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Abstract. The Ozone Monitoring Instrument (OMI) has been providing global observations of SO2 pollution since 2004. Here 

we introduce the new anthropogenic SO2 vertical column density (VCD) dataset in the version 2 OMI SO2 product (OMSO2 

V2). As with the previous version (OMSO2 V1.3), the new dataset is generated with an algorithm based on principal 

component analysis of OMI radiances, but features several updates. The most important among those is the use of expanded 15 

lookup tables and model a priori profiles to estimate SO2 Jacobians for individual OMI pixels, in order to better characterize 

pixel-to-pixel variations in SO2 sensitivity, including over snow and ice. Additionally, new data screening and spectral fitting 

schemes have been implemented to improve the quality of the spectral fit. As compared with the planetary boundary layer SO2 

dataset in OMSO2 V1.3, the new dataset has substantially better data quality, especially over areas that are relatively clean or 

affected by the south Atlantic anomaly. The updated retrievals over snow/ice yield more realistic seasonal changes in SO2 at 20 

high latitudes and offer enhanced sensitivity to sources during wintertime. An error analysis has been conducted to assess 

uncertainties in SO2 VCDs from both the spectral fit and Jacobian calculations. The uncertainties from spectral fitting are 

reflected in SO2 slant column densities (SCDs) and largely depend on the signal-to-noise ratio of the measured radiances, as 

implied by the generally smaller SCD uncertainties over clouds or for smaller solar zenith angles. The SCD uncertainties for 

individual pixels are estimated to be ~0.15-0.3 DU (Dobson Units) between ~40°S and ~40°N and to be ~0.2-0.5 DU at higher 25 

latitudes. The uncertainties from the Jacobians are approximately ~50-100% over polluted areas, and primarily attributed to 

errors in SO2 a priori profiles and cloud pressures, as well as the lack of explicit treatment for aerosols. Finally, the daily mean 

and median SCDs over the presumably SO2-free equatorial East Pacific have increased by only ~0.0035 DU and ~0.003 DU 

respectively over the entire 15-year OMI record; while the standard deviation of SCDs has grown by only ~0.02 DU or ~10%. 

Such remarkable long-term stability makes the new dataset particularly suitable for detecting regional changes in SO2 pollution. 30 
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1 Introduction 

Despite substantial overall downward trends in recent years (e.g., Aas et al., 2019; Klimont et al., 2013), sulfur dioxide (SO2) 

emitted from anthropogenic sources (e.g., coal-fired power plants) continues to have significant impacts on the environment. 

SO2 is toxic and a regulated criteria air pollutant in many countries (e.g., U.S. Environmental Protection Agency, 2010). It is 

also a precursor to secondary sulfate aerosols that contribute to smog and haze (e.g., Huang et al., 2014), cause acid deposition 35 

(e.g., Likens et al., 1996), and influence regional climate (e.g., Chuang et al., 1997; Haywood and Boucher, 2000). Removal 

of SO2 and other short-lived pollutants is expected to bring health benefits (Lelieveld et al., 2019), but may also lead to 

additional warming (Samset et al., 2018). The ability to monitor global and regional changes in SO2 pollution is thus critical 

for predicting and mitigating both air pollution and climate change. 

Since the 1990s, a series of hyperspectral satellite sensors that measure solar backscattered radiances in the ultraviolet (UV) 40 

spectral range of ~300-400 nm has provided global monitoring of anthropogenic SO2 (e.g., Eisinger and Burrows, 1998; Lee 

et al., 2008; Nowlan et al., 2011; Theys et al., 2017; Valks and Loyola, 2008; Yang et al., 2013; Zhang et al., 2017). Among 

these sensors, the Ozone Monitoring Instrument (OMI) aboard the NASA Earth Observing System Aura spacecraft (Levelt et 

al., 2006) is particularly useful for SO2 observations, thanks to its high spatial resolution (best at its launch in 2004) and daily 

contiguous global coverage. The 15 year and growing OMI SO2 data record is the longest among those from similar UV 45 

backscatter instruments (Levelt et al., 2018), having facilitated a number of studies on regional trends of SO2 pollution. For 

example, OMI data have provided observational evidence on the efficacy of SO2 control measures in China (Li et al., 2010; 

2017a), confirmed significant further reductions in SO2 emissions from the U.S  (Fioletov et al., 2013; He et al., 2016) and 

Europe (Krotkov et al., 2016), and detected large recent increases in SO2 pollution over India (e.g., Li et al., 2017a; Lu et al., 

2013). OMI SO2 data have also helped to quantify emissions from different types of sources (e.g., Carn et al., 2017; Fioletov 50 

et al., 2016; Kharol et al., 2020; Zhang et al., 2019), to identify sources that are missing or underestimated in bottom-up 

emission inventories (McLinden et al., 2016), and to build a hybrid SO2 inventory that combines both top-down and bottom-

up emission estimates (Liu et al., 2018). More recently, OMI SO2 data have been used to study changes in acid deposition over 

the eastern U.S. (Fedkin et al., 2019) and China (Zhang et al., 2020). 

Several different techniques have been applied to OMI SO2 retrievals. The first generation OMI standard SO2 total vertical 55 

column density (VCD) product (OMSO2 V1.1 and earlier versions) is based on the band residual difference (BRD) algorithm 

(Krotkov et al., 2006) for planetary boundary layer (PBL) SO2 VCDs (primarily for monitoring anthropogenic pollution), and 

the linear fit (LF) algorithm (Yang et al., 2007) for volcanic SO2 VCDs. Both are discrete wavelength algorithms that only use 

a small subset of OMI wavelengths in the spectral range of interest. They are fast and sensitive to sources such as large power 

plants and degassing volcanoes, but are relatively noisy and are prone to artifacts. Starting from OMSO2 V1.2, a new retrieval 60 

technique based on principal component analysis (PCA) of OMI-measured radiances (Li et al., 2013) was introduced to 

produce the OMI PBL SO2 dataset. The PCA-based spectral fitting algorithm makes use of all available OMI wavelengths 

between 310.5 and 340 nm, suppressing retrieval noise by a factor of two as compared with the BRD algorithm and largely 
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eliminating unphysical biases over clean background areas. These improvements allow SO2 point sources as small as 30 kt 

(103 t)/year to be quantified (Fioletov et al., 2015). In OMSO2 V1.3, an extended version of the OMI PCA algorithm (Li et al., 65 

2017b) was developed for the updated volcanic SO2 dataset. The same algorithm has also been implemented with the Ozone 

Mapping Profiler Suite (OMPS) Nadir Mapper aboard the NASA/NOAA Suomi National Polar orbiting Partnership (SNPP) 

spacecraft, thereby generating consistent retrievals with OMI (Li et al., 2017b; Zhang et al., 2017). Additionally, comparisons 

of OMI SO2 retrievals between the PCA algorithm and a differential optical absorption spectroscopy (DOAS) algorithm (Theys 

et al., 2015) also show generally good agreement. 70 

While the OMI PBL SO2 dataset produced with the PCA algorithm has significantly improved data quality as compared with 

the earlier version based on the BRD algorithm, the two algorithms share a common limitation: they both use a constant air 

mass factor (AMF) or SO2 Jacobian spectrum for all pixels. The AMFs (or Jacobians) represent the sensitivity of OMI 

radiances to SO2 total VCDs and they depend on several factors including ozone amount and profile, SO2 a priori profile, 

surface reflectivity, cloudiness, surface and cloud pressure, and solar and viewing zenith angles. The constant Jacobian 75 

spectrum used in the latest OMI PBL SO2 dataset (OMSO2 V1.3) is pre-computed with the VLIDORT radiative transfer (RT) 

code (Spurr, 2008), assuming cloud-free conditions with SO2 predominantly in the lowest 1 km of the atmosphere. The 

spectrum does not take into account variations in geometry, O3, clouds, or surface reflectivity (cf. Li et al., 2013 for details). 

This simplification enhances computation efficiency, but also results in relatively large biases particularly for pixels over 

cloudy scenes or background areas, and pixels near the edges of the swath where absorption due to O3 can substantially change 80 

SO2 Jacobians.  

Here, we describe the version 2 OMI SO2 total vertical column density product (OMSO2 V2). As with the previous versions, 

OMSO2 V2 includes datasets for both volcanic and anthropogenic SO2. The volcanic SO2 dataset in OMSO2 V2 is largely 

unchanged from OMSO2 V1.3. The anthropogenic SO2 algorithm, on the other hand, has seen some major updates and will 

be the focus of this paper. In particular, a set of new lookup tables and model-based a priori profiles are now used to estimate 85 

Jacobians for anthropogenic SO2 retrievals for each individual pixel, thus better characterizing the sensitivity to SO2 at different 

parts of the OMI sensor swath (e.g., nadir pixels vs. swath edges), over different regions (e.g., polluted vs. clean), and in 

different seasons (e.g., summer vs. winter). This helps to further improve the retrieval quality. The rest of the paper is organized 

as follows: in Sect. 2 we provide a description of the new OMI anthropogenic SO2 algorithm. This is followed by data quality 

assessment in Sect. 3 and examples from the new anthropogenic SO2 dataset in Sect. 4.  90 

2 Algorithm Description 

2.1 Algorithm overview  

The new anthropogenic SO2 algorithm for OMSO2 V2 introduces several new components but retains the overall framework 

of the original PCA-based OMI PBL SO2 algorithm that has been described in detail elsewhere (Li et al., 2013). Briefly, the 

algorithm employs a PCA technique to the measured radiance spectra from a number of satellite pixels to extract spectral 95 
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features in the form of principal components (PCs). The PCs are ranked in a descending order according to their spectral 

variance content. In the absence of large SO2 plumes, the leading PCs that contain the most variance (see Figure 1 in Li et al. 

2013 for an example) are typically associated with physical processes other than SO2 absorption (e.g., ozone absorption, 

rotational Raman scattering) or some measurement features (e.g., wavelength shift, dark current). By fitting a set of nν PCs (νi) 

along with SO2 Jacobians ( !"
!#!"#

) to the measured radiances, we obtain an estimate of the SO2 VCD (ΩSO2), at the same time 100 

minimizing the interferences from those processes represented by the PCs: 

𝑁"𝜔,Ω$%#& = ∑ 𝜔&𝑣& +	Ω$%#
!"

!#!"#

'$
&()  ,         (1) 

where N is for the sun-normalized radiance spectrum for a satellite pixel in N-value (N(λ) = -100×log10(I(λ)/F(λ), I and F are 

the measured radiance and solar irradiance at wavelength λ, respectively), and ωi is the derived coefficient for the PC νi. For 

OMI retrievals, the algorithm processes one orbital swath at a time, with each swath comprising 60 rows across the flight 105 

direction of the Aura spacecraft (cross-track) and each row containing ~1600 pixels along the flight direction (along-track). 

For each swath, the algorithm also conducts PCA and spectral fit for each row separately, effectively treating them as different 

detectors.  

The algorithm flowchart in Fig. 1 provides an overview of the new OMI anthropogenic SO2 algorithm. It consists of three 

main components: 1) preprocessing and data filtering in order to select certain pixels within an OMI row for PCA analysis; 2) 110 

initial estimates of SO2 vertical column densities (VCDs) made assuming a constant Jacobian spectrum; and 3) determination 

of pixel-specific Jacobians and final estimates of SO2 VCDs. More detailed descriptions of these components are given below.   

2.2 Preprocessing and data filtering 

An important prerequisite for the spectral fit in Eq. (1) to work properly is that the PCs contain minimal spectral structures 

from SO2 absorption. This condition is satisfied for the vast majority of atmospheric scenarios, given that background SO2 115 

loading is normally quite small (< 0.1 Dobson Units, 1 DU = 2.69∙1016 molecules/cm2) over most areas. On the other hand, 

SO2 light absorption can be substantial in the presence of large volcanic plumes or over heavily polluted areas, leading to 

apparent SO2 structures in some of the leading PCs. The prepocessing and data filtering component of the algorithm aims to 

flag those pixels with strong SO2 signals and exclude them from the PCA analysis, thus minimizing their impacts on the 

spectral fit. Likewise, pixels having large solar zenith angles (SZA > 75°) or affected by the OMI row anomaly (signal 120 

suppression at certain OMI rows, see http://www.knmi.nl/omi/research/product/rowanomaly-background.php for more 

information) are also filtered out using the dynamic row anomaly flag from the OMI L1B data. It should be pointed out that 

SO2 VCD retrievals are still attempted for all pixels with SZA < 75° and unaffected by the row anomaly, regardless of whether 

they are flagged for SO2. 

In the first step of data preprocessing, pixels with relatively large volcanic signals are flagged based on ozone retrieval residuals 125 

from two wavelength pairs (313/314 nm and 314/315 nm). We first estimate OMI radiances at these wavelengths using the 
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total column O3 from the OMTO3 product (Bhartia, 2005) in conjunction with the simple Lambertian equivalent reflectivity 

(SLER) derived at the surface (Ahmad et al., 2004), assuming no SO2. The residuals are the differences between the measured 

and estimated logarithmic radiances. When there is indeed little SO2 in the atmosphere, the residuals are similar for the 

wavelength pairs (e.g., 313 and 314 nm). For volcanic eruptions, however, the residuals at 313 nm become much greater due 130 

to stronger SO2 absorption that is unaccounted for in O3 retrievals. A large difference in O3 residuals between 313 and 314 nm 

or between 314 and 315 nm for a given pixel thus signals relatively large abundance of SO2, and that pixel is flagged. Side-

by-side comparisons between the flagged pixels and OMI volcanic SO2 retrievals (Li et al., 2017b) indicate that the flagging 

scheme is effective at identifying pixels with ~5 DU or more of SO2 (assuming plume centered at ~18 km). 

The second step of the preprocessing attempts to further screen for SO2. After rejecting pixels with large SZAs or flagged for 135 

volcanic SO2, the measured radiance spectra between 310.5 and 340 nm from the remaining (typically ~1200-1300) pixels in 

the row are subject to a PCA analysis. As large volcanic SO2 signals have already been screened out, the first five derived PCs 

are usually free from SO2 spectral structures. We fit those PCs to the measured radiances and calculate fitting residuals for 

each pixel. Without SO2 structures in the PCs or the SO2 Jacobian term on the right hand side (RHS) of Eq. (1), the fitting 

residuals for a pixel having sizable SO2 (e.g., those over heavily polluted areas) are expected to be correlated with the SO2 140 

cross sections. We flag pixels that have a relatively large absolute cross product between the fitting residuals and a normalized 

spectrum of SO2 cross sections. 

In the final step of the preprocessing, a second PCA analysis is conducted for the radiance spectra within 310.5-340 nm from 

a given OMI row, this time excluding all pixels that have been flagged for SO2. The resulted PCs are used as input to the 

second component of the algorithm for initial estimates of SO2 VCDs. 145 

2.3 Initial estimates of SO2 VCDs 

To make initial estimates of SO2 VCDs (ΩSO2_ini), we carry out a spectral fit following Eq. (1) using the first 6 PCs from the 

final preprocessing step (see Sect. 2.2) along with a fixed SO2 Jacobian spectrum identical to that for the PBL SO2 retrievals 

in OMSO2 V1.3. Pixels that are not flagged for SO2 in the preprocessing and have relatively small initial SO2 VCDs, with        

-2s < ΩSO2_ini < 1.5s (where s is the standard deviation of ΩSO2_ini), are selected for a new round of PCA analysis. The updated 150 

PCs are then used in another spectral fit to produce updated VCD estimates (Fig. 1). Note that the threshold for pixel selection 

was set at ±1.5s in our previous PBL SO2 algorithm (Li et al., 2013). Now the lower limit has been relaxed to reduce the minor 

negative biases over some areas in the previous product. Additionally, the threshold is further relaxed by 50%, to -3s < ΩSO2_ini 

< 2.25s for pixels with SZA > 60°, considering that the VCDs at larger solar zenith angles tend to be noisier due to lower 

signal-to-noise ratio in the radiance data. 155 

This process of spectral fit, pixel selection, updated PCA, and updated spectral fit as described above is repeated three times. 

For the last two iterations, the OMI row is divided into three subsectors based on the SZAs: a tropical subsector with small 

solar zenith angles ( SZA <  SZAmin + 0.4 ́  (75° - SZAmin), where SZAmin is the minimal SZA of the row), and two extratropical 
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ones south and north of it. As discussed in Li et al. (2013), PCs derived from these subsectors more closely represent local 

observation conditions and reduce retrieval noise and biases. For these two iterations, we also use up to nν = 30 PCs in the 160 

spectral fit. The exact value of nν is determined by checking the correlation between the PCs and the SO2 cross sections. If for 

example the ith PC has significant SO2 spectral structures, only nν = i - 1 PCs are used in the spectral fit (cf. Li et al., 2013 for 

more discussion on the number of PCs included in the fit). With effective SO2 screening steps in data preprocessing (Sect. 

2.2), nν = 30 PCs are used in the fit most of the time. After these three iterations, the finalized PCs are transferred to the third 

component of the algorithm. 165 

2.4 Determination of SO2 Jacobians and final estimates of SO2 VCDs 

In the third and final component of the algorithm, we use the finalized PCs (Sect. 2.3) and the SO2 cross sections (in place of 

Jacobians in Eq. (1)) to estimate SO2 slant column densities (SCDs). In addition, we also use pixel-specific Jacobian spectra 

for the final SO2 VCDs. To this end, we employ a table lookup approach and model-based a priori profiles to estimate SO2 

Jacobians for individual OMI pixels (Sect. 2.4.1 & 2.4.2). Special consideration is required for pixels covered by snow or ice 170 

(Sect. 2.4.3), as well as those over areas affected by the south Atlantic anomaly (SAA, Sect. 2.4.4)  

2.4.1 Jacobian lookup tables  

The total column SO2 Jacobians ( !*'(,)
!#!"#

) and AMFs (!*'(,)
!.!"#

) represent the sensitivity of the natural logarithm of top of 

atmosphere (TOA), sun-normalized radiances (I) to perturbations in SO2 VCD (ΩSO2) and SO2 optical thickness (𝜏$%/) in the 

entire atmospheric column, respectively. The two derivatives are linked through the absorption cross sections of SO2. They 175 

can be calculated from the vertically resolved layer Jacobians (or box AMFs) and a priori profile of SO2, for example: 
!*'(,)
!#!"#

=	∫ 𝑚(𝑧)0%1
2 𝑛$%/(𝑧)𝑑𝑧 ,          (2) 

where nSO2(z) is the normalized a priori profile or shape factor that represents the fraction of SO2 molecules in layer z to the 

overall number of SO2 molecules in the entire column. The layer Jacobians (sometimes also referred to as scattering weight), 

m(z), are defined as the sensitivity of I to changes in ΩSO2(z), the partial column SO2 density within layer z: 180 

𝑚(𝑧) = !*'(,)
!#!"#(3)

 .            (3) 

Backscattered TOA radiances I and layer Jacobians m(z) at a wavelength l depend on several factors including O3 (both the 

total amount and vertical distribution), observation geometry, and the pressure and reflectivity of the underlying clouds or 

surfaces. Following the same parameterization approach as in Li et al. (2017b), the backscattered TOA radiances in a Rayleigh 

atmosphere can be calculated with the following equation: 185 

𝐼 = 𝐼2(𝜃2, 𝜃) + 𝐼)(𝜃2, 𝜃) cos𝜙 + 𝐼/(𝜃2, 𝜃) cos 2𝜙 +
4,%(5&,5)
()74$')

 ,       (4) 

where θ0, θ, and ϕ stand for SZA, VZA, and relative azimuth angle (RAA), respectively. I0, I1, and I2 are Fourier expansion 

coefficients in ϕ; together these terms represent the atmospheric component of I. The fourth term on the RHS of Eq. (4) 
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represents the surface component of I, in which RIr is the TOA radiance reflected once by the underlying surface (that has a 

Lambertian reflectivity of R) and transmitted through the atmosphere, Sb is the fraction of the surface-reflected radiance that 190 

is scattered back to the surface, and (1 − RSb) accounts for the multiple reflections between the surface and the atmosphere. 

The layer Jacobians can then be parameterized differentiating Eq. (4):   

𝑚(𝑧) = ;!,&(5&,5)
!#()#(3)

+ !,*(5&,5)
!#()#(3)

cos𝜙 + !,#(5&,5)
!#()#(3)

cos 2𝜙 + 4
()74$')

!,%(5&,5)
!#()#(3)

+ 4#,%(5&,5)
()74$')#

!$'
!#()#(3)

< ∙ 𝐼7).   (5)                                                                                 

With Eqs. (4) and (5), we can determine the layer Jacobians for any given ϕ and R from multidimensional lookup tables that 

contain I0, I1, I2, Ir and Sb and their derivatives with respect to ΩSO2(z) for different SZAs, VZAs, underlying surface/cloud 195 

pressures, and O3 amounts and profiles. To account for the effects of O3 on layer Jacobians, we use a climatology of ozone 

profiles that depends on the total ozone amount developed by Labow et al. (2015) from sonde and Microwave Limb Sounder 

(MLS) measurements. The profile Jacobian elements in Eq. (5) may be calculated conveniently using the VLIDORT radiative 

transfer model, which has the ability to generate any sets of analytically calculated Jacobians in a polarized multi-layer 

atmosphere. For each of the 46 ozone climatology profiles, we ran the VLIDORT to build a Jacobian lookup table (LUT) with 200 

dimensions of 6 ´ 8 ´ 8 ´ 72 ´ 801. The first three dimensions (6 ´ 8 ´ 8) correspond to the different nodes in the lookup table 

for the underlying surface/cloud pressures, SZAs, and VZAs (see Table 1 for details). The last two dimensions are necessary 

for storing vertically (72 layers, 0.01-1013.25 hPa) and spectrally (305-345 nm at 0.05 nm resolution) resolved parameters for 

Jacobians.  

The effects of clouds on SO2 Jacobians are accounted for with the independent pixel approximation (IPA) approach that is 205 

commonly employed in UV/VIS trace gas retrievals (e.g., Ahmad et al., 2004; Koelemeijer et al., 2001; Martin et al., 2002; 

Seftor et al., 1994). For each OMI pixel, we use multidimensional interpolation to estimate layer Jacobians for both cloudy 

and cloud-free parts of the pixel. For the cloudy part, the optical centroid cloud pressure (OCP) from the OMI Raman scattering 

cloud product (OMCLDRR, Joiner and Vasilkov, 2006), retrieved at wavelengths near the SO2 fitting window, is used and R 

is taken to be 0.8. For the cloud-free part, the surface reflectivity and surface pressure assumed in OMCLDRR retrievals are 210 

used. The cloudy (mcld(z)) and cloud-free (mclr(z)) layer Jacobians at layer z are weighted with the cloud radiance fraction 

(CRF) in the SO2 fitting window: 

𝑚(𝑧) = 𝑚8*9(𝑧)𝐶𝑅𝐹 +	𝑚8*:(𝑧)(1 − 𝐶𝑅𝐹) ,        (6) 

𝐶𝑅𝐹 = 𝑓8
,+,-
,./0(

 ,            (7) 

where Imeas and Icld are measured TOA radiances and estimated cloudy radiances, respectively, and fc  is the effective cloud 215 

fraction retrieved by the OMCLDRR algorithm. Following Eq. (2), the interpolated layer Jacobian profile is combined with 

the a priori profile shape factor selected based on the latitude, longitude, and time (month of the year) of the OMI measurement 

(see Sect. 2.4.2) to produce SO2 column Jacobians between 305 and 340 nm at 0.05 nm resolution. The high-resolution 

Jacobians are then convolved using the OMI slit function. 
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2.4.2 GEOS-5 a priori profiles  220 

For a priori profile shape factors (nSO2(z)), we use GEOS-5 (Goddard Earth Observing System, Version 5) global model 

simulations (72 vertical layers, 0.5° latitude by 0.667° longitude horizonal resolution) for the time period 2004-2014. The 

output from GEOS-5 is sampled at the OMI overpass time and normalized against the model simulated total SO2 VCD within 

each grid cell to produce monthly shape factor profiles. For each month of the year, these shape factor profiles are then averaged 

over the entire simulation period to generate monthly climatology profiles for use as a priori in our SO2 retrievals.   225 

2.4.3 Retrievals for pixels covered by snow or ice 

From Eq. (5), one would expect that highly reflective snow/ice covered surfaces could enhance the sensitivity of OMI to SO2 

particularly at lower altitudes. Retrievals over these areas in the previous OMI PBL SO2 dataset (OMSO2 V1.3) are however 

biased high, owing to the use of a constant Jacobian spectrum. Here we use OMCLDRR product and snow/ice flag in the OMI 

L1B data to identify pixels that are cloud-free and covered by snow/ice, following an approach proposed by Vasilkov et al. 230 

(2010). For OMI pixels flagged for snow/ice in the L1B data (OML1BRGU), we compare the terrain pressure with the effective 

scene pressure retrieved by the OMCLDRR algorithm (Joiner and Vasilkov, 2006). If the difference between the two is within 

50 hPa, the pixel is likely cloud-free. We then assume a cloud fraction of zero and use the simple Lambertian equivalent 

reflectivity (SLER) derived for that pixel in Jacobian calculations. On the other hand, if the difference is greater than 100 hPa, 

the pixel is likely cloudy and the cloud fraction is set to one in Jacobian calculations. For pixels having scene and terrain 235 

pressure differences between 50 and 100 hPa, unambiguous cloud detection is not possible. While we still assume cloud-free 

conditions in the Jacobian calculations for such pixels, they are flagged and should be excluded from data analysis due to 

greater uncertainty. 

2.4.4 Retrieval noise suppression for areas affected by the south Atlantic anomaly 

Polar-orbiting satellite sensors like OMI are often subject to greater fluxes of high-energy particles when flying over areas 240 

affected by the south Atlantic anomaly (SAA), leading to larger noise in trace gas retrievals. Following Richter et al. (2011), 

we have implemented a two-step spectral fit to suppress SO2 retrieval noise over the SAA region. The scheme examines the 

spectral fitting residual at each wavelength between 310.5 and 340 nm for all OMI pixels within the region of 0-45°S, 100°W-

5°E. If a pixel has wavelengths with relatively large fitting residuals (beyond ±0.2 N-value), these wavelengths are excluded 

in a second step spectral fit that produces the final SO2 VCD for the pixel. As shown in the following sections, this two-step 245 

scheme effectively reduces retrieval noise over the SAA region. 

3 Quality Assessment 

Uncertainties in the retrieved SO2 VCDs arise from both the spectral fit and the Jacobian calculation parts of the algorithm that 

are largely independent from each other. Uncertainties in the former can originate from measurement errors as well as the basis 
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functions (i.e., the PCs), and can be represented as uncertainties in SO2 SCDs. On the other hand, uncertainties in the SO2 250 

Jacobians are primarily due to the various assumptions inherent in the radiative transfer model, and also to uncertainties in 

input parameters used in the RT calculations. In this section, we assess the uncertainties (Sect. 3.1) and long-term stability 

(Sect. 3.2) in SCDs, and also discuss various factors that contribute to the uncertainties in SO2 Jacobians (Sect. 3.3).  

3.1 Uncertainties in slant column densities (SCDs) 

Two different methods have been used to estimate uncertainties in SO2 SCDs: the first based on the fitting residuals with an 255 

approach similar to that for DOAS uncertainty estimates and the other based on a statistical analysis of SO2 SCDs over the 

remote Pacific.  

3.1.1 SCD uncertainties estimated from fitting residuals 

We can express the basis functions on the RHS of Eq. (1) in terms of a matrix A that has dimensions of K ´ M. The number 

of columns in A, M = nν + 1, represents the nν PCs plus the SO2 cross section spectrum included in the least squares fit, whereas 260 

the row dimension K is the number of OMI wavelengths at which the PCs and SO2 cross sections are specified. Following a 

common approach for estimating uncertainty in DOAS spectral fitting (e.g., Zara et al., 2018), the uncertainty (ej) in the jth 

fitted parameter is the square root of the jth diagonal element of the covariance matrix: 

𝜀; = E𝜒/(𝐴0𝐴);;7) ,           (8) 

where χ2 can be calculated from the fitting residuals (r(lk), the difference between the measured and fitted N-values) at all 265 

wavelengths in the fitting window and the degree of freedom (K – M): 

𝜒/ = )
<7=

∑ 𝑟/(𝜆>)>(<
>()  .           (9) 

The estimated SCD uncertainties for four selected OMI swaths over the remote Pacific in different seasons in 2007 are given 

in Fig. 2i-l, along with the SCDs (Fig. 2a-d) and scene reflectivity at 354 nm (Fig. 2e-h). As can be seen from the plots, the 

SCD uncertainties for most pixels are within the range of 0.05-0.25 DU and demonstrate substantial spatial variability. To the 270 

first order, there is an apparent connection between the estimated uncertainties and the reflectivity. Pixels over bright surfaces 

covered by clouds (e.g., east of New Zealand in orbit 13160) or snow/ice (e.g., over the Antarctica) often have smaller 

uncertainties. This is probably due to enhanced signal-to-noise ratio in OMI measured radiances over highly reflective scenes, 

suggesting that the measurement noise is probably a driving factor for SCD uncertainties. The estimated SCD uncertainties 

are also generally greater at higher latitudes, again probably reflecting strong light extinction and reduced signal-to-noise ratio 275 

at larger solar zenith angles and larger O3 amounts. There is also a gradient in SCD uncertainties, for example, just south of 

Hawaii in orbit 13160. Recall that pixels from each row are grouped into three subsectors for the final PCA (cf. Sect. 2.4), 

based on their solar zenith angles. And the gradient is likely caused by the changes in basis functions (i.e., the PCs) over the 

transition zones between the tropical and the extratropical subsectors. Additionally, the SCD uncertainties also show some 
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cross-track dependence particularly at lower latitudes, being mostly smaller on the eastern side of the swath than on the western 280 

side. The reason for this cross-track difference is not yet fully understood, but it could be due to stronger reflection of sky light 

on the eastern side of the swath over ocean (Vasilkov et al., 2017). Similar cross-track dependence has also been found over 

land and could be due to generally stronger scattering in the back scattering direction (on the eastern side) than in the forward 

scattering direction (on the western side), as demonstrated by Qin et al. (2019). 

As expected, the retrieved SCDs are quite small over the remote Pacific covered by these swaths (Fig. 2a-d). As a result, the 285 

relative uncertainties (calculated as the ratio between the estimated uncertainties and the retrieved SCDs) are fairly large (see 

Fig. S1 in the supplemental information). About half of the pixels have relative uncertainties within ±100% and ~80% have 

relative uncertainties within ±275%. In contrast, pixels that have substantial real SO2 signals (e.g., downwind of the Kilauea 

volcano in Hawaii) have relative uncertainties of ~20-50%.     

3.1.2 SCD uncertainties estimated from statistical analysis 290 

Another common way to assess SCD uncertainties is to calculate the standard deviation of SCDs over background areas that 

have small natural variability in SO2 such as the equatorial Pacific (e.g., Li et al., 2013). In Fig. 2m-2p, we map the standard 

deviation of SO2 SCDs within 2° latitude segments of each row for the same OMI swaths as in Fig. 2i-2l. Calculations are 

limited to 60°S-60°N, as SZAs and ozone amounts tend to be more variable at higher latitudes. Also, pixels with large SCDs 

(> 1 DU) are excluded. As compared with the SCD uncertainties estimated from the fitting residuals (hereafter referred to as 295 

eSCD), the standard deviation of SCDs (hereafter referred to as sSCD) is considerably greater especially at higher latitudes. This 

is to be expected, given that sSCD includes not only just noise from the spectral fit, but the natural variability in SCDs. For 

instance, sSCD is enhanced downwind of Hawaii (Fig. 2p), likely reflecting larger variability caused by the SO2 plume from 

the Kilauea volcano (Fig. 2d). As for the spatial pattern, there are similarities between sSCD and eSCD, with both being generally 

smaller at low latitudes and over clouds. As with eSCD, sSCD also appears to be smaller on the eastern side of the swath. 300 

A more detailed comparison between eSCD and sSCD for selected OMI rows can be found in Fig. 3. eSCD is ~0.15 DU over the 

equatorial Pacific (20°S-20°N) and with few exceptions, is mostly < 0.2 DU at all latitudes. sSCD shows much larger variability, 

ranging from ~0.2 DU near the equator to over 0.5 DU at around 60°S and 60°N in some cases. The difference between eSCD 

and sSCD is generally less than 0.1 DU at low latitudes but can exceed 0.2 DU at high latitudes. If we consider eSCD as a lower 

bound for SCD uncertainties and sSCD as an upper bound, we arrive at the conclusion that the SCD uncertainties from the new 305 

algorithm are ~0.15-0.3 DU between ~40°S and ~40°N, and ~0.2-0.5 DU at higher latitudes. For a moderately polluted area 

in the middle latitudes (e.g., ~30-40°N) with an SCD of ~0.3 DU, this translates into a relative uncertainty of ~50-100%.  

3.2 Long-term changes in SCDs over remote background areas 

Drift in retrievals over background areas may introduce artificial trends or mask actual trends over polluted regions, and the 

long-term stability in the OMI anthropogenic SO2 dataset is of great importance for detecting regional changes. Here we 310 
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examine temporal changes in SCDs from the new algorithm over the equatorial East Pacific (20°S-20°N,130-150°W) 

throughout the OMI record from October 2004 to December 2019. To ensure consistency in sampling, we only use data from 

rows 6-24 (1-based) that are considered to be minimally affected by the OMI row anomaly. Following McLinden et al. (2016), 

we also try to minimize the impact of volcanic eruptions. This is achieved by excluding days when the 99th percentile of SO2 

SCDs over the East Pacific (80°S-80°N,130-150°W) exceeds 0.8 DU. The daily median and mean of SO2 SCDs for the 315 

equatorial East Pacific are shown in Fig. 4a and 4b, respectively. A linear regression analysis indicates that both median and 

mean SCDs have statistically significant (the linear correlation coefficient, r = 0.18, and p < 0.05 from two-tailed t-test) but 

very small changes over time, at 2.0∙10-4 and 2.3∙10-4 DU/year, respectively. In other words, over the entire ~15 year OMI 

record to date, the daily mean of background SO2 SCDs has only increased slightly by ~ 0.0035 DU (~0.003 DU for median). 

This long-term stability in the SO2 record is an indicator of the stable performance of the OMI instrument itself (Schenkeveld 320 

et al., 2017), and it also confirms the ability of the PCA-based retrieval method to account for some of the drifts in 

measurements. 

On the other hand, the standard deviation of SO2 SCDs (Fig. 4c) over the equatorial East Pacific shows more notable changes, 

growing from ~0.19 DU in 2005 to ~0.21 DU in 2019 at a rate of  ~1.5∙10-3 DU/year. This represents an approximately 10% 

increase in SCD uncertainties in ~15 years. The well below 1% per year rise in retrieval noise can be attributed to instrument 325 

degradation over time (Schenkeveld et al., 2017). A recent study (Zara et al., 2018) reports a faster growth rate in the 

uncertainties for OMI NO2 retrievals (1-2% per year) and a more comparable rate for HCHO retrievals (< 1% per year). Note 

that NO2 retrievals rely on measurements at visible wavelengths from a different detector (VIS) of the OMI instrument than 

SO2 and HCHO retrievals (UV-2). 

An examination of the daily 5th and 95th percentiles of the SCDs (Fig. 4d and 4e) over the same area reveals larger changes in 330 

opposite directions, at -2.0∙10-3 and 2.7∙10-3 DU/year, respectively. As a result, the spread or the difference (Fig. 4f) between 

these two time series has increased by a total of almost 0.1 DU over the 15-year period. These changes in the percentiles 

suggest that the growth in the standard deviation is likely driven by more outliers in the retrieved SCDs. Indeed, the distribution 

of SO2 SCDs over the equatorial East Pacific has grown broader since 2005 (see Fig. S2 for plots of probability density function 

for different years). For 2005, 43.2% (98.5%) of the OMI pixels over the area have SCDs between -0.1 and 0.1 DU (-0.5 to 335 

0.5 DU). The percentage has decreased to 41.3% (98.1%) by 2012, and further to 39.6% (97.4%) by 2019. Overall, the increase 

in the noise in the SCD retrievals is quite modest, pointing to good long-term stability of the new OMI anthropogenic SO2 

dataset. 

3.3 Discussion on uncertainties in SO2 Jacobians  

In addition to the spectral fit, uncertainties in the SO2 VCDs also depend on the Jacobian calculations. We have conducted 340 

several sensitivity tests using the VLIDORT RT code to investigate potential sources of uncertainties in Jacobians/AMFs. Note 

that these tests are not meant to be inclusive; rather, the aim is to shed some light on the relevance of different aspects in the 
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error budget. Detailed results of these tests can be found in the supplemental information (Figs. S3-S8). Here we summarize 

the potential error sources.   

1) Uncertainties in forward radiative transfer model assumptions (such as SO2 cross sections) and the table lookup 345 

interpolation scheme. Laboratory-measured cross sections usually have uncertainties < 10%, and RT codes have uncertainties 

of about 5% (Theys et al., 2017). As for LUT interpolation, our tests indicate that the associated uncertainties should be 

generally within 5-10% at altitudes relevant to anthropogenic SO2 retrievals (Fig. S3). 

2) Uncertainties in a priori profiles. Comparisons of monthly a priori profiles (Sect. 2.4.2) with available aircraft 

measurements (e.g., Dickerson et al., 2007) suggest that the climatology lacks the day-to-day variations associated with 350 

synoptic weather systems, and that may lead to ~15-40% of error for individual pixels over polluted regions such as 

northeastern China (Fig. S4). Model-simulated daily a priori profiles may better capture short-term changes in SO2 vertical 

distribution but are currently not yet implemented in our retrievals.  

3) Uncertainties in surface reflectivity, cloud fraction, and cloud pressure. Assuming a surface reflectivity of ~0.05, a 

typical uncertainty of 0.01 causes ~7% uncertainty in SO2 Jacobians under cloud-free conditions (Fig. S5). Depending on the 355 

vertical distribution of SO2 and cloud height, clouds can either enhance (albedo effect) or reduce (shielding effect) OMI 

sensitivity. For polluted areas where SO2 is predominantly in the lower troposphere, an uncertainty of ~0.05-0.1 in cloud 

fraction leads to an uncertainty of ~5-10% in Jacobians (Fig. S6), while an uncertainty of ~50-100 hPa in cloud pressure 

translates into ~25-40% uncertainty in Jacobians (Fig. S7).  

4) Lack of explicit consideration for aerosol effects on SO2 Jacobians. In the IPA approach (Sect. 2.4.1), the contribution 360 

of aerosols to TOA radiances is treated as if they arose from clouds. As a result, the aerosol scattering effects are implicitly 

accounted for by including aerosols as part of the effective cloud fraction. For non-absorbing or weakly absorbing aerosols 

(Fig. S8a and S8b), such implicit treatment may cause ~10-30% uncertainties in SO2 Jacobians, but the sign (shielding vs. 

albedo effects) and the size of the errors are determined by the vertical distributions of aerosols and SO2, as well as the 

cloud/scene pressures from the cloud algorithm. For UV absorbing aerosols such as dust and smoke (Mok et al., 2016), the 365 

uncertainties can amount to ~50% (Fig. S8c).  

The estimated uncertainties for the above aspects are mostly comparable with the error analysis conducted by Theys et al. 

(2017) for the TROPOMI SO2 algorithm. Both studies point to the importance of SO2 a priori profiles, cloud pressure, and the 

implicit treatment of aerosol effects, with the latter two associated with the IPA approach. If we assume that all these 

uncertainty terms are independent, the overall uncertainties of column Jacobians/AMFs are estimated to be ~30-80% for 370 

individual pixels. For a polluted area where the uncertainties in SCDs are ~50-100%, the uncertainties in the retrieved SO2 

VCDs would be ~60-130% on an individual pixel basis. This is slightly higher than a previous estimate (45-110%) for 

SNPP/OMPS HCHO retrievals also using the PCA-based method (Li et al., 2015), as the present study considers additional 

error arising from the aerosol effects.   
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4 Example Results 375 

In this section, we present examples from the new OMI anthropogenic SO2 dataset (OMSO2 V2), focusing on the retrievals 

over snow/ice (Sect. 4.2) and long-term changes in SO2 pollution over China and India (Sect. 4.3).  

4.1 Comparison with the previous version OMI PBL SO2 dataset 

As an example, Fig. 5 compares the global mean SO2 VCDs for May 2007 between the previous PBL SO2 retrievals (Fig. 5a, 

OMSO2 V1.3), the new anthropogenic SO2 retrievals using the same constant Jacobian spectrum (Fig. 5b), and the new 380 

retrievals using pixel-specific Jacobians (Fig. 5c). With the constant Jacobians, the differences between Fig. 5a and Fig. 5b are 

solely driven by changes in data screening and spectral fitting schemes (see Sect. 2.2 and 2.3). Overall, the two retrievals are 

quite similar. The most obvious difference is found over the areas affected by the SAA, where the mean (standard deviation) 

is 0.21 (0.48) and  0.08 (0.32) DU, respectively, for the previous PBL (Fig. 5a) and new (Fig. 5b) SO2 VCDs. Outside of the 

SAA-affected areas, the two datasets are highly correlated, with a spatial correlation coefficient (r) of 0.89 and a slope of 0.9 385 

(slope is ~1 is when using the reduced major axis method in the regression analysis). Over the equatorial Pacific, the new SO2 

VCDs in Fig. 5b also have a slightly more positive background than the PBL SO2 retrievals (mean VCD: 0.06 vs. -0.03 DU), 

but the noise level is quite comparable (standard deviation: 0.11 vs. 0.10 DU). The pixel-specific Jacobians and GEOS-5 a 

priori profiles implemented for the retrievals in Fig. 5c further reduce noise and biases over background areas. For example, 

over the equatorial Pacific, the mean and standard deviation of SO2 VCDs are 0.01 and 0.02 DU, respectively.  The large 390 

reduction in SO2 VCDs over northern Russia in Fig. 5c is due to revised Jacobian calculations over snow/ice and is further 

discussed in Sect. 4.2. 

4.2 Retrievals over snow/ice 

In Fig. 6, we examine the SO2 VCDs over Norilsk, Russia, home to the world’s largest anthropogenic SO2 source (Norilsk 

Nickel smelters, Fioletov et al., 2016). As shown in Fig. 6c and 6d, there is a large seasonal change in SO2 VCDs from the 395 

previous OMI PBL SO2 dataset, likely caused by snow/ice effects in April that were previously unaccounted for. The maximal 

SO2 VCD within the domain for April 2007 is 7.0 DU, a factor of two greater than the maximum of 3.5 DU for July of the 

same year. Similarly, the mean SO2 VCD for April (0.14 DU) is over three times greater than that for July (0.04 DU). In 

comparison, the seasonal change in the new OMI anthropogenic SO2 dataset over the same area is much smaller (Fig. 6a and 

6b). The maximal SO2 VCDs for the same two months are 2.5 and 3.4 DU, respectively, whereas the corresponding mean SO2 400 

VCDs are 0.07 and 0.04 DU. Note that the maximal and mean SO2 VCDs for July are nearly identical between the two datasets, 

implying that the updated retrievals over snow/ice are at least partly responsible for the more gradual and realistic seasonal 

change in the new dataset. 

For another case of retrievals over snow/ice, refer to Fig. 7 that compares the new OMI anthropogenic SO2 VCDs over snow-

covered and snow-free surfaces during a historic snowstorm in eastern China in January to February, 2008. Retrievals for snow 405 
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pixels (Fig. 7a) and snow-free pixels (Fig. 7b) are spatially well-correlated (r = 0.68), but retrievals over snow show generally 

stronger SO2 signals over source areas that can be identified from the bottom-up emission inventory (Crippa et al., 2018) in 

Fig. 7c. This appears to provide evidence that highly reflective snow/ice surfaces can enhance OMI sensitivity to emission 

sources even at relatively large SZAs during wintertime, although only modest improvement in the correlation between OMI 

VCDs and the bottom-up emissions is found here (r = 0.29 between bottom-up emissions and over snow VCDs vs. r = 0.26 410 

between emissions and snow-free VCDs). 

4.3 Long-term regional trends in SO2 VCDs 

With stable retrievals over background areas (Sect. 3.2), the new OMI anthropogenic SO2 dataset is particularly suitable for 

monitoring long-term regional trends in SO2 pollution. Here we examine the changes in OMI SO2 VCDs over two polluted 

regions, eastern China and India, from 2005 to 2019. To ensure consistent sampling throughout the entire period, we use data 415 

from the same set of OMI rows (6-24, 1-based) that are minimally affected by the row anomaly. We also focus on the warm 

season (April to October) when OMI has overall better sensitivity to SO2. The results are presented in Fig. 8 for eastern China 

and in Fig. 9 for India. As shown in Fig. 8, SO2 VCDs over China are much greater at the beginning of the OMI record than 

in recent years. The average total SO2 mass within the domain, calculated by summing up the SO2 mass from all grid cells that 

have VCD > 0.1 DU each year, reached its peak at 27.5 kt in 2007 and then saw decreases in three consecutive years to the 420 

level of 15.6 kt in 2010, reflecting the effects of pollution control measures (Li et al., 2010) as well as the global financial 

crisis (Krotkov et al., 2016). The SO2 mass rebounded to 20.0 kt in 2011 and remained relatively stable at around 16 kt, before 

starting to decrease sharply since 2014 to reach 5.7 kt in 2016 and 3.2 kt in 2019, marking a drastic drop of ~88% from the 

peak in 2007. As discussed in our previous study (Li et al., 2017a), such a large reduction in SO2 over China is likely a result 

of major efforts undertaken by the Chinese government to address air quality issues. Adjusting the threshold of VCD (e.g., to 425 

0.05 DU) leads to different estimates of the total mass (e.g., to 29.6, 18.3, 8.8, 7.2 kt in 2007, 2010, 2016 and 2019, 

respectively), but does not significantly alter the overall relative trend. 

For India, the trajectory of SO2 pollution is quite different from that of China. The total SO2 mass within the domain in Fig. 9 

started at ~1.2 kt in the first few years, increasing to 3.7 kt in 2016 and remaining at approximately at the same level for the 

next few years (e.g., 3.6 kt for 2019). Again, adjusting the VCD threshold from 0.1 to 0.05 DU changes the absolute amount 430 

of the estimated SO2 mass (to ~4 kt in 2005 and 2006, and 7.4 and 6.7 kt in 2016 and 2019, respectively), but the qualitative 

trend remains unchanged. The analysis here extends our previous study (Li et al., 2017a) and confirms the projection that India 

is indeed becoming the largest emitter of anthropogenic SO2 in the world. 

5 Conclusions 

We have made extensive updates to the PCA-based OMI anthropogenic SO2 retrieval algorithm for the version 2 OMI SO2 435 

product (OMSO2 V2). The most important change involves the use of expanded lookup tables and model-based a priori 
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profiles to account for the effects of various factors on SO2 Jacobians for individual pixels, including observation geometry, 

ozone column amount and profile, cloud fraction and cloud pressure, surface pressure and reflectivity, as well as the vertical 

distribution of SO2. Special consideration has also been given to retrievals over snow/ice. Other significant updates include 

new schemes that screen for pixels having relatively large volcanic or anthropogenic SO2 signals to minimize their impacts on 440 

the PCA analysis and also an updated spectral fitting scheme that suppresses noise over the areas affected by the SAA. 

Both spectral fitting and Jacobian calculations contribute to the uncertainties in the new OMI anthropogenic SO2 retrievals. 

The contribution from the spectral fit part is represented by uncertainties in SCDs, which are largely driven by the signal-to-

noise ratio of radiance measurements. This is evidenced by generally lower SCD uncertainties over clouds and snow/ice-

covered surfaces and also at smaller SZAs. The SCD uncertainties on an individual pixel basis, estimated through both the 445 

fitting residuals and a statistical analysis, are ~0.15-0.3 DU between ~40°S and ~40°N and ~0.2-0.5 DU at higher latitudes. 

As for uncertainties in Jacobian calculations, the main contributions come from a priori profiles, cloud pressure and the lack 

of explicit treatment for aerosol effects. The overall uncertainties in Jacobians are estimated at ~50-100% over polluted areas. 

For a mid-latitude pixel with an SO2 SCD of ~0.3 DU, typical of a moderately polluted area, the overall uncertainty in the 

VCD is ~60-130%. 450 

The long-term stability of OMI anthropogenic SO2 retrievals has also been assessed by examining the daily statistics of SCDs 

over the equatorial East Pacific. The mean and median SO2 SCDs show little change throughout the 15-year data record from 

2004 to 2019, increasing by ~0.0035 DU and ~0.003 DU, respectively. This highlights the remarkable stability of both OMI 

measurements and the PCA-based retrieval approach that intrinsically accounts for some of the instrument drifts. The standard 

deviation of SCDs, as a measure of retrieval noise, has increased by ~0.02 DU or ~10% since the beginning of the OMI 455 

mission, likely driven by more outliers in retrievals as suggested by the widening range between the 5th and 95th percentiles. 

Nonetheless, the annual increase in retrieval noise is well below 1% and comparable with or slower than the growth of noise 

in OMI HCHO and NO2 retrievals (Zara et al., 2018). 

Comparisons with the previous OMI PBL SO2 dataset in OMSO2 V1.3 show that the new algorithm leads to further 

improvements in data quality. When using the same Jacobians, the noise in VCDs over the equatorial Pacific is comparable 460 

between the two versions, but the updated spectral fit in V2 reduces the standard deviation in the monthly averaged VCDs 

over the SAA areas by about a third. The use of pixel-specific Jacobians further reduces retrieval noise over the background 

areas. Updated retrievals over snow/ice yield more gradual and realistic seasonal changes in SO2 VCDs over the large source 

in Norilsk, Russia. Retrievals for snow-covered pixels over eastern China during a historic snowstorm in early 2008 also show 

enhanced sensitivity to SO2 sources, as compared with retrievals for snow-free pixels from the same period. Finally, SO2 VCDs 465 

from the new anthropogenic SO2 dataset show a continued reduction in SO2 over eastern China since 2016 and a gradual 

overall increase over India from the beginning of the OMI record, confirming previous reports on the different trajectories of 

SO2 pollution between the two countries. 

In summary, the new OMI anthropogenic SO2 dataset in OMSO2 V2 has several improvements over the previous PCA-based 

OMI PBL SO2 dataset in OMSO2 V1.3. Looking forward, we are planning additional updates to the next version OMSO2 470 

https://doi.org/10.5194/amt-2020-186
Preprint. Discussion started: 1 July 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

product. These include the use of daily a priori profiles from model simulations that better capture day-to-day variations in 

SO2 vertical distribution, explicit consideration of aerosol effects on SO2 Jacobians, as well as a more comprehensive error 

analysis for Jacobian calculations to assign an estimated VCD uncertainty for each pixel. 
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Tables 

Table 1. Nodes of the solar zenith angle (SZA), viewing zenith angle (VZA), and surface/cloud pressure, as used in the pre-

computed SO2 Jacobians lookup tables. 

Parameter Nodes 

SZA 0° 15° 30° 45° 60° 70° 77° 81° 

VZA 0° 15° 30° 45° 60° 70° 75° 80° 

Surface/cloud 

pressure 

(hPa) 

243.2 374.9 526.9 638.3 841.0 1013.2 
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Figure 1: Flowchart of the PCA-based spectral fitting algorithm for the anthropogenic SO2 dataset in OMSO2 V2 product. 
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Figure 2: (a-d) The SO2 slant column densities for four OMI swaths over the remote Pacific on (a) January 4, (b) April 3, (c) July 1, 
and (d) October 3, 2007. (e-h) The reflectivity at 354 nm for the same swaths. (i-l) Estimated uncertainties in SO2 slant column 650 
densities (eSCD) for the same swaths. Cloudy or snow/ice covered areas have greater reflectivity and generally smaller errors in SO2 
SCDs. No retrievals were attempted for pixels with SZA > 75° that are grey-shaded. (m-p) The standard deviation of SO2 SCDs 
(sSCD) within 2° latitude segments of individual OMI rows for the same swaths. The spatial coverage for (m-p) is limited to 60°S to 
60°N as changes in observation conditions tend to be larger at higher latitudes. In addition, Pixels with SCD > 1 DU or SZA > 75° 
and segments with < 10 valid pixels are excluded from the statistical analysis. 655 

 
 

 
Figure 3: Mean SO2 SCD uncertainties estimated from fitting residuals (eSCD , red triangles) and SCD standard deviation (sSCD, blue 
plus signs) for 2° latitude segments between 60°S and 60°N from selected OMI rows from orbit 14456 on April 3, 2007. 660 
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Figure 4: Daily (a) median, (b) mean, (c) standard deviation, (d) 5th percentile, (e) 95th percentile and (f) the difference between 5th 
and 95th percentiles of OMI SO2 SCDs over the equatorial East Pacific (20°S-20°N,130-150°W) during the period of 2004-2019 
indicate stable long-term performance of the PCA-based anthropogenic SO2 algorithm. Estimated linear trends and correlation 
coefficients are given for each time series. Only rows deemed to be minimally affected by the row anomaly are included in the 665 
statistical analysis. Days with possible influence of large volcanic SO2 eruptions have also been excluded.  
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Figure 5: Monthly mean OMI SO2 VCDs for May 2007 from (a) the previous PBL SO2 dataset in OMSO2 V1.3 using constant 
Jacobians, (b) the new OMI anthropogenic SO2 retrievals using the same Jacobians as in (a), and (c) the new OMI anthropogenic 670 
SO2 dataset in OMSO2 V2 using pixel-specific Jacobians as described in Sect. 2.4. Data are gridded to a horizontal resolution of 
0.25° ´ 0.25°, and only those pixels near the center of the OMI swath (rows 6-55, 1-based), with SZA < 70°, and with a small cloud 
radiance fraction (CRF < 0.3) are included. 
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Figure 6: Monthly mean SO2 VCDs from the new anthropogenic SO2 dataset in OMSO2 V2 for (a) April and (b) July, 2007 using 675 
pixel-specific Jacobians, showing comparable SO2 over the area around Norilsk, Russia between the two months. Monthly mean 
SO2 VCDs from the PBL SO2 dataset in OMSO2 V1.3 show much greater apparent SO2 in (c) April than in (d) July, due to the 
snow/ice effects that are unaccounted for with the constant Jacobians.  Data have been filtered and gridded following the same 
criteria as in Fig. 5. 

 680 
Figure 7: Mean SO2 VCDs from the new anthropogenic SO2 dataset in OMSO2 V2 for January to February 2008 over eastern China 
from pixels identified to be (a) cloud-free and covered by snow and (b) cloud-free (CRF < 0.1) and snow-free. Retrievals over snow 
pixels have enhanced signals over source areas that can be identified from (c) bottom-up emission estimates. Only grid cells having 
at least 3 observations from both snow and snow-free pixels during the two month period are shown.  
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 685 
Figure 8: Mean warm season (April to October) OMI SO2 VCDs over eastern China from the new anthropogenic SO2 dataset in 
OMSO2 V2 for different years during 2005-2019. Data have been gridded to 0.25° ´ 0.25° resolution using pixels from OMI rows 6-
24 (1-based) with cloud radiance fraction < 0.3, SZA < 65° and AMF at 313 nm > 0.3. Mean SO2 VCDs are calculated from the daily 
gridded data for each year, after excluding days potentially affected by large volcanic plumes. 
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 690 
Figure 9: Same as Fig. 8 but for India. 
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