTTOV monthly TIR emissivity atlas (Borbas and Ruston, 2010) and the Infrared Surface

Emissivity Model (ISEM) (Sherlock, 1999) is used over the sea. Other chemical variables (CO2, CH4, CO, N2O) were set to

the reference profiles of RTTOV.10

2.1.3 Assimilation algorithm

The variational data assimilation system of MOCAGE was developed jointly by CERFACS and Météo France in the framework

of the European project ASSET (ASSimilation for Envisat data) (Lahoz et al., 2007). It has been used in several studies such

as chemical data assimilation research (Emili et al., 2014; Massart et al., 2009), aerosol data assimilation (Sič et al., 2015)

and tropospheric-stratospheric exchange using data assimilation (El Amraoui et al., 2010). The MOCAGE data assimilation15

system is flexible and allows multiple assimilation options, for example, the choice of the variational method (3D-Var, 4D-

Var), the representation of the background-error covariance, and the type of observation assimilated. It is also used to produce

operational air quality analyses for the European Project CAMS (Marécal et al., 2015).

The background-error covariance matrix is divided into two distinct parts, the diagonal matrix of the standard deviations

and the correlation matrix. The latter, allowing to spatially smooth the assimilation increments, is modeled through a diffusion20

operator (Weaver and Courtier, 2001).

The 3D-Var implementation has been used with hourly assimilation windows. The variational cost function is minimized

using the BFGS (Broyden– Fletcher–Goldfarb–Shanno) algorithm (Liu and Nocedal, 1989). The system is preconditioned with

the square root of the B-matrix. The control vector includes only Skin Surface Temperature (SST) and ozone.

As we mentioned before, the aim of this work is to evaluate the impact of the estimated observation-error covariances on the25

ozone analysis. Hence, in order to be able to compare our results to those that have been already discussed and validated, we

kept exactly the same configurations as those used in Emili et al. (2019) in terms of model, radiative transfer, and assimilation

algorithm parameters. The summary of these configurations is given in table 1.
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2.2 Data

2.2.1 IASI

IASI is one of the instruments operating onboard the polar-orbiting satellite Metop-A, B and C launched by the European

organization for the Exploitation of Meteorological Satellites (EUMETSAT). It is based on Fourier Transform Spectrometer

(FTS) and measures the spectrum emitted by the Earth-atmosphere system in the spectral range between 645 and 2760 cm−15

(3.62 and 15.5 µm) with a resolution of 0.5 cm−1 after apodization, with a spectral sampling of 0.25 cm −1. IASI scans the

Earth up to an angle of 48.3° on both sides of the satellite track. The cross-track is observed in 30 successive elementary fields of

view, each composed of 4 instantaneous fields of view corresponding to a 12 km of diameter footprint on the ground (Clerbaux

et al., 2009). The swath width on the ground is 2200 km which provides global Earth coverage twice a day. The measurements

provide information on atmospheric chemistry compounds such as O3, surface properties (Skin Surface Temperature SST),10

and meteorological profiles (humidity and temperature).

For this study, a subset of 280 channels covering the spectral range between 980 and 1100 cm−1 was used. The channel

selection is inherited from IASI Level 2 O3 retrievals (Dufour et al., 2012; Emili et al., 2019). L1c data have been downloaded

from the EUMETSAT Earth Observation data portal (https://eoportal.eumetsat.int) in NETCDF format. Data files also con-

tain the co-located land/sea mask and cloud fraction values, obtained from the Advanced Very High-Resolution Radiometer15

(AVHRR) measurements, also on board Metop-A.

2.2.2 MLS

The Microwave Limb Sounder (MLS) provides vertical profiles of several chemical components, by measuring the microwave

thermal emission from the limb of Earth atmosphere (Waters et al., 2006). More than 2500 vertical profiles are observed daily,

including trace gases with a vertical resolution of approximately 3 km. Several studies benefited from MLS products, notably20

the ozone profiles in assimilation experiments (Emili et al., 2014; Massart et al., 2009), thanks to its low bias in the stratosphere

(<5%) (Froidevaux et al., 2008).

In our study, we use the ozone profiles retrieved from MLS (V4.2 Products) as independent data to validate our results. The

data have been downloaded from the Goddard Earth Sciences Data and Information Services Center (GES DISC) web portal

(https://disc.gsfc.nasa.gov).25

2.2.3 OMI

The Ozone Monitoring Instrument (OMI) is a nadir-viewing, ultraviolet–visible (UV-VIS) spectrometer (Levelt et al., 2018).

It provides complete global maps of total column ozone on a daily basis. The OMI ozone data record starts in October 2004,

shortly after the launch of Aura (McPeters et al., 2015). The total column averaged over the month of the study (July 2010),

resulting from the OMI-TOMS version 8 algorithm (Bhartia, 2002), is used here to validate the results of the assimilation30

experiments.
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2.2.4 Ozonesondes

Ozonesondes are in situ instruments carried by a radiosonde continuously transmitting the measurements as it ascends. The

profiles of O3 are provided up to an altitude that often exceeds 30 km (Jiang et al., 2007) with a vertical resolution of 150-200

m. They have been used for several applications such as validating satellite products (Jiang et al., 2007). In our study, vertical

profiles of ozone, collected and distributed by the Word Ozone Ultraviolet Radiation Data Centre (http://www.woudc.org), are5

used to validate the model simulations.

2.3 Setup of the numerical experiments

The main purpose of this study is to estimate the IASI observation-error covariances and verify its impact on the quality of

the ozone assimilation results. The setup of the experiment in terms of the period of the study, the model configuration, the

choice of assimilated observations, and of the background-error covariance matrix is reported in table 1 . The observation-error10

covariance matrix will be discussed in the the results section (Section 3).

The model was initialized with a zonal climatology and the spin-up time used is one month (June 2010). Then, our simula-

tions were performed for the month of July 2010. The ozone forecast-error standard deviation was assumed to be proportional

to the ozone concentration. In fact, Emili et al. (2019) have evaluated the standard deviation of the free model simulation against

independent data (profiles from ozonesondes and MLS), and found a small free forecast-error in the stratosphere, larger error15

in the free troposphere and highest error close to the tropopause. This strategy was adopted previously by many studies (Emili

et al., 2014; Peiro et al., 2018; Emili et al., 2019). Emili et al. (2014) and Peiro et al. (2018) have used a percentage of 15%

in the troposphere and 5% in the stratosphere. In this study, we have adopted a detailed chemical scheme (discussed in section

2.1.1). This scheme was shown to reduce the model bias compared to scheme used in Emili et al. (2014) and Peiro et al. (2018)

(see Figure 4 in Emili et al. (2019)). Hence, we chose the same background error as in Emili et al. (2019) : 2% of the O3 profile20

above 50hPa and 10% below. An important reason to keep the background errors similar to the setup of Emili et al. (2019) is

also that we wanted to exclusively examine the impact of R, as mentioned in the introduction.

The ozone background-error covariance matrix is split into a diagonal matrix filled with the standard deviation and a corre-

lation matrix modeled using a diffusion operator. The correlation, characterized by the length-scale, spreads the assimilation

increments in space. The configurations of horizontal and vertical length scales are described in table 1 .25

The same preprocessing described in Emili et al. (2019) has been applied to our data before their use in the assimilation

system. In order to avoid any contamination from clouds, data were filtered using a cloud mask and only pixels with cloud

fraction less than or equal to 1 % were kept. The cloud fraction values are obtained from the AVHRR measurements onboard

Metop-A. Since the spatial resolution of MOCAGE is coarser than the pixel size, the number of ground pixels was reduced by

thinning the data using a grid of 1° x 1° of resolution and only keeping the first pixel that falls in every two grid boxes. A dy-30

namical rejection of observations - with a threshold of 12 % - based on the relative differences between simulated and measured

values with respect to simulated values was considered. Some channels affected by H2O absorption (1008-1019,1028-1030,
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1064-1067,1072-1076,1089-1092 cm−1) were removed. Pixels affected by aerosols are detected and then removed using the

index based on V-shaped sand signature as discussed in Emili et al. (2019).

Parameter Configuration in the assimilation system

Period of the study July 2010

Assimilation algorithm Hourly 3D-Var

Radiative transfer model RTTOV v11.3

Spectral window 980-1100 cm −1 of IASI from Metop-A

Ozone background Hourly 3D forecasts of MOCAGE

SST prior information ECMWF IFS forecasts

Control vector O3 and SST

T, H2O fields ECMWF IFS forecasts

IR Emissivity TIR atlas emissivity over land and ISEM model over sea

Observation-error covariance Both Desroziers method and the setup of Emili et al. (2019)

SST background-error standard deviation 4 °C

O3 Background error
Vertically variable and computed as % of the background

profile (using a value of 2% above 50 hPa and 10 % below)
.

O3 Background-error zonal correlation

Exponential with a length scale set to 200 Km

and reduced towards the pole to account for the increasing

zonal resolution of the regular latitude-longitude grid.

O3 Background meridional error correlation Exponential with a length scale set to 200 Km.

O3 Background-error vertical correlation Exponential with a length scale set to 1 grid point (vertical level).

Table 1 : Summary of the the configuration of MOCAGE assimilation system.

3 R estimation5

3.1 Desroziers diagnostics

The observations used in the assimilation system could have a margin of error. We can identify two types of errors, systematic

and random errors. The systematic error is ordinarily corrected before the data assimilation process. In NWP, this type of errors

in satellite observations are in general corrected before assimilating the observations or within the data assimilation process

by VarBC scheme (Auligné et al., 2007). The key assumption is that the background state provided by the NWP system10

is unbiased. This assumption is not valid in atmospheric chemistry applications, where models might have significant biases,

which is the case in our study (see figure 4 in Emili et al. (2019)). In such case, VarBC requires some independent data (anchor)
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to prevent the drift of the analyses to unrealistic values that might be introduced by the model bias. In our case, we control

tropospheric and stratospheric ozone. Identifying an anchor needs to be investigated carefully. Ozonesondes might be used as

an anchor in the troposphere and low stratosphere, but the number of profiles provided is limited spatially and temporally. This

might have an impact on the capacity of ozonesondes measurements to prevent the drift of the analyses due to the model bias.

Han and McNally (2010), used IASI channel 1585 as an anchor in the assimilation of ozone for NWP. Dragani and Mcnally5

(2013), have used the same uncorrected channel as anchor and they showed that its impact was not sufficient to stabilize the

bias correction process for a long period. This aspect needs to be explored carefully in a separate study. On the other side,

a good understanding of sources of the measurement bias is a prerequisite to implement a bias correction scheme. VarBC in

NWP applications, for instance, needs to define a linear model with some predictors (Auligné et al., 2007). Before adapting

this approach in atmospheric chemistry framework, the possible sources of systematic errors in IASI ozone window need to be10

assessed.

In atmospheric chemistry, we used to assimilate level 2 products of ozone (Massart et al., 2012; Emili et al., 2014; Peiro et al.,

2018). Only recently, the direct assimilation of IASI radiances has been introduced in our chemistry transport model (Emili

et al., 2019). Implementing a bias correction scheme requires careful diagnosis of the bias from observations monitoring. On

the other hand, choosing an anchor demands particular care and the choice depends on the full set of assimilated instruments.15

In this work, which is not based on a preexisting operational setup, we do not assimilate other ozone instruments. Thus, we

had to assume that our observations are unbiased and we did not perform any bias correction. This assumption was adopted in

many chemical analysis’ studies before (e.g. Massart et al. (2012); Peiro et al. (2018); Emili et al. (2019)).

Random errors can arise from the measurements (e.g. instrumental error), forward model, representativeness error (e.g.

difference between point measurements and model representation), or quality control error (e.g. error due to the cloud de-20

tection scheme missing some clouds within clear sky only assimilation). These types of errors should be accounted for by

the observation-error covariances matrix R. According to Weston et al. (2014), the instrument noise could be assumed to be

uncorrelated. However, the IASI measurements are apodized, which may introduce correlations between neighboring chan-

nels, particularly in our case where we are assimilating a subset of adjacent channels. The radiative transfer model may also

introduce correlations between channels. The error statistics from the instruments noise are known, while the characteristics of25

other sources of error are not yet well understood.

In this paper, we estimate the total error using the statistical approach introduced by Desroziers et al. (2005) .

R = E[(y−H(xa))(y−H(xb))T ]

Where xa is the analysis state vector, xb is the background state vector, y is the vector of observations and H is the observation

operator that computes model counterpart in the observation space.30

This method has been used to estimate observation errors and inter-channel error correlations (Stewart et al., 2009; Bormann

et al., 2016; Tabeart et al., 2020; Coopmann et al., 2020). It can potentially provide information on imperfectly known obser-

vation and background-error statistics with a nearly cost-free computation (Desroziers et al., 2005). However, this approach

assumes that the R and B matrices used to produce the analysis are exactly correct, which is almost never the case in practice.
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Furthermore, Desroziers diagnostics compute the total covariances, more efforts are needed to understand and distinguish the

sources of the error.

3.2 Error results

The Desroziers method was computed on the output of a 3D-Var experiment using a diagonal matrix R (with a standard

deviation of 0.7 mWm−2sr−1cm as in Emili et al. (2019)). The diagnosed R could not be used directly in the assimilation5

system. In fact, the estimated matrix was asymmetric and not positive definite. Similar unrealistic features in the diagnosed

covariance matrices were encountered in (Stewart et al., 2014; Weston et al., 2014) where an artificial inflation of observation

errors was applied. R needs to be a valid covariance matrix before being used in the 3D-Var assimilation system. Therefore, we

first symmetrize the estimated matrix by taking the mean of the original matrix and its transpose. Then we impose the negative

eigenvalues to be equal to the smallest positive eigenvalue as in (Weston et al., 2014; Tabeart et al., 2020). Another method10

which consists of increasing all eigenvalues of R by the same amount was tested here to recondition the estimated matrix.

We favoured the first method since the standard deviation and the correlation values remain closer to the initially estimated

quantities.

Using outputs (analyses and forecasts) derived from a 3D-Var experiment that used a diagonal R-matrix (called hereafter

1st 3D-Var experiment) in the estimation process might have an impact on the diagnosed R-matrix. The matrix derived using15

these outputs is called hereafter 1st estimation. We performed another 3D-Var experiment (2nd 3D-Var experiment) using the

1st estimation. The outputs (analyses and forecasts) of this experiment (2nd 3D-Var experiment) were used to estimate another

R-matrix called 2nd estimation. The standard deviation of the 2nd estimation is larger than that of the 1st estimation (not

shown). The same goes for correlations (not shown). It should be noted that the 2nd estimation was positive definite, unlike

the 1st estimation where some unrealistic features were encountered. We have followed the same process to further estimate20

two other matrices (3rd and 4th estimation). The differences of the estimations in terms of standard deviation and correlations

became smaller as we reestimated the matrices, suggesting a sort of convergence of the estimation. We have adopted the 2nd

estimation for the results shown in this work. The reason for this choice will be discussed later (section 5.2).

Figure 1 presents the standard deviation diagnosed using the Desroziers approach (solid black line) and that used in Emili

et al. (2019) (dotted blue line). The latter was set equal to 0.7 mW m−2 sr−1cm for all channels, which is a common setting25

for most IASI O3 retrievals (Dufour et al., 2012). At first glance, we note that the standard deviation used in previous studies

is highly underestimated for the SST sensitive channels and overestimated for some ozone-sensitive channels (around 1040

and 1050 cm −1). The diagnosed standard deviation increases to reach 2 mW m−2 sr−1 cm for SST sensitive channels (the

first and the last twenty channels of the band (980-1000 cm−1 and 1080-1100 cm−1) and the channels between 1040 and 1045

cm−1) and varies from 0.2 to 1.4 mW m−2 sr−1 cm for the ozone-sensitive channels. The radiance values for the observations30

are greater for the SST channels than those of the ozone. The same goes for the corresponding background and the analysis

values. Since these diagnostics are based on observation, background and analysis residuals, a larger standard deviation for

the SST channels than for ozone channels might be expected. We have plotted the R standard deviation, the average of

observations, and the average of the background in the observation space on the same figure (not shown). We have noticed that
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Figure 1. Standard deviation estimated using (back solid line) and that

used in the previous studies (dotted blue line) (Emili et al., 2019) .
Figure 2. Correlation matrix estimated using the Desroziers method.

the estimated standard deviation has a very similar shape to that of the observed radiances or the equivalent of the background

in the observation space. This may suggest that the larger absolute error in the SST band compared to the ozone channels might

be explained by the large values of the observation and the background for the SST channels in comparison with respect to the

ozone channels. It could also be attributed to greater sensitivity to emissivity and representivity error.

The IASI instrumental error is provided by the CNES (Centre National d’Etudes Spatiales), taking into account different5

known effects such as flight homogeneity and apodization effect (Le Barbier Laura, personal communication). The instrumental

error covariance matrix is computed as described in (Serio et al., 2020). This error remains smaller (about 0.2 mW m−2

sr−1cm) than that used in the previous studies (0.7 mW m−2 sr−1cm). Then, the large estimated standard deviation noticed in

our estimation might be due to the radiative transfer inputs error.

To investigate the off-diagonal part of R we present the diagnosed correlation matrix in Figure 2. The results show high10

correlations between the majority of the channels (larger than 0.4). In particular, a very high correlation is observed among

SST sensitive channels (around 0.9 to 1). The regions of, relatively, lower correlation (around 0.4 to 0.7) represent the ozone

channels correlations and cross correlation between ozone and SST sensitive channels.

The high correlation found here was expected since previous studies have highlighted the same behaviour in this spectral

region (Bormann et al., 2010; Stewart et al., 2014; Bormann et al., 2016). In fact, the use of the same radiative transfer model15

for all channels may introduce similar errors among these channels.

The diagnostic discussed above is based on a global estimation, without any distinction between the type of the surface (land

or sea) nor the time of the observation (day or night). Since the emissivity varies according to the type of the surface, and
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the skin temperature is strongly driven by the sun radiation, we evaluated R taking these differences into account. In terms of

standard deviation, the error over land reveals large values for the SST sensitive-channels in comparison with that estimated

over the sea which, in turn, reproduces a slightly different error in comparison with the global estimation (not shown). The

two surfaces introduce also a slightly different error regarding the ozone band. The same behaviour as the global estimation

is reproduced when the statistics were performed from the data measured separately from the day and from the night. The5

variability in terms of correlations is more pronounced when the surface type is considered than in the case of the observation

time. The difference between the correlations estimated using all observations and pixels over the sea surface varies between

0 % and 40 % for the majority of the channels with values that can reach 60%. These differences are located around 1035 and

1060 cm−1 which correspond to the regions of low correlations (not shown).

The separate treatment of land/sea covariance matrices did not yield significant differences in terms of assimilation results10

comparing with the use of global estimation. Hence, we have adopted the global estimation in our study. The rationale for this

choice will be given during the discussion of the validation results (section 5.2).

4 Assimilation results

4.1 Ozone fields

In this section, we discuss the impact of the observation-error covariances estimated previously on the ozone analysis. To this15

end, three experiments for the month of July 2010 were carried out:

i). model run without data assimilation called hereafter the free run (or Control), and noted in the rest of this paper Control-

Exp.

ii). 3D-Var assimilation of IASI radiances using a diagonal observation-error covariance matrix (as in Emili et al. (2019)). It

will be referred here by RdiagExp.20

iii). 3D-Var assimilation of IASI radiances using a full matrix estimated with the Desroziers diagnostic noted hereafter by

RfullExp.

The first experiment (ControlExp) was run to evaluate the benefit of the assimilation experiments and to quantify the im-

provements of each of the two analyses when they are validated against independent data. The same setup of Emili et al. (2019)

was adopted for RdiagExp, which was taken as a reference to characterize the impact of accounting for the estimated R in the25

third simulation (RfullExp).

Figure 3 shows the difference between the zonal average of the ozone analysis from the two assimilation experiments in

units of parts per billion volume (ppbv). The zonal values were averaged over the month of the study before performing the

difference. The impact of the estimated R varies with latitude. It varies also with the height, adding or reducing the amount of

ozone. Overall, the estimated R reduces the amount of ozone in the high latitudes of the free troposphere and the tropical high30

stratosphere, whereas the amount is increased in the vicinity of the lower stratosphere. The maximum reduction of ozone is

larger than the amount added. The amount of ozone reduction reaches 600 ppbv, whereas the increase does not exceed 300 ppbv.

In high northern latitudes (30°N-90°N), a significant addition is found (300 ppbv) covering almost the whole stratosphere, in
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opposition to the other latitudes where the difference changes sign with altitude. On the other hand, a large reduction of ozone

is observed in the tropics at 20 hPa (more than 600 ppbv). We have performed a t-test to evaluate the significance of these

differences between the two experiments in terms of zonal averages. These were obtained by averaging the analysis over

the month of the study and over longitudes. We have used the standard deviation computed for each average to perform our

test. We have noticed that the majority of regions, especially where the differences are large (between 300 hPa and 10 hPa) are5

statistically significant (not shown). To better understand the impact of the estimated R we validate the results with independent

data in the section of validation (section 5).

Figure 3. The difference between the zonal average of the analysis (in ppbv) from the two assimilation experiments, averaged over the month

of the study (nonlinear colormap).

4.2 Surface skin temperature

The assimilated spectra include both ozone and surface skin temperature sensitive channels. The IFS skin temperature was taken

as a background in the assimilation process. We have computed the difference between the SST analysis and the background10

at the end of each assimilation experiment (RdiagExp and RfullExp). The skin temperature is physically linked to the ozone

measured. In fact, the skin temperature interacts with the ambient atmosphere. An increase of SST can for example create a

convective movement impacting the transport of the ozone. However, the skin temperature is given only at the observation

location in this study and it is specified with values interpolated from NWP forecasts (IFS), whereas ozone is a 3D field issued

from the chemistry transport model. Hence, the estimation and potential account of error correlations between the two variables15
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seems challenging in our system. In this work, we did not consider the background-error correlation that might exist between

O3 and SST.

Figure 4.a) shows the difference between the analysis of the SST given by RdiagExp and the IFS SST forecast whereas,

Figure 4.b) shows the difference between the analysis of the SST given by RfullExp and the IFS SST forecast. In terms of

geographical distribution, we notice that the differences are smaller through the tropics and mid-latitudes, especially over sea,5

when the estimated R was adopted. Looking at the average values, RdiagExp decreases the surface skin temperature by about

0.55°C with respect to the background. The introduction of the estimated R decreases the difference between the SST analysis

and that of IFS to almost -0.18°C instead of -0.55 °C. The standard deviation was also reduced from 1.39 °C to 1.05 °C. Thus,

the use of the estimated R lets the SST analysis stay closer to the IFS forecasts. However, there is an increase in difference

on land using RdiagExp, mainly in Africa and South America. This increase in difference over the land seems related to the10

dependence of observation errors on the surface. In fact, the number of observations over the sea represents almost 70% of the

total observations we have used in this study. Consequently, our SST analysis stays closer to background values (IFS forecasts)

over the sea than over the land.

(a) (b)

Figure 4. Difference ( in °C ) between the IFS SST forecast and the analysis of the SST given by RdiagExp (with a diagonal matrix) (a), and

that given by RfullExp (with a correlated matrix) (b) averaged by box of 2°.

4.3 Computational cost

In our assimilation setup, the cost function is minimized hourly. For each window, the minimizer needs to converge after a15

certain number of iterations. The cost of each iteration is dominated by the cost of the radiative transfer operators (tangent

linear, the adjoint model) and of the background-error covariance operators. When the observation error was assumed to be

uncorrelated (RdiagExp), the number of iterations needed for each hourly cycle is significantly higher than when the estimated
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observation-error covariance matrix is used. In fact, the introduction of the estimated R reduces the number of iterations from

150 (a fixed value to stop iterations if the convergence criteria were not attained to save computational time) to 89 iterations

in average. This means that the CPU time is reduced by more than 150% for each assimilation cycle. The convergence criteria

of the LBFGS algorithm is based on either the reduction of the cost function or the norm of its gradient below some given

small thresholds. For the RfullExp, the convergence is achieved due to the stationarity of the cost function (1st criterion). The5

widespread correlations (high condition number) and larger variance of the estimated R matrix lead to a downweight of the

observations and are likely the reason for the improved convergence in RfullExp. This increase of the convergence speed was

encountered in the Met Office 1D-Var system (Tabeart et al., 2020) where a correlated observation matrix was introduced

in the system. Moreover, in Tabeart et al. (2018) the matrix R and the observation-error variance appear in the expression

of the condition number of the Hessian of the variational assimilation problem, indicating that these terms are important for10

convergence of the minimization function.

In an attempt to distinguish the impact of the variance on the convergence speed from that of the correlations, we have

performed three assimilation experiments using different R-matrices. The first experiment (1st experiment) employed R that

was estimated from the analysis computed using a diagonal R-matrix.The minimizer takes 149 iterations in average to converge

(average computed for all the assimilation cycles of the month). We used the analysis given by the 1st experiment to estimate15

another R-matrix. We have used this estimation to run another assimilation cycle (2nd experiment). We have noticed that

the minimizer needs about 89 iterations in average. We have modified the R-matrix of the 1st experiment by keeping its

correlations and replacing its standard deviation with that of R used in the 2nd experiment. The resulting matrix was used

to run a 3rd assimilation experiment. The minimizer needs about 90 iterations to converge. The results of the 3rd experiment

seem to suggest that updating the variance has a larger impact on the convergence speed.20

5 Validation of O3 analyses

5.1 Total column

Figure 5 shows the difference of the ozone total column (in Dobson Unit (DU)) provided by OMI and that of the RdiagExp

(a) and that of RfullExp (b). At first sight, we note smaller differences over the tropics between the OMI total column and the

total column given by RfullExp in comparison with that given by the RdiagExp. This behaviour was expected since a large25

reduction of the amount of ozone was observed in these regions (see Figure 3). In the high northern latitudes, the differences

were slightly increased when the estimated matrix was adopted. This is a consequence of the increase in the amount of ozone

encountered in these regions in the stratosphere, compared to the amount reduced in the same region in the troposphere (Figure

3). On the other hand, the global mean and the standard deviation of these differences are lower in the case of using the new

estimated matrix (10.1 DU as a mean and 6.3 as a standard deviation when the new estimated matrix was used instead of 10.630

DU as a mean and 7.3 as a standard deviation when a diagonal matrix was used). Hence, we conclude that the estimated matrix

R has slightly improved the results in terms of ozone total columns.
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Figure 5. (a) Difference of the ozone total column (DU) provided by OMI and that of the assimilation experiment RdiagExp,(b) and that of

RfullExp, averaged over the month of the study.

5.2 Vertical validation

In this section, we validate the two simulations against radiosoundings and MLS data. We use the root mean square error

(RMSE) as the main statistical indicator to quantify the accuracy of the experiments.

We compute the relative (to the control simulation) difference of RMSE with respect to radiosoundings and MLS averages

globally and for five different latitude bands. The difference is computed by subtracting the RMSE of each experiment from5

that of the control simulation. Negative values indicate an improvement of the O3 profiles. It should be noted that the represen-

tativeness of the statistics given by the MLS in the stratosphere is better than that of the radiosoundings because the number of

profiles provided by MLS is much higher compared to the radiosoundings ones. Consequently, higher confidence is given to

the validation using the MLS data in the stratosphere.

Figure 6 reports the RMSE differences with respect to the radiosoundings. Considering the global RMSE (ALL), we notice10

that the experiment with the estimated matrix improves the results above 150 hPa, around 400 hPa and near the surface.
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However, it also reduces the improvement from 30% (the case of using a diagonal matrix) to 15 % in the vicinity of UTLS

(100-300 hPa).

The issue of increasing the ozone analysis errors compared to the control simulation encountered in Emili et al. (2019) is

especially severe in the tropics (30S-30N). The use of the estimated R has substantially enhanced the results in this latitude

bands bringing the error from +15% to -2%. Apart from the vicinity of 50 hPa and 400 hPa, the results, in the tropics, were5

improved over the entire vertical profile. Regarding other latitude bands, almost the same feature of the global validation is

found in the north hemisphere. The two experiments show almost the same behaviour in the southern latitudes, with a slight

improvement for RfullExp in the southern high latitudes (60°S-90°S).

The MLS validation in Figure 7 shows almost the same behaviour reported by radiosoundings validation in the tropical

stratosphere, where the reduction of error is remarkable. In the other latitude bands, MLS reports a similar behaviour of the10

two experiments, with some small differences in northern hemisphere.

To evaluate the significance of the differences between the analyses of the two experiments with respect to MLS and ozone-

soundings measurements, we have performed the t-test of the differences between analyses and observations (ozonesondes then

MLS). We have noticed that for the ozonesoundings, the significance differs among vertical levels. The reduction of the error

between 20 and 50 hPa, and between 300 and 400 hPa reported in Figure 6 is statistically significant. For the low troposphere15

the differences are not significant. Unlike the ozonesoundings results, the differences with respect to the MLS measurements

are statistically significant for all levels discussed in MLS validation.

All things considered, the introduction of the estimated R has globally improved the O3 profiles in the stratosphere and in

the free troposphere, especially in the tropics. In spite of its degradation in the vicinity of UTLS, the improvement remains

always advantageous with respect to the control run.20

The matrix used for this study (see Sec. 3.2) will be now discussed in this section since the decision was also based on the

outcome of the assimilation experiments presented in this section. We performed sequentially three assimilation experiments

using the first, second and the third estimation of R (Sec. 3.2). The results of validation against radiosoundings and MLS

showed small differences (not shown). Therefore, to avoid the initial impact of using a diagonal matrix we have adopted

the second estimation (which uses the analyses derived from the experiment using the first estimation). In an operational25

framework, we may estimate the matrix daily (weekly or monthly if the period of the study is considerably long) using the

analyses of the previous day (using the analysis of the previous week or month respectively ). In other words, we may use a

diagonal matrix to produce analyses for the first day or spin-up period, these analyses will be used to estimate the matrix that

will be used for the second day, and so on throughout the period of the study.

We have also discussed the type (sea/land) and the time (day/night) of the observations while estimating the matrices. To30

check the impact of these differences on the assimilation results, we ran an additional assimilation experiment using the matrix

estimated considering the type of the surface of each observation (since the differences were more important than if the time of

the observation was considered). Only slight differences among the results have been noticed (not shown). This behavior might

be explained by the number of observations over the sea and over the land. In fact, the observations over the sea represent more

than 70% of the total of observations. The differences, in terms of standard deviation, of the global estimation and that using35
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pixels over the sea is very small in comparison with that using pixels over the land (not shown). The differences are also small

in terms of correlations in the case of the sea surface in comparison with the land surface (not shown). Hence, we consider that

the predominance of observations over sea averages out the potential differences caused by a separate land/sea specification of

R. Thus, for simplicity, it seems reasonable to adopt the global estimation of the matrix and neglect the effect of the time and

the type of the surface of the observations.5
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Figure 6. Normalized difference of the RMSE with respect to the ozonesondes for the R estimated (green) and R diagonal (blue). The

difference of the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control for each experiment, divided

by the average profile of the ozonesondes. Negative values mean that the assimilation improved (decreased) the RMSE of the control

simulation, and positive values indicate degradation (increase) of the RMSE. (Vertical levels are in hPa).
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Figure 7. Normalized difference of the RMSE with respect to the MLS for the R estimated (green) and R diagonal (blue). The difference of

the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control of each experiment, divided by the average

profile of the MLS. Negative values mean that the assimilation improved (decreased) the RMSE of the control simulation, and positive values

indicate degradation (increase) of the RMSE. (Vertical levels are in hPa).
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6 Conclusions

The correct specification of the observation error becomes a critical issue to assimilate efficiently the increasing amount of

satellite data available in the recent years. We have estimated the observation errors and their inter-channel correlations for

clear sky radiances from IASI ozone-sensitive channels. We have evaluated, then, the impact of the estimated R on the SST

and ozone analysis within our 3D-Var assimilation system. The outcome has been compared with an assimilation experiment5

where the observation-error covariance matrix was assumed to be diagonal and the standard deviation assigned empirically like

in previous studies. The results of the experiments were, then, validated against independent data: OMI, MLS and ozonesondes.

The Desroziers diagnostics were adopted here to estimate R. The diagnostics used the analyses derived from a variational

data assimilation experiment. The results have shown high correlations between the majority of the IASI spectral channels,

particularly among the SST sensitive channels.10

Significant differences between the results of the experiments were encountered. The introduction of the estimated R reduces

the amount of ozone in the free troposphere and in the high tropical stratosphere, whereas ozone is added in the vicinity of the

lower stratosphere. A validation against OMI has shown that the results were closer to the observations when the estimated

matrix was adopted.

The validation against MLS and ozonesondes showed that the introduction of the estimated R has globally improved the15

results in the stratosphere especially in the tropics. In spite of a slight reduction in accuracy in the vicinity of UTLS, the

improvement remains always advantageous with respect to the reference assimilation. Concerning the computational cost, the

introduction of the estimated R significantly reduces the number of iterations needed for the minimizer to converge.

In summary, accounting for an estimated R improves significantly the ozone assimilation results. This approach might be

adopted in the assimilation of other chemical species and also in Level 2 O3 retrievals.20

In this study, the estimation was computed without taking into account any distinction of the error sources and assuming

that the observation error was unbiased. More efforts will be needed to tackle these points. It should also note that we kept the

same experiment setup of Emili et al. (2019) in order to be able to quantify exclusively the impact of the R. The background-

error matrix was still defined using a relatively simple and empirical method. Further research might be needed to perform a

better estimation of the background error. A new channel selection might also be performed to reduce the computational cost25

and the information redundancy of the IASI spectrum. On the other hand, all the experiments are performed in the context

where aerosols are neglected and over one month. Including modeled aerosols within the radiative transfer may bring some

improvements to the analyses. These aspects will be covered in future research.
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