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Abstract. Accurate boundary-layer structure and height are critical in the analysis of the features of air pollutants and local
circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary-layer
structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary-layer heights
(ABLHSs). In this study, an algorithmfor an integrated systemfor ABLH estimation (ISABLE) was developedandapplied to
the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul City, Korea. A maximum of 19
ABLHSs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter
coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface
inversion and environmental lapse rate methods using the potential temperature fromthe microwaveradiometer. The ISABLE
algorithmcan find an optimal ABLH from post-processing, such as k-means clusteringand density-based s patial clustering of
applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more
significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde -derived ABLHs
than those obtained using the mostconventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and
the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHSs estimated by ISABLE
are expected to contribute tothe parameterization of vertical diffusion in the atmospheric boundary layer.

1. Introduction

The atmospheric boundary layer (ABL) is the lowest part of the troposphere, which is directly influenced by the surface of the
earth (Garratt, 1994). The ABL is repeated in a daily cycle with a well-mixed layer (ML) ora convective boundary layer (CBL)
in the daytime and a stable boundary layer (SBL) at nighttime. The former mixes air vertically via convectionwhich results
from surface heating or mechanical turbulence due to vertical wind shear, while the latter appears in the lower ABL, and a
residual layer (RL) remains in the upper ABLwithoutany external force. The ML is oneoftheessential meteorological factors
that affect the vertical mixing of air pollutants. In the presence of well-developed SBL at night, air pollutants near the surface
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tend to betrapped insidethe SBL because of the low vertical diffusivity, and their concentrations could increase sharply (Stull,
1988; Emeis and Schéfer, 2006). In this study, the ABL is confined as asingle layer, which is consisted ofa ML ora SBL to
exclude its complexity.

The ABL height (ABLH) has been primarily utilized as a meteorological factor in estimating the vertical diffusivity near the
surface and air pollutant concentration (Stull, 1988; Garratt, 1993). Many previous studies have developed various
methodologies for determining ABLH, including only a ML height (MLH) ora SBL height (SBLH). ABLH has traditionally
been determined using in-situ radiosonde (RS) data. The parcel method using the vertical profile of virtual potential
temperature (Holzworth, 1964; Seibert et al., 2000) and the gradientmethod usingthevertical gradient of the virtual potential
temperature or mixing ratio have been extensively used (Oke, 1987; Stull, 1988). Alternatively, ABLH can be determined
using the Bulk Richardson number, which includes the thermal turbulence term generated by surface heating as well as the
mechanical turbulence termarising fromthe vertical wind shear (Mogelezang and Holtslag, 1996; Zilitinkevich and Baklanov,
2002; Zhang et al., 2014). The ABLH estimated using in situ RS sounding has widely been considered as a true reference value
in many previous studies (e.g., Eresmaa et al., 2006; Basha and Ratnam, 2009; and Collaud Coenet al., 2014). However, there
are still some limitations in terms of clearly distinguishing ABLH from radiosonde observations (Seibert et al., 2000). ABLH
tends to be determined as similar values irrespective of the methodologies used under a well-developed convective boundary
layer (BL) during daytime and SBL at night, while it gives differentvalues with res pect to methodologies under a cloudy sky
and in the presence of complexlocal circulations. Furthermore, the major drawback of RS sounding datais its coarse temporal
resolutionrangingfrom6 to 12 h (Schween et al., 2014).

During the past two decades, several researchers have determined ABLH using surface-based remote sensing instruments to
overcome the coarse resolution of RS data. An aerosol lidar and a lidar-type ceilometer (hereinafter referred to as merely
ceilometer) measure theintensity of signals which have been backscattered by atmospheric materials, such as aerosols, clouds,
and mineral dust. The intensity of the backscattered signal at each level can be converted to the backscattering coefficient at
the level with several assumptions. The measured backscattering coefficientcan be usedto analyze the features of the vertical
distribution of aerosols, while the ABLH can be determined through the separation of aerosol layers. In a ML, the vertical
mixing ofaerosol particlesis active and the backscattering coefficient is relatively homogeneous, whereas it decreases sharply
above the MLH. Based on the foregoing features, the gradient method designates the altitude with the maximum vertical
gradient of the backscattering coefficient as ABLH (e.g., Flamant et al., 1997; Sicard et al, 2005; Lammert and Bosenberg,
2006; Miinkeletal.,2007; Emeis etal., 2008; Summa et al., 2013; and Schweenet al., 2014). The wavelet method determines
ABLH as the altitudeat which the wavelet covariance coefficientis at its maximum (e.g., Gamage and Hageberg, 1993; Cohn
and Angevine, 2000; Brooks, 2003; and Morille et al, 2007). Menutet al. (1999) analyzed the ABL structure using the
inflection point method (second derivative method) and centroid method (time-variance method) for the purpose of
understanding the chemical and physical processes involved in pollutionevents in Paris. The growthand decline of ABLH are
repetitive due tothe heatingand cooling of the surface. Asaresult, the vertical aerosol distribution in the aerosol layer changes
with time, and the ABLH can therefore be determined using the time variance of the aerosoltemporal distribution. Toledo et
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al. (2014) determined ABLH as a classification of the distribution of the backscattering coefficient valuewhose vertical profile
rapidly decreases or increases using k-means clustering. Moreover, the ABLH was estimated usingan extended Kalman filter
(EKF) (Langeetal., 2014; Lange et al., 2015; Saeed et al., 2016). The EKF technique can beusedin lows ignal-to-noise ratio
(SNR) atmospheric scenarios without long-time averaging and range smoothing except for low SNR (Caicedo et al., 2017;
Dang et al., 2019). Previous studies integrated multiple methodologies, i.e., Par et al. (2013) combined the gradient method
basedon a first derivative of the Gaussian waveletcovarianceanalysis and the spatial/temporal variance method ; and Hicks et
al. (2015) combined the error function-ideal profile method and wavelet covariance transformmethod to estimate ABLH.
Even though several methods have been developed, no consensus on a specific algorithm has been reached (Schween et al,
2014). Different methodologies provide different ABLHs with respect to weather conditions and phenomena. Under
complicated ABL structures (e.g., presence of multiple layers ofaerosols ), the ABLH could be determined as different values
accordingto the methodology used. Based on the foregoing, it is difficult to produce a single consistent ABLH with the use of
ABLHs usingtheprevious methods. Therefore, this study aims to developanintegrated systemfor ABLH estimation (ISABLE)
to determine a single optimized ABLH with statistically significant results from several ABLH candidates. Furthermore,
seasonal and diurnal variation of ABLH in an urbanareain Seoul, Korea shall be investigated with the use of long-term ABLHs
estimated using ISABLE.

Section 2 introduces the observation station and instruments used in this study. Section 3 describes the used data and pre-
processing. Section 4 describes the ABLH estimation methods and ISABLE algorithm. In Section 5, the ABLH estimated
using available methods is compared with the radiosonde-derived ABLH, and the seasonaland diurnal variation features are
described. Finally, the summary and discussion on the findings are presented in Section 6.

2. Site and Instrumentation

We used a ceilometer, a microwave radiometer (MWR), and a net radiometer installed at the Jungnang Station (127.08 °E,
3759 °N, 45 m; Fig. 1), a super site of UMS-Seoul (urban meteorological observation system network in the Seoul
metropolitan area; Park et al., 2017). The station is located in Seoul City, Korea, and the surrounding buildings forman
environment that can be classified as a dense urban residential area with homogeneous heights (Park, 2018). The location is
classified as both UCZ—2 (intensely developed high density) according to the urban climate zone (Oke et al., 2004) and
LCZ—2E (compact mid-rise, bare rock or paved) according to the local climate zone (Stewart and Oke, 2012). Seoul City is
affected by local circulation, such as sea-land and mountain—valley breezes, due to the Yellow Sea and mountainous temain
(Park and Chae, 2018).

The ceilometer (model CL51, manufacturer Vaisala) produces a real-time vertical profile of backscattering coefficients each
minute at intervals of 10 m up to 15,400 m above ground level using a laser (InGaAs diode laser) with a wavelength of910

nm (Vaisala, 2010). Italso measuresthe cloud base heights of three layers up to 13,000m and the 5min mean cloud cover at
intervals of 1 min.
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The MWR (model HATPRO—G4, manufacturer RPG) observes atmospheric attenuation and brightness temperature from
electromagnetic radiation emitted from the atmosphere using 14 channels (22 to 31 GHz, 7 water vapor channels; 51 to 58
GHz, 7 temperature channels) (RGP, 2015). The measured atmospheric attenuation and brightness temperature were converted
to a vertical profile of atmospheric temperature, relative humidity, and liquid water path using a neural network model. The
MWR produces two types of temperature profiles, i.e., zenith measurements for the entire troposphere (0 to 10 km) and
elevation scanning that provides an enhanced vertical resolution within the boundary layer (0 to 2 km). The temperature
profiles of the two types are merged into a single profile. The vertical resolution is denser in the lower layer, however, it
decreases with regard to height (30 mup to 1.2km, 200 mup to 5km, and 400 m up to 10 km), and a profile is produced every
1 min.

The net radiation obtained via the net radiometer (Model CNR 4, manufacturer Kipp&Zonen) was used to classify ABLH as

daytime and nighttime values (Kipp&Zonen, 2014).

3. Data and pre-processing
3.1.Radiosonde experiment

Vertical profiles observed using RS sounding are widely used in verifying surface-based remote sensing instruments because
it directly observes the temperature, relative humidity (or mixing ratio), wind direction and speed, as well as pressure with
height. The vertical profile of the potential temperature and virtual potential temperature can be calculated using the observed
meteorological variables.

In orderto analyze thestructure of theatmospheric boundary layer in urbanareas, 171 RS sounding data were acquired during
the fourintensive observation campaigns at Jungnang Station. Because of 23 precipitation cases, 148 RS soundings were used
to estimate the ABLH (Table 1). Weather conditions were divided into two categories, i.e., clear sky (cloud cover (CC) < 30%)
and cloudysky (CC = 80%) for the purpose of investigating the features of ABLH with respectto weather.

3.2.Ceilometer

The backscattering coefficients observed using the ceilometer contain noise, especially near-range artifacts in the lower
atmosphere proximate to the lens ofthe instrument, as well as atmospheric scattering due to intense daytime solar radiation,
clouds, and precipitation. The noise can be reduced through the temporal and spatial moving averages of the backscattering
coefficients and they can maintain thevertical and temporal characteristics of backscattering coefficients. Moving average for
10-range gates (100m) and 10-time steps (10min) was conducted.

The SNRis introducedto prevent noise fromcausing the estimation of ABLH at unreliable heights (de Haijet al., 2006 ; Heese
etal., 2010; Kotthausetal.,2016). Generally, backscattering coefficients at a higher level than the SNRstop level (h gy z), the
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first altitude at which the SNRis less thanone, are not used. The SNRat height z is calculated using the formulas introduced
by de Haij et al. (2007), as follows:

1
BN = EZ;i}fEnkmﬂ(Z) ) (l)
1
IBsnr = \[ﬁ ;illc;nkm(ﬁ(z) —BN)Z, @
B(z)
SNR(z) = ——, .
( ) BN+ 9BSNR ( )

where z is the height, $(z) pertains to the backscattering coefficient at z, BN refers to background noise, which is calculated
as the mean of 5(z) from 12 to 15 km, and N denotes the number of levels between 12 and 15 km (N = 300). oz, . is the
standard deviation of $(z) ataltitudes between 12and 15 km. If the upper layer contains much noise, the SNR of the lower
layer becomes smaller, and if the lower air is clean, hgy, can be distributed in the lowest layer. When the SNR is being
calculated, heights above 120 m were used to eliminate the discontinuity due to the instrumental limitation in the lower
atmosphere.

Figure 2 shows the comparison of the backscattering coefficients, h gy, before and after pre-processing. Strong noises with
random backscattering coefficients were found at heights above 2,500 m throughout the day (Fig. 2a). When the shortwave
radiation was intense during the daytime, the noise was mainly due to sunlit scatteringand low SNR values. Especially in the
presence of daytime clouds (1400 to 1600 LST), the SNR became smaller and the hg,; became lower. Furthermore, the
backscattering coefficient is often found to decrease rapidly around 120 m and 400 to 500 m high during the daytime with
intense solar radiation. It was considered an error in the mechanical instruments or artifacts resulting from the surrounding
environment. After pre-processing, noisesignals at higher altitude have decreased with maintaining their main features in Fig.
2a (Fig. 2b). But vertical broadening at heights with intense signals was shown as a result of the moving average. And the
mean h gy became 331 m higher than before. The pre-processing made the values much more stable, although under poor
circumstances with strong solar radiation and daytime clouds. Also, artifacts at high altitudes were mitigated.

3.3. Microwawe radiometer

The temperature of the MWR as well as the humidity depend on the generalized atmospheric conditions because they are
estimated usingan artificial neural network (Collaud Coen et al., 2014). In order to retrieve temperature and humidity with an
artificial neural network, atraining data set is required. The variables were retrieved using software embedded in the MWR.
Given that the neural network cannotguarantee theaccuracy of the retrieved data beyond the range of the training dataset, the
retrieved datainclude uncertainties. Nevertheless, the SBL formed via surface cooling during nighttime is determined only by
the thermal parameter. Cimini et al. (2006) found that most methods had the best performances nearthe surface and thatthe
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bias and standard deviation increased with height. It was also determined thatthebias in temperature retrieval is acceptable (<
0.5 K) in most methods. The potential temperature calculated by the MWR was usedto determine the nocturnal SBLH.

The potential temperature was computed using the vertical profiles of temperature, humidity, and pressure, which were
calculated usingtheideal gas equation with theassumption of the hydrostatic equation (Holton and Hakim, 2012). The vertical

pressure p, at z, is calculated as follows:

Zy—Zq
= —g—), 4
P2 plexp( g RTZ) ©)
where p, is the air pressure z, below the z,, T, pertains to the mean temperature between z, and z,, R refers to the gas
constant for air (287 J kg—* K-1), and g denotes the gravitational acceleration. The potential temperature is calculated using
the following equation:
R
6, =T,(2), (5)

Dz
where 8, is the potential temperature at height z, and p,and p, are the air pressures at the 1,000 hPa level and height z,

respectively. Moreover, c,, pertains to thespecific heat of dry air at constant pressure (1,004J kg K-*).

4. Methodology
4.1.Review of ABLH estimation method using radiosonde

A parcel method, a gradient method, and a bulk Richardson number method can be considered to estimate the ABLH using
the sounding data obtained via radiosonde. Among them, the bulk Richardson number method was used to determine the
reference ABLH. The bulk Richardsonnumber (Ri ) is defined as the ratio of buoyancy forcing vis-a-vis mechanical forcing
by verticalwind shear:

— (9/90)(9z—90)z ’ (6)

Riy Uz 2 +v,?

where z is the height, u, and v, are the west-east and south-north wind speeds at z, respectively, 8, pertains to the surface
potential temperature, and 6, refersto the potential temperatureat z. Accordingto Stull (1988), laboratory research suggested
that turbulence occurs when Riis smaller than the critical Ri, Ri.. Many previous studies have reported Ri values between
0.1 and 1.0(e.g., Holtslag and Boville, 1993; Jeri¢evi¢ and Grisogono, 2006; and Esau and Zilitinkevich, 2010). The values of
0.25 and 0.5 were the most utilized Ri . (Zhang et al., 2014). In this study, we useda value of 0.5 for the Ri ...

In orderto determine the ABLH in the case of stable stratification, Collaud Coen et al. (2014) determined the nocturnal SBLH
using the temperature and potential temperature profiles fromthe radiosonde and MWR. SBLH is determined as a surface-
basedtemperature inversion (SBI) heightat which the temperature decreases with height (AT /Az < 0) for the first time (Stull,
1988; Seideletal., 2010). Actually, it is not easy to detect a SBLH using RS sounding. This is because the vertical variations
of the temperature and the wind in the RL can be more substantial compared to those in the SBL. Thus, the SBLH has been
generally estimated using the methodologies with temperature inversion. In this study, the ABLHs were estimated with Ri,, in
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both daytime and nighttime, and if a SBL was formed at nighttime, the SBLHs were determined via the SBI method.
Nonetheless, top of RL is still determined as a SBLH due to the large variation of temperature and turbulence (Collaud Coen
etal., 2014).

4.2. Review of the ABLH estimation method using aceilometer

4.2.1. Time-variance method

The time-variance method (VAR) computes for the standard deviation (O-ﬁ(z,t)) of the backscattering coefficient profike

measured by the ceilometer for 10min using equation (7).

= | LEABC.0 ~FED) 0

hy g = max(og, ,.), 2 < hgyg 6)]
where B(z, t) is the backscattering coefficient profile at time ¢, B(z, t) pertains to the 10 min mean backscattering coefficient,
and N refers to thenumber of profiles (in this study, N = 10). g, , . represents the peakat high temporal variability, and thus,
ABLH estimated by VAR (hy 45) is determined asthe height at which g, showsamaximum value, which is less than h gy
(1,480 m). The op,,, . profile was smoothed using a local quadratic polynomial regression (Cleveland and Loader, 1996) to
eliminate spurious variance peaks at small-scale fluctuations. Nevertheless, oz, ) contains a spurious peak above h gy, and
gradually increases with height. For the foregoing reasons, h, 4 Was calculated only below hgy .

Figure 3ashowstheprofiles ofthe o . (red line), B(z t) (blackline),and B(z,t) at intervals of 1 min (dashed gray line) for
1050 to 1100 LST on 23 September 2016, and the ABLH was determined by VAR (k4 = 670 m).

4.2.2. Gradient method

The gradientmethod is one of the most commonly used methodologies for estimating ABLH. The maximum negative peak of
the first derivative with respect to the heightof the backscattering coefficient fromthe ceilometerwas determined as ABLH.
Generally, the first derivative (GM: gradient method), second derivative (IPM: inflection point method), and logarithmic
derivative (LGM: logarithmic gradientmethod) are used, andthe equations are shown below:

. (9B(2)

hGM=mm( P ), 9)
. (02B(2)
. (9nB(2)

hioy = min (%) (11)

Figure 3b shows theresults of the gradient methods correspondingto 1100 LST on 23 September 2016. The bold solid line is
a smoothed 8(z) profile, while the GM, IPM, and LGM results are represented by the solid, dotted, and dash-dotted lines,

respectively. h gy, hypy, and b ¢, indicate ABLH with a maximum negative gradient foreachmethod. The valueof h,, (790
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m) is slightly higherthanthatof h, ,, (690 m) and lower thanthatof h;,, (1,580 m). The fact that h,, is slightly higher than
hpp@nd lower than b, ¢, is consistent with the findings of previous studies (e.g., Emeis et al., 2008). The second-largest
negative (800 m) in the LGM was similar to h,, and the second-largest negative in GM (1,570 m) was also similar to the
h, ey height. The hp,, is similar to by, (670 m), and both are located at an altitude where $(z) begins to decrease shamply.
Notwithstanding that thealtitude at which the maximum negative gradient for each method can bedifferent, they can be similar
to the altitude corresponding to the second peaks for other methods.

4.2.3.Wawlet covariance transformmethod

The wavelet covariance transformmethod (WAV) is also one of the most commonly used methods. The WAV uses the Haar
step function, which is definedas follows:
+1: b—2<z<b

z-b\ _ 2 a

h(T)— ~1: b<z<b+2 12)
0: elsewhere

where b is the translation offunction (the location atwhich the functionis centered), and a pertains to the dilation of function
(the spatialextent). The covariance transformofthe Haar function, W, is defined as follows:

Wy(a,b) == [ @h (=) dz, (13)
hyay = max(W(a,b)) , (14)
where, z, and z, are the bottomand top heights of the profile, respectively. Thealtitude with the maximum value of W (a, b)
is determined using ABLH (h,, 4,)- In this study, ais setto 24 dilations at intervals of 15 mfrom 15 mto 360 m, while b is
setto 10m step size from 60 m to 3,000 m (de Haij et al., 2006; 2007).

Davis et al. (2000) illustrated the importance of determining the dilation through experiments that used the airborne lidar
backscattering profile. Smaller dilations are sensitive to small-scale fluctuations of 3(z) and are inclined to include noise,

while larger dilations tendto ignore small-scale structures and detect changes in scale, such as the entrainment zone. Especially
in the real atmosphere, small-scale fluctuation of 8(z) due to sudden turbulence appears, and it plays an important role in

mechanical mixing in ML. In orderto consider small-scale features, W(a, b) profiles were processed by averaging over a <
100 m (WAVL), a > 300 m (WAV2), and the total a (WAV3) (de Haij et al., 2007). The height with the maximum values of
W(a, b) by WAVL, WAV2,and WAV3 can be determined as ABLH (hyy, a1, Ry avz, B avs), respectively.

Figure 3c showsthe results of the wavelet method. The boldsolid line is asmoothed (z) , while the solid, dashed, and dash-
dotted lines indicate the results of WAV1, WAV2, and WAV3, respectively. As described in Section 4.2.2, 8(z) decreases
rapidly at altitudes of approximately 700 and 1,500 m, while Wy (a, b) peaks at very close altitudes. In WAV, the first peak

(hway1) appearedat 680 m, which is very closeto hy 45 (670m) and h,p (690 m). WAV2 (W AV3) showed two peaks at 750
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m (730 m) and 1,550 m (1,550 m). The first peaks (hy, ay2, by ar3) Were similar to h,, (790 m) and the second peaks were

similar to h,.,, (1,580 m; secondpeakof h,,).

4.2 4. Clustering analysis method

The k-means clustering analysis (CLST) is a nonhierarchical clustering method thatcan determine the ABLH by dividing the
height where the backscattering coefficient profile fromthe ceilometer sharply decreases or increases. The cluster center is
applied to backscattering coefficient to minimize the sumof the squared errors (Toledo et al., 2014). The number of cluster
seedswas determined usingthe Dunn index(Dunn, 1974; Toledo et al., 2014).

Figure 3d shows the ABLH estimation results using the k-means clustering analysis method at 1100 LST on 23 Septemnber
2016. As a result of the cluster validation, the optimal number calculated by the Dunn indexwas three, and the clusters were
distinguished at 800 m (ko) and 1,430 m (k. grp). The altitude at which a cluster changes to another cluster can be
determined as ABLH. The values of h, ¢, Were similar to those of hg,, (790 m) and hy,,,,, (770 mM). Aoy o, Was slightly
lower than h, ,, (1,580 m) and k4, (1,530 m).

4.3. Nocturnal SBLH estimation using amicrowave radiometer

It is possible to estimate the nocturnal SBLH by determining the thermal stability and instability from the microwave
radiometer-derived vertical profiles of thermal parameters, such as temperature and potential temperature (Collaud Coen etal,
2014; Saeed etal., 2016). Given the vertical profile of the atmospheric temperature, it is possible to determine the altitude of
dT/dz = 0 according to the SBI method for the purpose of establishing the thermal stability. However, in real atmospheric
conditions, the air parcel follows the environmental lapse rate (ELR), which differs depending on the time and place rather
than the theoretical lapse rate (TLR), and the criterion of the potential temperature gradient is also dominant in the ELR. In
this study, it is assumed that there is a high possibility that SBL (d8/dz) exists near the surface to be larger than the ELR.
Afterthat, we set the threshold (E) of the ELR, taking into consideration the vertical variability of d6/d zto distinguish the
distinct layers.

Figures 4a and b showthe vertical profiles of the potential temperature and the vertical gradient of the potential temperature
obtainedby a MWR at Jungnangstation at 1500 LST (solid line), 2100 LST (dashedline) on 23, and 0000 LST (dotted line)
on 24 September 2016. The potential temperature decreases with heightat a constantrate above 2,000 m (Fig. 4a), and it can
be consideredaslopeofthe ELR. The TLR and ELR are shown in Fig. 4b as solid and dashed gray lines, respectively. It was
thermally unstable at 1500 LST on 23 September 2016 when the value nearthe surface was smaller than the TLR (Fig. 4b).
As the near-surface temperature decreased due to surface cooling after sunset and a stable layer with a positive value of d8/d z
appeared, the slope of d8/d z increased and a more stable layer was formed at 0000 LST on 24 September 2016. At this time,
the daily mean potential temperature gradient in free atmosphere over 2,000 m was 5.5 K km-%, and this value is used as the

threshold (I7) for the ELR.
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Thus, it can be concluded that the layer is considered as a stably affecting layer if d6/dzis greater than Ff and an unstably

affecting layerifd8/dzis smaller than Ff The d6/dzin the loweratmosphere at 2100 LST on 23 September 2016 is greater
than 0 K km~*, which is the stable condition in the TLR criterion, however, it was smaller than 5.5 K km-*. Therefore, it is
difficult to determine it as stable in the ELR. Figure 4c shows the vertical variance of d6/dz. The vertical variance was
calculated for 150 m at each altitude. At 1500 LST on 23 September 2016, which was well mixed vertically, the variance of
d@/dzin the loweratmospherewas close to0 K km-*, whereas there was a significantvariance of d8/dzat 2100 LST on 23
and 0000 LST on 24 September 2016. It is possible to determine the altitude at which the vertical variance decreases rapidly
(500 m; gray line in Fig. 4b) at 0000 LST on 24 September 2016, satisfying the ELR condition,and d8/dzat an altitude of
3.6 Kkm-1,

Since both Ff andd@/dzdepend ontime, we determined thealtitude at whichthe vertical variance of the daily data decreases
sharply every 10 min while satisfying the stable ELR condition (> E) for threshold setting. With regard to the distinct layer

classification, thealtitude of the maximum vertical variance duringa day and the potential temperaturegradientof that day as
the critical lapse rate of that day (CLR I,,) were determined.

— 2
06) _ lyn [(2) _ (3
Var (E)Z - szzl[(az)z (6z)z] ! (15)
26
o= s o (var () @)
26\ . . . . . . 20 . .
where Var (a_) is the vertical variance of the potential temperature gradient at z height, (a_) pertains to the potential
z/z z/z

temperature gradient at z height, (Z:Zg)z represents the mean potential temperature gradient over 150 m at z height, and H
denotesthe number of vertical intervals (H = 6; 300 m).

As a result, on 23 September 2016, I, was 7.0 K km-!, and the altitude at which the d6/dz profile crosses CLR was

determined as SBLH. In orderto improve the quality ofthe MWR data, surface heating via shortwave radiation (net radiation
>0 W m-?) and precipitation, were removed.

During the radiosonde intensive observation period, only 4 SBL cases were detected using the SBI methodology from the

radiosonde. The SBLH via the SBI method was compared with that obtained using the CLR method. Figure 5 shows the
vertical profile of the potential temperature gradient, threshold of lapse rate (I7.,.), and SBLH estimated using each methodology,
i.e., SBI using theradiosonde (RS_SBI), SBI using the MWR (MWR_SBI), and CLRusing the MWR (MWR_CLR). SBLHs

were estimated at (a) to (c) at the same time. In case of (d), the MWR showed SBLan hour later (0100 LST). The MWR_SBI

was estimatedto be lower than MWR_CLR, and only whenthe atmosphere condition was markedly stable (Fig. 5b, ¢). In this

study, the CLR method was applied to estimate SBLH using the MWR, which estimates SBLH more accurately andstably .

10
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4 4. Integrated systemfor ABLH estimation

In a real atmosphere, there is not only one ABL, but a complicated structure with several layers that are dependent on tine,
place, and atmospheric phenomena. Therefore, ABLH shows differences among methodologies and is an arbitrary decision by
the researcher. In this study, an integrated system for ABLH estimation (ISABLE) was developed to determine the optirral
ABLH. ISABLE applies the four methodologies described above using the backscattering coefficient from the ceilometer as
well as the CLR method that uses the potential temperature profiles fromthe MWR.

4.4.1. Integration method

Figure 6 shows the schematic flow of the ABLH candidate group selection process. INPUT is the ABLH estimated by applying
the four methods using a backscattering coefficient fromthe ceilometer, and in the presentstudy, it was estimated to be up to
19 layers. The VAR selectsa maximum of three peaks as ABLH candidates. In the GM, a maximum of five peaks are found
to minimize redundancy at the chosen level. In the WAV method, up to three altitudes are selected as ABLH candidates for
WAV3 considering the full dilation,and WAV1 and WAV2 select two altitudes to minimize the redundancy to WAV3. The
CLST selected amaximum of four altitudes toremovethe possible noisestructure. The minimumdistance between the nearest
two ABLH candidates was set to 150 m. The reason is that the typical thickness of a well-defined entrainment zone was
reported to be between 100and 300 m (Angevine et al., 1994). If there were multiple peaks chosen using each methodology
within 150 m interval, the remaining peaks except for the most significant one were removed fromthe ABLH candidates for
the method.

The ABLH candidate groups were selected via the k-means clustering analysis method for the maximum of 19 ABLH:s.
Throughthe first clustering, groups with three or more members and RMSE less than orequal to 50 m are classified into the
ABLH candidategroups. Ifthenumber of members is less than threeand its RM SE is higher than 50 m, the member is excluded
from the ABLH candidate groups. If the number of members is greater than orequalto three, but the RMSE exceeds 50m, a
second clustering analysis is performed.

The second clustering analysis on members of the undetermined candidate group is performed such that if the number of
members is greater than or equal to two and its RMSE is less than 50 m, the group is classified into the ABLH candidate
groups. If the number of members is less than two, the members are removed; if the number of members is greater than or
equal to two and its RMSE exceeds 50 m, a member with the farthest distance fromthe mean of the group is removed. The
foregoing procedure is repeated untilthe number of members is greater than orequal to two and its RMSE does notexceed 50
m. Thereafter, the lastgroupis classified as an ABLH candidate group.

The final OUTPUT, the ABLH candidategroups, is ranked in descending order of the number of members, and if the number
of members is the same, the RMSE is ranked in ascending order. Up to five groups were selected, and the average of each
group was determined as the final ABLHSs estimated by the ceilometer backscattering coefficient. If the SBLH is observed by
the MWR, itis added to the final ABLHSs.
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4.4.2. 1ISABLE post-processing

Various ABLH estimation methodologies have been merged with ISABLE. However, there are still limitations in terms of
estimating the ABLH, suchas observational errors and small-scale fluctuations in a real atmosphere, and the appropriate post-
processing, which is required as per Kotthaus and Grimmond (2018). Unreasonable ABLHSs, suchas the ABLH above h gy,
near-range artifacts caused by instrument-related, and isolated ABLH-related small-scale structures, are removed through the
three-step post-process.

Figure 7ashows the ABLHs determined by ceilometer observations without post-processing (CM_ABLH) from 1800 LST on
22 t0 1200 LST on 25 September 2016. There are not only ABLHSs at higher than h g, within the range of 1000to 1200 LST
on 25 September 2016, but near-range ABLHSs in thedaytime (1200to 1600 LST) when the convectiveis well-developed, and
isolated ABLHSs that seemindependentwithout time-space continuity are formed. First, the ABLHSs thatare higher than kg,
are removed. As aresult, the ABLHs thatappeared at approximately 2,500 m within 1000 to 1200 LST on 25 September 2016
were removed (Fig. 7b). As mentioned in Section 3.2, the altitude higher than h g, contained less meaningful information
because the backscatter signal, as compared with the background noise, is weak. Second, the ABLHSs in the lower atmosphere
during the daytime, represented by the near-range artifacts, were removed (Fig. 7¢). The ABLH grows slowly after sunrise,
while it overgrows approximately 1to 2 h before noon. The maximum ABLH appears approximately 2 to 3h afternoon (1400
to 1600 LST). During this period, vertical mixing through convection is active due to surface heating, thus, ABLH grows to
the maximum. Therefore, the ABLH that appears in the lower layer at the time might be inappropriate due to instrumental
noise ornear-range artifacts. Using theradiation observation at Jungnang Station, the convective mixing period was set from
1 h before the time of maximum net radiationto 1 h after sunset (the net radiationis 0W m2). It was found that backscattering
signals were weakened at about 120 mand 400 to 500 m high, respectively, during the daytime with intense solar radiation
(Fig. 2a). Due to the weakened signal by instrumental reason, the 400 to 500 m could be often estimated as an ABLH. So,
ABLHs below 500 m at the time were assumed to be unreasonable and were neglected (Fig. 7b). Third, in order to find the
discontinuous ABLH caused by small-scale fluctuations anda separated small-scale aerosol layer, the ABLH is assumed to be
discontinuous if no other ABLHSs are present within + 10-time steps (100 min) and + 12-range gates (120 m). Additionally,
the density-based spatial clustering of applications with noise (DBSCAN; Ester et al., 1996) can eliminate isolated ABLHs.
DBSCAN is an algorithmthat extracts thenoise contained in a cluster. Each point (core point) ofa cluster and neighborhoods
(border points) within a given radius (¢) must contain a minimum number of points (MinPts) within €. In order to apply the
same € to the time-heightaxes, DBSCAN is performed on a normalized ABLH with values between Oand 1. Figure 7d shows
the result of the discontinuity check using the DBSCAN with € = 0.0125 (¢t = 72 min; z= 56 m) and MinPts = 3. The
discontinuous and sole ABLHs were removed, and the boundary layer distinction became more pronounced.

Figure 7e shows the backscattering coefficient and CM_ABLH fromthose after post-processing. In addition, the noctumal
SBLH estimated using a microwave radiometer MWR_ABLH) was merged with the CM_ABLH. Finally, the ABLHs
determined via ISABLE (ISABLE_ABLH) were determined as the lowest of theremaining CM_ABLHs and MWR_ABLH.
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5. Results
5.1.Diurnal variation of ABLH from radiosonde

ABLHs were calculated usingthe 148 radiosonde observations launched at the Jungnang Station in Seoul from 2015 to 2018.
Figure 8 shows the diurnal variation of ABLH. The ABLH estimated using radiosonde exhibited a maximum at 1500 LST
(mean = 1,019 m, median =925 m), and a minimum at 0600 LST (mean =418 m, median =250 m). At night, the mean ABLHs
were determined as around 500 m, and outliers appeared above 1 km, which were identified as the RL or clouds (Fig. 8). The
interquartile range (IQR; Q3 — Q1) showed the minimum value (268 m) at 0900 LST and the maximum (740 m) at 1800 LST.
Overall, ABLHs were concentrated in the lower layer at night, and the IQR values increased as the ML developed after sunrise.
The SBL overruralareas such as grass or cropfield is well developed dueto active radiative coolingat night, especially under
clearskies. On awhile, the radiative cooling over urban areas was not always active because of heat storage by urban materiak
and anthropogenic heatby energy use (Hong et al., 2013; Park et al., 2014). As aresult, formation andevolutionof SBL were

not active over dense urban areas such as Jungnang station.

5.2. ISABLE performance assessment

Figure 9 shows the ABLHs obtained by radiosonde observation (RS), the ISABLE, and the results of each methodology
obtained using a ceilometer and a MWR from 1800 LST on 22 September 2016 to 1200 LST on 25 September 2016. The
period corresponds to the longest observation period with an interval of 3 h and withoutany missing dataamongavailable RS
data. The same diurnal variation was observed in the RS and ISABLE results. Thecorrelation coefficient (R) between the two
exhibited a high correlation 0f0.98, with a mean bias (MB) of —101 m and a root mean square error (RMSE) of 135 m. The
ABLHSs from ISABLE as well as ceilometer-based methods (GM, WAV2, WAV3, and CLST) were similar to those by RS
during the daytime, however, the ABLHs fromthe former appeared at higher levels than those fromthe latter during the
nighttime. This might be mainly due to the more significant signal in the RL. ISABLE tried to complement the shortcomings
by integrating the four methodologies through considering the SBL using a vertical temperature from MWR at night. The
maximum ABLHSs during daytime appearedat 1600 LST on 23, the RSand the ISABLE estimated ABLHs of 1,620 m, 2,009
m, respectively. At this time,a cumulus cloud was formed over the top of ABLdue to strong convection, and the cloud base
height observed by the ceilometer was 1,910 m. The ABLHSs estimation results showed that RS was below the cloud, while
ISABLE and individual methodologies (GM: 2,080 m, WAV2: 2,060 m, WAV3: 2,050 m) detected ABLHSs as the cloud. In
the presence of clouds, the Ri, method tends to detect the base of the cloud layer, where the temperature profile changes
rapidly. The GM and WA V2 methods using the ceilometer determine the ABLHSs as the top of layer because of strong negative
gradient of backscattering coefficient, whereas the CLST can detect both the baseandtop of cloud layer. In ISABLE, the effect
of clouds is compensated for averaging multiple heights determined by individual methodologies. However, the ISABLESstill
has limitations in the presenceofthick clouds.
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Table 2 shows the performance of the ABLHSs estimated by ISABLE and the four methodologies with respect to the ABLH
determined using the Ri, calculated via RS. Moreover, Figure 10 shows the scatter plots of ABLHSs estimated via RS and
ceilometer/MWR (WAVL and 3 are not included). The total RSs (number of data sets: 148) were classified into four time
zones, i.e., nearsunrise (N = 47; 0600 to 1100 LST), daytime (N = 31; 1200 to 1700 LST), nearsunset (N = 34; 1800 to 2200
LST), and nighttime (N = 36; 2300 to 0500 LST). The correlation coefficient between the ABLHs of RS and ISABLE for the
entire period was 0.72, MBwas —34 m, and RMSEwas 322 m. With regard to the individual methodologies, VAR exhibited
the best performance (R=0.60; MB =219 m; RMSE = 372 m), and CLST exhibited the second bestperformance (R= 0.45;
MB = 125 m; RMSE = 474 m). These two methodologies showed the best performances during the daytime. The scatter
distribution of GM, WAV2, and CLST at sunrise, sunset, and nighttime could be fitted to two groups with different linear
functions. In cases where symbols were plotted below the trend line (dashed line), RLs during nighttime or cloud layers in
daytime existed at the layer. ISABLE (Fig. 10e) showed significant improvement near sunrise and sunset time but showed a
lower correlation with the individual methodologies in nighttime because ABLH was oftenunderestimated, as compared with
RS. There were only four SBLH estimations via RS, while 24 SBLHs were observed via MWR, whichresulted in significantly
lower ISABLE performance at nighttime, as compared with those of the four methodologies. Overestimation of RS_ABLHs
could lead toan underestimation of ABLHs. Anthropogenic heat release fromurban materials could be one reason for detecting
less number of SBLHs at night (Hong et al., 2013; Park et al., 2014). Furtheranalysis is required in considering the accuracy
and uncertainty of the two instruments as well as the effects of urban heat islands. The performances of WAV1 and WAV3
were significantly poorer than those of other individual methodologies. Theshorter dilation (a <100 m) used in WAV1 seens
to be unsuitable forestimatingthe ABLH, and it might affect the ABLH of WAV3.

Table 3and Fig. 11 show the performances ofthe ABLHSs via ceilometer/MWR and thescatter plots betweentwo ABLHs for
two categories of clear (N = 36; CC < 30%) and cloudy (N =26; CC = 80%) skies. The foregoinganalysis is made with the
use of data from2016 to 2018 due to the availability of cloud cover data. GM and W AV2 were found to show lower verification
scoresin clear-sky cases in previous studies. This is mainly because the GM and W AV2 methods tend to determine thealtitude
of clouds or RL. As aresult, even in Fig. 11, scatter plots could be fitted to two groups with different linear lines, and the
resulting performance scores became low. Most deviations were related tothe RL at nighttime. In order to reduce the deviation
in GM and WAV2, ISABLE statistically integrates up to five candidates of the ABLHs estimated from four methodologies,
and is set to determine the lowest candidate as the final ABLH so that it could detect the height belowthe RLor cloud base.
The MBand RMSE for nocturnal SBLH were as good as 6.7 m and 72m, respectively, althoughthe number of available data
was not sufficient.

5.3.Diurnal and seasonal variations in ABLH from ISABLE

For the period from August 2016 to October 2018, the ISABLE ABLH was determined using the vertical profiles of the
backscattering coefficient from the ceilometer and potential temperature from the MWR at Jungnang Station in Seoul.
Unfortunately, cloud cover from 2015 to July 2016 was not observed, and the period was excluded fromthe analysis. Figure
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12 shows the diurnal variations over the observation period of clear (Fig. 12a) and cloudy (Fig. 12b) skies. The period mean
hourly ABLHSs were high in the clear skies during the daytime and in the cloudy skies during the nighttime. The ABLHSs for
clear skies were significantly higher than those for cloudy skies during the daytime, however, the difference was not as
significant during the nighttime. The period mean hourly maximum ABLH was 1,220 m at 1600 LST on clear skies, while it
was 1,090 mat 1500 LST on cloudyskies. Diurnal patternand mean of ABLH on clear skies seemedto be similar to those on
cloudy skies. But median of ABLH was 1,170 m at 1600 LST on clear skies, 210 m higherthan that (960 m) at 1500 LST on
cloudy skies. Variances of ABLH on cloudy skies were also larger thanthose on clear skies. Generally, IQR values of ABLH
were large during the daytime and small at nighttime. IQR values were significantly large during the transition period,
especially during the developing ML period (1100 to 1200 LST), and during the declining MLand developing SBL periods
(1800 to 1900 LST).

Figure 13 shows the diurnal variations of ABLH for clear skies by season. The period mean maximum hourly ABLH was
1,401 mat 1500 LST in JJA (June, July, August; Fig. 13c) and the second-highest was 1,257 mat 1600 LST in SON (September,
October, November; Fig. 13d). In DJF (December, January, February; Fig. 13a), the period mean maximum hourly ABLH
was as lowas 1,093 m at 1600 LST. This is consistent with the net radiation in an urbanresidential area in Seoul (Park et al.,
2014). The minimum hourly ABLH showed the lowestvalue of 333mat 0200 LST in DJF, and occurredat a relatively higher
level of 470 m at 0300 LST in JJA. The ABL during the nighttime in JJA is less thermodynamically stable than that in DJF,
mainly due to anthropogenic heatreleasein urban areas.

The hourly IQR is small before sunrise, increases with the evolution of ML, and decreases again after sunset in all seasons.
Notably, it was the most considerable transition time near sunrise and sunset. Thedifference in IQR between the daytime and
nighttime by seasonwas evidentin DJF, MAM, and SON, but not in JJA. Theratio of IQR during nighttime to daytime in DJF
was as low as 0.29 (0200 LST, 92 m; 1600 LST, 311 m), while it was as highas 0.52 in JJA (0200 LST, 295 m; 1600 LST,
567 m). This implies that the estimated ABLHSs are relatively dispersed bothin daytime and nighttime in JJA.

MLand SBL growth and declineare directly affected by the sunrise and sunset periods. In the transition period, the uncertainty
of ABLH and the IQR increases. The IQR peaks occurred at 1200and 1800 LST in DJF, and 1100 and 1900 LST in MAM. It
can be seen that the evolution of ML occurred quickly, but the decline of ML or SBL evolution occurred slowly. The large
IQR at 1000 and 2000 LST in JJA implied that the ML developed at the earliest time and declined atthe latest time in summer.
The large IQR at 1200 and 1800 LST in SON was due to the delayed sunrise and earlier sunset (Fig. 13d).

Figure 14 shows the seasonal distribution of ABLH during the daytime (1400 to 1600 LST) and nighttime (0300 to 0500 LST).
The mean ABLH during daytime was 1,377 m, 1,222 m, and 1,184 m in JJA, SON, and MAM, respectively (Fig. 14a). The
IQR in JJA (528 m) was larger than those in MAM (389 m) and SON (464 m). In DJF, the mean ABLH was the lowest (1,049
m), and the IQR was the smallest (302 m). The mean ABLH at nighttime was the highest (474 m), and IQR was the largest
(240 m) in JJA (Fig. 14b). The mean ABLH (IQR) was 413 m (151 m), 368 m (133 m), and 359 m (113 m) in MAM, SON,
and DJF, respectively.

15



465

470

475

480

485

490

Figure 15 shows diurnal variations of hourly mean net radiation and its 90" and 10" percentiles, and hourly mean ABLH
estimated by ISABLE during the clear skies. Theoretically, the surface is heated from the time when net radiation becores
positive,andan MLevolves to balance theenergy provided fromthe surface during the positive net radiation with the energy
consumed to heat the overlyingairvolume. In reality, the ABL started to evolve from3 h after the positive net radiation. The
peak ofnet radiation occurredat 1200 LST, while the peak of ABLH occurred at about 1600 LST. The ABLH declined rapidly
at 1to 2 h before the negative netradiation. Thenetradiationin MAMwas similar to that in JJA, and largerthan thatin SON,
while the ABLH in MAM was similar to that in SON. The difference between the 10" and 90" percentiles of net radiation
around 0700 to 0800 LST was more significant in MAM thanin the other seasons. The difference around 1200 to 1300 LST
in DJF are lower than the other seasons. It implies that net radiation, as well as other minor factors, could fully explain the
diurnal variation of ABLH. The difference of net radiation at the same time in the same season could be mainly due to cloud,

and partly due tomoistureand air pollutants.

6. Summaryand discussion

The ISABLE developed in this study integrated the conventional ABLH estimation methodologies to produce optimal ABLH
and applied statistical post-processing technigues to improve accuracy. A maximum of five ABLHs were estimated every 10
min using the ceilometer backscattering coefficient for each methodology (i.e., time-variance method, gradient method,
wavelet covariance transform method, and clustering analysis method). The determined ABLHs were divided into five
maximum clusters via the k-means cluster analysis method, and the ABLH was finally determined as the average of the
members ofthe clusters satisfying the statistical conditions. The nocturnal SBLH was estimated usinga potential temperature
profile from a microwave radiometer. The SBLH was determined using the CLR method proposed in this study, which uses
the threshold of the environmental lapse rate of potential temperature over the day. The ABLHSs estimated by the ceilometer
were post-processed in three steps (i.e., SNR threshold, instrument-related near-range artifact, and isolated ABLHSs) to remove
unreasonable values. The lowest altitude among the ABLH and the nocturnal SBLH was finally determined as an optimizd
ISABLE ABLH.

From 2015 to 2018, ABLH levels were determined using the ISABLE (ISABLE_ABLH) at 10-min intervals, and were
compared with and verified againstthe ABLH estimated by radiosonde observations (RS_ABLH) at Jungnang Station in Seoul
City, Korea. The Ri, was calculated using the vertical profile of the potential temperatureand wind obtained by RS to estimate
the ABLH during the entire sounding. The nocturnal SBLH was determined by the vertical temperature profile with the use of
the SBI method at nighttime. The performance of ISABLE was verified by comparing the ISABLE_ABLH and ABLH
estimated fromeach methodology with RS_ABLH. It was determined thatthe correlation coefficient between ISABLE_ABLH
and RS_ABLH was the highest (R =0.72), as compared to other methodologies. The MB and RMSE showed the smallest
values (—34 and 322 m), implying the bestperformance. Furthermore, the ISABLE was verified through the separation of the
data into four time zones, i.e., daytime (1200 to 1700 LST), nighttime (2300 to 0500 LST), sunrise transition time (0600 to
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1100 LST), and sunset transition time (1800 to 2200 LST). As a result, the correlation coefficient, MB, and RMSE between
ISABLE_ABLH and RS_ABLH exhibited the best performance at 0.86, =3 m, and 236 m during daytime, respectively.
Generally, the performance of ISABLEwas foundto be superior tothe other four conventional methods, with some exceptions,
especially at sunrise/sunset periods.

On the otherhand, the ISABLE performance at nighttime was not as good as that in the other four conventional methods. It
seems to be the difference in SBLH estimation between the RSand MWR, and further analyses on the difference are required.
The presenceof RLand cloud layer caused large deviations by instruments and methodologies, thereby resulting in somewhat
lower performance. The performances for allmethodologies on clear skies were better than those on cloudy skies.

The diurnal variation of ISABLE_ABLH was also analyzed forthe period fromAugust2016 to October 2018. ABLH began
to grow from 0900 to 1100 LST after sunrise, reached a maximum at 1500 to 1600 LST, and declined at 1800to 2000 LST. If
the SBL was detected fromthe vertical profile of temperature at nighttime, the SBLH was estimated using the CLR method.
Sometimes the top of RL orcloud layerwas determinedas ABLH; thus, the IQR of ABLH became larger.

The IQR of ABLH was large during the daytime and small during the nighttime, and the deviations of ABLH in both daytime
and nighttime were more significant onclear days. Maximumhourly ABLH occurred in spring and summer, while minimum
hourly ABLH occurred in winter. The IQR differences between the daytime and nighttime showed a large value in winter,
spring, and autumn, anda small value in summer. The differences showed two maxima at 1000 LST and 1800 LST in winter,
while at 0900 LST and 2000 LST in summer. The diurnal variation of net radiation was closely related to that of ABLH, and
further analyses onthe peaktime and energy balance are needed.

Most conventional methodologies have been verified for daytime clear skies during the several days. While this study tried to
attempt to include cloudy as well as complex conditions using available data set during the 4 years. Poor performance was
mainly due to multiple factors, suchas strong backscattering signals in the RL, presence of clouds, and weak backscattering
signals. Overall, the performance of ISABLE_ABLH was found to bebetter than that of the conventional methods. Therewere
28 cases with a difference between the RS-ABLH and the ABLH foreach methodology exceeding 1,000 m. Among them, 20
cases showed strong backscattering coefficients in RL at nighttime; thus, ABLH was estimated as the corresponding altitude,
especially using the GM and WAV2 methods. The remaining eight cases occurred during the daytime, six cases occurred in
the presence of clouds, and two cases occurred in apparently clear skies with very weak backscattering signals. The foregoing
cases often appear in a real atmosphere; however, it is difficult to estimate the consistent ABLHs under the aforementioned
atmospheric conditions. In this study, as the ABLH was estimated using as much data as possible, regardless of time or
atmospheric conditions, their performances seemed to be somewhat lower. When convection is robust during the daytime, the
atmospheric structure is relatively homogeneous below the ABLH, and the results of ABLH determinations via different
methodologies are similar. On the other hand, if the atmospheric structure is complicated, such as the presence of noctumal
SBL, RL, and daytime clouds, the ABLH may be different from those of the methodologies, and the criteria for determining
true ABLH remain with researchers. In addition, in the estimation of SBLH by the CLR method using the MWR, further
studies are needed due to the lack of verification cases.
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Although ISABLE-estimated ABLH exhibited better performance than those estimated by the earlier conventional
methodologies, there are still many limitations. In particular, ABLHs estimated fromthe ceilometer in the lower layer are not
reliable due to near-range artifacts, especially under intense solar radiation. ABLHSs at higher levels at nighttime could be
supplemented by the temperature profile obtained by the MWR. ABLHSs are challenging in terms of estimating under cloudy
sky or precipitation, severe fog, and smog events. Since the ISABLE is in the early stage of development, it did not address
the all known issues yet, such as precipitation, lofted aerosol layer, and too clean (little aerosol) condition. These limitations

and drawbacks should be overcome by combining enough observation data, instrumental advances, and the corresponding
improvements of ISABLE.
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Table 1: Information on GPS radiosonde observationsat Jungnang Station in Seoul City, Korea.

Number of Number of precipitation

Observation period Interval (hour)
observations Yes No
2015.11.23. ~ 11.30 3 54 10 44
2016.09.19. ~09.30 36 60 6 54
2016.10.02. ~10.07 6 29 7 22
2018.09.10. ~ 09.17 6 28 0 28
171 23 148

675
Table 2: Statistical performance between ABLHSs obtained by various methods, including ISABLEand radiosonde observations for
all data (N = 148), the sunrise (N =47; 0600to 1100 LST), daytime (N =31; 1200to 1700 LST), sunset (N =34; 1800 to 2200 LST),
andnighttime (N =36; 2300 to 0500 LST).
Method/Score VAR GM WAV1 WAV2 WAV3 CLST ISABLE
All R 0.60 0.41 0.17 0.41 0.26 0.45 0.72
(148) Bias (m) 219 420 187 414 289 125 -34
RMSE (m) 372 519 631 537 585 474 322
sunrise R 0.49 0.24 0.11 0.19 0.18 0.36 0.78
47) Bias (m) 200 389 292 431 330 71 -4
RMSE (m) 385 560 687 643 629 437 250
daytime R 0.75 0.7 0.28 0.74 0.37 0.69 0.86
31 Bias (m) 24 145 -194 115 -24 -82 -3
RMSE (m) 278 350 584 325 515 391 226
sunset R 0.55 0.42 0.17 0.39 0.2 0.36 0.69
(34) Bias (m) 295 525 303 553 433 280 -4
RMSE (m) 344 496 559 486 516 486 286
nighttime R 0.51 0.4 0.28 0.51 0.33 0.27 0.16
(36) Bias (m) 339 597 267 519 371 226 -123
RMSE (m) 395 519 550 495 566 511 461
680
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685

Table 3: Statistical performance between ABLHSs obtained by various methods, including ISABLEand radiosonde observations for

clear (N=36; CC <30%) and cloudy skies(N =26; CC = 80%) for the period from August 2016 to O ctober 2018.

Method/Score VAR GM WAV1 WAV2 WAV3 CLST ISABLE
CC<30% R 0.71 0.44 0.18 0.48 0.18 0.52 0.88
(36) Bias (m) 166 443 -59 394 124 226 8

RMSE (m) 370 578 694 560 690 531 253
CC=>80% R 0.49 0.27 0.20 0.23 0.25 0.43 0.71
(26) Bias (m) 234 485 288 492 451 177 28

RMSE (m) 358 514 561 591 588 391 274
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Figure 5: Vertical profiles of potential temperature, threshold of lapse rate (I',,.), and the SBLHSs estimated by the radiosonde and
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740 Figure 11: The same as Fig 10, except that the data herein pertainto clear (N=36; CC <30%) and cloudy sky cases (N =26; CC >

80%).
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745 Figure 12: Box plots of hourly ABLHs estimated by ISABLE on (a) clear (cloud cover < 30%) and (b) cloudy (cloud cover > 80%)
cases for the period from August 2016to O ctober 2018.
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Figure 13: Box plots of hourly ABLHSs for clear skies in (a) winter, (b) spring, (c) summer, and (d) autumn for the period from
750 August 2016 to October 2018.
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Figure 14: Boxplot ofseasonal ABLH during the (a) daytime (1400to 1600 LST) and (b) nighttime (0300to 0500 LST) for the period

from August 2016to October 2018.
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Figure 15: Seasonal mean diurnal variation of (a) net radiation with the 10t and 90" percentiles, and (b) ABLH estimated by

ISABLE from August 2016to O ctober 2018.
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