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Abstract 1 
Low-cost sensors for measuring particulate matter (PM) offer the ability to understand 2 

human exposure to air pollution at spatiotemporal scales that have previously been 3 

impractical. However, such low-cost PM sensors tend to be poorly characterized, and 4 

their measurements of mass concentration can be subject to considerable error. Recent 5 

studies have investigated how individual factors can contribute to this error, but these 6 

studies are largely based on empirical comparisons, and generally do not examine the 7 

role of multiple factors simultaneously. Here, we present a new physics-based framework 8 

and open-source software package (opcsim) for evaluating the ability of low-cost optical 9 

particle sensors (optical particle counters and nephelometers) to accurately characterize 10 

the mass loading of aerosol particles. This framework, which uses Mie theory to calculate 11 

the response of a given sensor to a given particle population, is used to estimate the 12 

fractional error in mass loading for different sensor types, given variations in relative 13 

humidity, aerosol optical properties, and the underlying particle size distribution. Results 14 

indicate that such error, which can be substantial, is dependent on the sensor technology 15 

(nephelometer vs. optical particle counter), the specific parameters of the individual 16 

sensor, and differences between the aerosol used to calibrate the sensor and the aerosol 17 

being measured. We conclude with a summary of likely sources of error for different 18 

sensor types, environmental conditions, and particle classes, and offer general 19 

recommendations for choice of calibrant under different measurement scenarios.  20 

 21 

1. Introduction 22 

Human exposure to aerosols is associated with adverse health impacts and increased 23 

mortality (Apte et al., 2018; Burnett et al., 2018; Cohen et al., 2017; Dockery et al., 1993). 24 

The source and composition of aerosols has been linked to a range of negative health 25 

impacts (Antonini et al., 2003; Hart et al., 2012; Henneberger and Attfield, 1997; Lipsett 26 



 3 

and Campleman, 1999), with more than 4 million annual deaths worldwide attributed to 1 

ambient particulate matter pollution (Cohen et al., 2017). Accurate estimates of aerosol 2 

sources and health impacts rely critically on measurements of particulate matter mass 3 

concentrations across indoor and outdoor environments worldwide. 4 

 5 

In many countries, particulate matter (PM) pollution is regulated by national or local 6 

government agencies (e.g., the US EPA in the United States) and is typically measured 7 

using federally approved reference methods that are high in accuracy and precision. The 8 

existing infrastructure is generally designed to measure regional-scale air pollution, in 9 

order to enforce (and assess the effectiveness of) air quality regulations. However, particle 10 

pollution can vary in space and time at much finer resolution than can be measured using 11 

standard monitoring technologies, due to their relatively high cost and size. Over the past 12 

several years, new technologies have emerged at price points (<$2000) that allow PM 13 

measurements to be made with much higher spatiotemporal resolution, even down to 14 

the individual human level (Koehler et al., 2019; Tryner et al., 2019a, 2019b). These devices 15 

are physically small, use very little power, and can easily be deployed at scale. As a result, 16 

such sensors are ideally suited for use in dense distributed sensor networks, providing 17 

high-resolution air quality measurements, as well in as personal monitoring, providing 18 

individuals with the ability to measure and understand their exposure to harmful air 19 

pollutants. As with all low-cost sensors (LCS), accuracy is of paramount concern; as shown 20 

by a number of recent laboratory and field-based evaluation studies (Crilley et al., 2018; 21 

Dacunto et al., 2015; Di Antonio et al., 2018; Holstius et al., 2014; Levy Zamora et al., 2019; 22 

Malings et al., 2020; Northcross et al., 2013; Sousan et al., 2016b, 2016a; Wang et al., 23 

2015), PM sensors can perform quite poorly without additional constraints or calibrations.  24 

 25 
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Most low-cost PM sensors measure particles via light scattering. Sampled particles 1 

intercept a beam of light (typically from a laser or LED with a wavelength between 405 2 

and 780 nm), and the scattered light is measured and correlated to a PM mass 3 

concentration. In this work, we refer to such instruments as optical particle sensors (OPSs). 4 

OPSs can be broken down into two main types, nephelometers and optical particle 5 

counters (OPCs). Nephelometers measure the particles as an ensemble, gathering light 6 

scattered by all particles across a wide range of angles, typically 7°-173° to avoid pure 7 

forward and backward scattering (Abu-Rahmah et al., 2006; Ahlquist and Charlson, 1967; 8 

Anderson et al., 1996). The total scattering amplitude is then correlated to a mass 9 

measurement made by a reference instrument. (Nephelometers that measure scattered 10 

light at a single angle are sometimes referred to as photometers; for the purposes of this 11 

work we consider photometers to be a subclass of nephelometer.) OPCs, by contrast, 12 

detect particles individually, providing information on their number and size. Light 13 

scattered by each individual particle is measured and each pulse is assigned to a size bin 14 

based on its total light intensity, resulting in a histogram which is converted to a mass 15 

loading once the entire distribution has been measured. While these technologies have 16 

been around for decades (Gucker et al., 1947; Patterson et al., 1926), they have recently 17 

become available at much lower cost due to the availability of small, inexpensive light 18 

sources and electronic components. 19 

 20 

The use of light scattering introduces a number of fundamental limitations for making PM 21 

mass measurements. Many of these arise from environmental conditions and/or the 22 

properties of the aerosol being measured; these can be especially problematic when 23 

calibration is done using only a single aerosol type or condition. A number of recent 24 

empirical studies of OPSs have investigated some of these limitations. These issues 25 

include: (1) the inability to adapt to changes in the particle size distribution (Dacunto et 26 
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al., 2015; Wang et al., 2015); (2) the hygroscopic growth of particles due to changes in 1 

ambient relative humidity (Crilley et al., 2018; Di Antonio et al., 2018; Malings et al., 2020; 2 

Zheng et al., 2018); (3) changes in scattering efficiency due to differences in aerosol 3 

optical properties (Crilley et al., 2018; Di Antonio et al., 2018); and (4) the need for aerosol-4 

specific correction factors to account for differences in density (Dacunto et al., 2015; 5 

Northcross et al., 2013). While these studies have examined how these individual effects 6 

in isolation may affect PM accuracy, to our knowledge there has not been a systematic, 7 

comprehensive investigation of all these factors together. Complicating matters is the 8 

fact that these individual properties are all intertwined – for example, when relative 9 

humidity increases, it can cause particles to take up water, which can change not only 10 

their size and mass but also their shape, refractive index, and density. 11 

 12 

To examine the relative contribution of error by these various sources, we have 13 

developed a model that describes how a given sensor will respond to different aerosols 14 

under a wide range of conditions. This model is based entirely on the underlying physics 15 

of light scattering (Mie Theory) rather than empirical relationships obtained through 16 

laboratory or field measurements. While previous work has modeled nephelometers and 17 

OPCs in a similar way (Walser et al., 2017), we believe this is the first detailed treatment 18 

of light scattering as it relates specifically to LCS. We use this model to isolate the relevant 19 

sources of error and develop a better understanding of the limitations (as well as 20 

strengths) of different kinds of OPSs. 21 

 22 

The modeling tool described here, which is open source and freely available, can be used 23 

for the systematic study of how different OPSs may detect various aerosol types under a 24 

range of environmental conditions. This enables new insights into the potential errors 25 

associated with a given PM measurement, optimal strategies for calibrating OPSs, the 26 
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development of algorithms for data analysis, and ultimately in the design of the sensors 1 

themselves. The objective of this work is to describe the model and software and to 2 

investigate broad influences on aerosol properties and sensor parameters on 3 

measurement performance. We do not investigate the performance of individual 4 

commercially available sensors under the full range of conditions expected in the 5 

atmosphere; but such studies are enabled by this modeling tool and are an important 6 

future extension of this work. 7 

2. Methods 8 

The modeling framework described in this section is available as an open-source (MIT 9 

license) python library (opcsim) and has been made available on GitHub. Detailed 10 

documentation, including installation instructions and examples, are available online 11 

(Hagan and Kroll, 2019). The framework, called “opcsim”, consists of two primary 12 

components: the code that models OPSs and implements the Mie Theory algorithms 13 

(Bohren and Huffman, 1983; Sumlin et al., 2018), and the code to build and evaluate 14 

aerosol distributions. 15 

 16 
We follow the same general modeling pattern regardless of sensor type. Steps include: 17 

(1) defining the device based on its key physical parameters; (2) calibrating the device to 18 

a specific aerosol type (for OPCs) or aerosol distribution (for nephelometers); and (3) 19 

evaluating each particle in an aerosol population by computing the scattered light signal 20 

using Mie theory and converting that signal to the sensor output based on its calibration. 21 

In the following sections we describe how the aerosol population is described by the 22 

model, followed by how the sensors themselves are treated. 23 

 24 
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2.1 Representing an aerosol distribution 1 

We represent an aerosol distribution as the sum of n lognormal modes, where each mode 2 

i is defined by its geometric mean particle diameter (D"!"), geometric standard deviation 3 

(σ"), and number concentration (N"). The aerosol distribution as a function of diameter Dp 4 

(dN/dlogDp) is given by Equation 1 (Seinfeld and Pandis, 2006):  5 

 6 
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 8 

Additionally, we define the composition of the aerosol distribution by defining the 9 

particle density (ri), hygroscopic growth factor (ki), and complex refractive index (mi) for 10 

each mode. The role of these additional parameters is discussed in section 3, below. 11 

While more complex representations of the chemical makeup of the aerosol can be 12 

implemented using our modeling framework (i.e., core-shell representation of aerosols, 13 

complex aerosol mixtures, etc.), for the purposes of this manuscript we focus only on well-14 

mixed homogeneous particle modes, as described by Eq. 1. The above number 15 

distribution can be converted to a mass distribution (or total mass concentration) by 16 

assuming all particles are spherical with a known density (Seinfeld and Pandis, 2006). 17 

 18 
 19 

2.2 Representing Optical Particle Sensors 20 

2.2.1 Optical Particle Counters (OPCs) 21 

An OPC is defined by three instrument-specific parameters: (1) the wavelength of the 22 

light source (l), (2) the viewing angle for which the scattered light is collected, and (3) the 23 

number of discrete size bins and their widths. A bin, in this context, refers to a single 24 

“slice” of the aerosol size distribution, with a fixed width and units of particle diameter. 25 
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Typically, most low-cost OPCs have between 2-30 bins. These can be determined either 1 

by looking up the parameters in the device’s datasheet provided by the manufacturer or 2 

by making simple measurements. Bins are often chosen to reduce the uncertainty in 3 

correct bin assignments within the bounds of what the sensor is capable of detecting. 4 

Most low-cost OPCs have the smallest bin at Dmin ~500 nm, with cost typically being the 5 

driving factor – OPCs with lower Dmin employ more expensive, higher-quality optics and 6 

photodetectors, allowing them to detect smaller particles. In this work, the bin 7 

boundaries (and hence widths) used for a given OPC are taken from the manufacturer’s 8 

spec sheets, if available; otherwise they are calculated by generating an array of 9 

logarithmically-spaced bin boundaries for a set number of bins (nbins) between the 10 

minimum and maximum defined diameters (Dmin and Dmax, respectively). Most often, a 11 

light pulse generated by a single particle is assigned to exactly one bin; however, there 12 

exist approaches where bin assignments are made using a probability distribution (Walser 13 

et al., 2017); this is not implemented in this model but is an approach that could be added 14 

in the future.. Table 1 lists bin widths and other parameters for a few commercially 15 

available low-cost OPCs. 16 

 17 

Table 1. Characteristics of a selection of commercially available low-cost optical particle 18 
counters and nephelometers.  19 

Manufacturer OPS Type Model 

𝛌 

(nm) 

Viewing Angle 

(Ø1, Ø2) 

# of Size 

Bins 

Alphasense, Ltd. OPC OPC-N2 658 (32.0°, 88.0°) 16 (0.38 – 17.5 

µm) 

Alphasense, Ltd. OPC OPC-N3 658 (32.0°, 88.0°) 24 (0.35 – 40.0 

µm) 

Particle Plus OPC  785 (58.0°, 118.0°) 6 (0.3 – 10.0 µm) 

NOAA/Handix OPC POPS 405 (38.0°, 142.0°) 16 (0.132 – 3.65 

µm) 
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Plantower Nephelometer PMS5003 ~650 ?1 6 (0.3 – 10+ µm)2 

Sharp Nephelometer 

(Photometer) 

GP2Y1010AUOF 870-

980 

?1 1 (?)1 

Shinyei Nephelometer 

(Photometer) 

PPD42NS 870-

980 

?1 1 (>1 µm) 

Samyoung Nephelometer 

(Photometer) 

DSM501A 870-

980 

?1 1 (>1 µm) 

1 Unknown; not provided in the manufacturer’s technical data sheet or the technical literature 1 
2 The PMS5003 reports six bins; however these are not actual size bins, but rather software-2 

computed results (He et al., 2020). 3 

 4 

OPCs are calibrated by relating the scattered light intensity – a combination of the 5 

particle’s scattering cross section (Cscat) and laser intensity – to the particle diameter. 6 

Practically, this is done by using calibration aerosols with known optical properties and 7 

size and generating a calibration curve between the test aerosol and the electronic pulse 8 

height generated by that aerosol. After repeating this process for many sizes, a calibration 9 

curve can be generated. Here, we compute the Cscat values using Mie theory using 10 

attributes of the calibration aerosol. To simplify the model, we make several assumptions, 11 

including: (1) all particles are spherical and homogeneous (well-mixed); (2) the laser 12 

intensity is constant, implying all particles are perfectly centered in the beam of the laser; 13 

and (3) the photodetector and electronics are 100% efficient, and so we do not consider 14 

the impact of signal-to-noise limitations.  15 

 16 

As most low-cost OPCs contain an elliptical re-focusing mirror to gather the scattered 17 

light across many angles, we compute the integrated light scattering intensity following 18 

a procedure first introduced by Jaenicke and Hanusch (Jaenicke and Hanusch, 1993). Mie 19 

theory calculations are implemented using equations by Bohren and Huffman (Bohren 20 

and Huffman, 1983). The scattering cross-section is calculated as: 21 
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 3 

where λ is the wavelength of incident light, Θ is the viewing angle (which ranges from Θ3 4 

to Θ*), and i3 and i* are the intensity distribution functions (Bohren and Huffman, 1983).  5 

 6 

Figure 1 depicts the calibration curve generated for an OPC with the characteristics of 7 

the Alphasense OPC-N2 (Table 1), using polystyrene latex spheres (PSLs) of different 8 

diameters for calibration. Eq. 2 was used to compute the theoretical Cscat values (y axis), 9 

integrated across the entire viewing angle, for a range of particle diameters (x axis). The 10 

Cscat values at each bin boundary (green dots in Fig. 1) are then computed, and spline 11 

interpolation is used between each individual bin boundary to generate a mapping 12 

between the scattering amplitude and its corresponding bin assignment. In practice, this 13 

operates as a lookup table – a particle crossing the laser generates a scattering amplitude 14 

which is associated with a specific ‘bin’ via the calibration.  15 
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 1 
Figure 1. Calibration data for an OPC with 16 discrete size bins between 0.38 – 17.5 µm. OPC 2 
parameters were chosen to match the Alphasense OPC-N2 (wavelength of 658 nm, viewing angle 3 
of 32-88°) using monodispersed polystyrene latex spheres (𝑚 = 1.592 + 0𝑗). The integrated 4 
scattering amplitude calculated using Mie theory is shown as the solid line, with points depicting 5 
the corresponding scattering amplitude at each of the bin boundaries. Shown as a shaded box is 6 
the range of scattering amplitudes that is assigned to the smallest size bin.   7 

 8 

For OPCs that measure scattered light across a wide angle, Cscat is generally a 9 

monotonically increasing function of the particle size. However, there may be cases where 10 

this is not true, typically due to the presence of Mie resonance (e.g., near Dp=1.5 µm in 11 

Fig. 1). When the function is not monotonic, we apply a smoothing algorithm (Cerni, 1983; 12 

Osborne et al., 2008) or merge together multiple bins (Pinnick et al., 1981; Walser et al., 13 

2017) and accept the tradeoff where we obtain a higher rate of correct bin assignment in 14 

exchange for reduced bin resolution. This non-monotonicity is less of an issue as the 15 
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viewing angle becomes wider, as the larger range of angles will “smooth out” any Mie 1 

resonances (Figure S1). The wide viewing angle thus offers two key advantages: (1) the 2 

total signal (pulse height) is larger, making it easier to detect small particles using 3 

inexpensive electronics; (2) the calibration curve is less susceptible to small changes in 4 

particle scattering cross-section. 5 

 6 

While an OPC sizes and counts individual particles, we generally are interested in 7 

evaluating the entire population of particles. To obtain the results for the entire 8 

population, we compute the scattering cross-section for each particle in the distribution, 9 

and assign it to a bin using the calibration curve generated previously – this results in a 10 

histogram with the total sum of particles in each discrete size bin over a period of time. 11 

Once we have the number distribution, we can compute the aerosol mass loading (PM) 12 

using Eq. (3): 13 

 14 

PM = ρ∑ N"
+
;
D!,"="       (Equation 3) 15 

 16 

where N" is the number concentration for a given size bin, D!," is the geometric mean 17 

diameter for a given size bin, and ρ is the particle density, chosen to be constant. We can 18 

integrate mass loadings between different diameters by summing only across a sub-19 

selection of bins (for example, if we intend to calculate the PM1  mass concentration, we 20 

would choose only the size bins corresponding to particles sized between 0-1 µm, 21 

whereas to calculate the PM2.5 mass concentration, we would use the bins corresponding 22 

to sizes between 0-2.5 µm). This approach for computing mass loadings is similar to that 23 

used by others (Di Antonio et al., 2018), though we use the geometric mean particle 24 

diameter as opposed to the mean particle diameter.  25 

 26 
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2.2.2 Integrating nephelometers 1 

Nephelometers gather the light scattered by an aerosol population across a wide range 2 

of angles to gather as much of the scattered light as possible, while avoiding the near-3 

forward and near-backward scattered light. Here, we define a nephelometer by the 4 

wavelength of its light source (l) and its viewing angle.  5 

 6 

In practice, nephelometers are calibrated empirically by correlating the total scattered 7 

light signal to a reference mass measurement (Dacunto et al., 2015; Sousan et al., 2016b; 8 

Wang et al., 2015). Within our model, we do the same by computing the total scattered 9 

light signal using Mie theory and then take the ratio of the scattered light to a calculated 10 

mass loading. The total scattered light signal is calculated by integrating Eq. 2 across the 11 

entire particle size distribution, resulting in a single scattered light intensity for a given 12 

aerosol distribution. The calibration factor is then calculated by taking the ratio of this 13 

value and the mass loading of the aerosol distribution, which is calculated by integrating 14 

the volume distribution and multiplying by the particle density (Equation 3). Once we 15 

have computed the calibration factor, we can calculate the mass loading for any aerosol 16 

distribution by multiplying the calibration factor by the calculated total scattered light 17 

signal. 18 

 19 

3. Results and discussion 20 

We use the model described above to isolate the relative source of error associated with 21 

various differences in physical and optical properties of aerosols, as well as with the 22 

devices themselves. We include both simple, targeted experiments probing the effects 23 

of changes in isolated properties, as well as more complex, realistic experiments that 24 

attempt to mimic real-world scenarios. In the latter case, we include a variety of aerosol 25 

types in our model runs to resemble real-world use-cases; aerosol types include urban 26 
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aerosol, wildfire emissions, marine aerosol, dust, and continental background. The 1 

physical and optical properties for these aerosols are summarized in Table 2. We discuss 2 

these results in the context of three particle sensors chosen to be representative of low-3 

cost OPSs: a nephelometer, which uses a 658 nm light source and has a viewing range of 4 

7°-173°, and two OPCs, both with 16 equally-spaced bins, a 658 nm light source, and a 5 

viewing angle of 32-88°. The two OPCs differ only in the minimum particle size measured: 6 

the ‘low-cost OPC’ is representative of commercial OPCs currently on the market and 7 

measures particles in the 0.38-17.5 µm size range; and the ‘high-end OPC’, representing 8 

an idealized OPC that can measure much smaller particles, with a detection range of 0.1-9 

17.5 µm. We note that many expensive OPCs cannot measure particles down to 100 nm; 10 

this lower size cutoff was chosen as an approximate smallest particle size that an optical 11 

sensor can detect. 12 

 13 

Table 2. Aerosol optical and chemical properties used in this work. 14 

    
 

Aerosol Type 
Refractive 

index 
Hygroscopicity 
parameter k6 

 
Density (g cm-3) 

Urban1 1.525+0.020j 0.40 1.35 
Background2 1.520+0.008j 0.25 1.45 

Marine3 1.384+0.001j 1.10 2.16 
Dust4 1.555+0.003j 0.03 2.60 

Wildfire5 1.570+0.002j 0.10 1.58 
 15 
1 (Chen et al., 2019; Cheung et al., 2019; Hussein et al., 2004; Jurányi et al., 2013; Raut 16 
and Chazette, 2007; Rissler et al., 2014; Shepherd et al., 2018; Wehner and 17 
Wiedensohler, 2003) 18 
2 (Levoni et al., 1997; Wang et al., 2014; Yin et al., 2015) 19 
3 (Levoni et al., 1997; Ueda et al., 2016; Zieger et al., 2017) 20 
4 (Koehler et al., 2009; Petzold et al., 2009; Rocha-Lima et al., 2018) 21 
5 (Bougiatioti et al., 2016; Laing et al., 2016; McMeeking, 2004; Shepherd et al., 2018) 22 
6 (Petters and Kreidenweis, 2007) 23 
 24 
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We begin by investigating the impact that water uptake, driven by changes in the ambient 1 

relative humidity, has on the ability of all three OPSs to infer PM2.5 mass. Next, we explore 2 

the impact of aerosol optical properties (namely, the complex RI), followed by the impact 3 

that perturbations in the underlying particle size distribution can have in the OPS’s ability 4 

to infer mass loadings. Finally, we summarize our results into general recommendations 5 

about each OPS type. Throughout, to provide a simple metric for the accuracy of OPS 6 

measurements, we present our results in terms of the ratio of the inferred or measured 7 

PM2.5 mass concentration (Mm) to the actual PM2.5 mass concentration (Ma) at 0% relative 8 

humidity. An Mm/Ma ratio of greater than one implies we are overestimating the PM2.5 9 

loading, whereas a value less than one implies we are underestimating it. 10 

 11 

3.1 Relative humidity and hygroscopic growth 12 

One of the most widely discussed sources of error for OPS measurements is that caused 13 

by water uptake (Crilley et al., 2018; Di Antonio et al., 2018; Malings et al., 2020; Wang et 14 

al., 2015; Zheng et al., 2018). As relative humidity increases, hygroscopic particles (those 15 

with non-zero hygroscopic growth parameters, 𝜅) become larger as they take up water 16 

(Petters and Kreidenweis, 2007), leading to an increase in scattering caused by their 17 

increase in size. Additionally, water uptake changes the optical and chemical properties 18 

of the aerosol (e.g., RI, density, etc.), which can complicate any corrections. The EPA 19 

requires PM2.5 measurements to be made at relative humidities between 30-40% (Chow 20 

and Watson, 1998) to minimize the effects of hygroscopic growth on samples; however, 21 

since very few low-cost OPSs control for relative humidity (for example, with an in-line 22 

dryer), this can often lead to discrepancies when performing a calibration by co-location 23 

or when comparing results between instrument types. 24 

 25 
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Figure 2 shows the impact that RH can have on the accuracy of an OPS. There is little 1 

effect until relative humidity reaches the deliquescence point of the aerosol, which 2 

depends on aerosol composition. At higher relative humidities, OPSs will tend to 3 

overestimate PM2.5 mass, especially for aerosols comprised of hygroscopic materials. 4 

When relative humidity approaches 95%, such overestimates in PM2.5 mass become 5 

exceedingly large: the OPCs observe a similar effect, with errors ranging from 100%-500% 6 

depending on the hygroscopicity of the aerosol. Nephelometers see a more pronounced 7 

effect with errors as high as 750% for extremely hygroscopic aerosols and 200%-300% 8 

errors for less hygroscopic aerosols.  9 

 10 

The larger error of the nephelometer is caused in part by the fact that the inferred PM2.5 11 

mass is directly proportional to the total scattered light, which has no upper limit. For the 12 

OPCs, particles that take up significant water can be assigned to larger size bins and thus 13 

will not be integrated in the PM2.5 mass calculation. At moderate humidities (50%-80%), 14 

errors for both the nephelometers and OPCs can vary by as much as 20%-50%, which is 15 

in agreement other published experimental studies on the subject (Crilley et al., 2018; Di 16 

Antonio et al., 2018; Malings et al., 2020; Zheng et al., 2018). In addition to overestimating 17 

mass loadings at high relative humidity due to hygroscopic growth, the OPCs 18 

underestimate the mass loadings across all relative humidities. This is not caused by 19 

relative humidity or a lack of hygroscopic growth, but instead is a result of the “missing 20 

mass” below the detectable threshold of the OPC. The low-cost OPC, which cannot 21 

detect particles smaller than 380 nm, misses between 30%-90% of the mass, whereas the 22 

high-end OPC, which can detect particles larger than 100 nm, misses very little mass for 23 

most aerosol types. The only exception is the marine aerosol, which has a refractive index 24 

that is substantially different than the aerosol with which the instrument was calibrated. 25 

 26 
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 1 

Figure 2. The accuracy in PM2.5 mass loading for a given particle sensor (Mm/Ma) as a function of 2 
relative humidity, for common aerosol types. All three particle sensors were calibrated with 3 
ammonium sulfate (number-weighted Geometric Mean (GM) = 200 nm, Geometric Standard 4 
Deviation (GSD) = 1.65). Details on the physical and optical properties of the various aerosols can 5 
be found in Table 2. 6 

 7 

3.2 Choice of calibration material and aerosol optical properties 8 

OPCs are calibrated by correlating the scattering amplitude of known particle sizes for a 9 

particles of a given composition (Gao et al., 2013). The relationship between scattering 10 

amplitude and bin assignment (i.e., particle size) is heavily dependent on the aerosol’s 11 

complex refractive index (RI). Figure 3 shows the Mie scattering curve for a range of 12 

common calibration materials, including both absorbing and non-absorbing materials. 13 

For a given particle size, the RI of the particle can result in a range of scattered light 14 

intensities (Cscat) that vary by as much as an order of magnitude. This can have pronounced 15 

effects on the calculated size (and hence mass) of a particle. In particular, the Mie curve 16 

for black carbon (BC) is substantially different than those of non-absorbing materials, with 17 

higher real (scattering) and imaginary (absorbing) components. As a result, for an OPC 18 

calibrated with a non-absorbing material (such as PSLs), smaller BC particles (diameters 19 

< 300 nm) will be overestimated in size (due to higher scattering), whereas larger BC 20 
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particles (> 300 nm) will be underestimated (due to absorption) (Bohren and Huffman, 1 

1983).  2 

 3 

Even small changes in the scattering (real) component of the RI of the calibration material 4 

can lead to particles being assigned to the incorrect bin: an RI higher than that of the 5 

calibration material will generally cause particles to be assigned to bins that are too large 6 

(overestimating in size and mass), and an RI lower than that of the calibration material will 7 

generally cause particles will be assigned to bins that are too small (underestimating in 8 

size and mass). This effect is examined in greater detail in the Supporting Information 9 

(Figs S2 and S3). Considering that bins are often hundreds of nm in width, the impact of 10 

such bin mis-assignment on reported mass can be large. For both OPCs and 11 

nephelometers, this will lead to large errors in inferred mass, though it can be more 12 

pronounced for OPCs, since the error for nephelometers is proportional to the increase 13 

in scattering and is not affected by the mis-assignment of individual particles to a 14 

particular size bin.  15 
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 1 
Figure 3. Mie curves (integrated over a viewing angle of 32°-88°) for a select group of common 2 
calibration materials. Materials shown include polystyrene latex spheres (PSLs), ammonium 3 
sulfate, secondary organic aerosol (SOA), and black carbon (BC). Small differences in the 4 
refractive index of a measured material can lead to drastic bin mis-assignment (see SI), depending 5 
on where bin boundaries are set at the time of calibration.  6 

 7 
The effect of differences in refractive index on inferred PM2.5 mass measurements is shown 8 

in Fig. 4. Results are shown for a single aerosol distribution, in which the only parameter 9 

allowed to vary is the RI. The real component of the refractive index is shown on the x 10 

axis, with the upper and lower bounds being determined by the imaginary part of the 11 

refractive index; the imaginary component ranges from 0 (non-absorbing) to 0.79 (black 12 

carbon). The nephelometer (blue swatch in Fig. 4) is calibrated using ammonium sulfate 13 

(m = 1.521 + 0j). When the nephelometer is evaluated at this exact RI (and a constant size 14 



 20 

distribution), it measures mass accurately (Mm/Ma = 1). However, if the real component of 1 

the aerosol being evaluated is higher than that of the calibration standard, the total 2 

scattering is greater, resulting in the inferred PM2.5 mass being larger than the actual PM2.5 3 

mass (Mm/Ma > 1). Similarly, as the absorbing component becomes larger, less of the 4 

incoming light is scattered, resulting in a substantial underestimation of the mass loading. 5 

 6 

 7 

 8 

Figure 4. The accuracy of OPSs as a function of the refractive index of the aerosol being 9 
measured. The real component of the RI is on the x axis, and the width of each swatch bounded 10 
by the absorption/imaginary component, which spans from 0 (non-absorbing, solid line) to 0.79 11 
(black carbon, dashed line). Results are shown for a nephelometer (blue), and the two OPCs 12 
(orange and green). All results are for a generic particle size distribution with number-weighted 13 
GM=200 nm and GSD=1.65 and the OPCs were calibrated with PSLs whereas the nephelometer 14 
was calibrated with ammonium sulfate.  15 

 16 

Also shown are the results for two OPCs. The high-end OPC (green) is sensitive to 17 

particles as small as 100 nm, whereas the low-cost OPC (red) is sensitive to particles as 18 

small as 380 nm. As the absorbing component of the refractive index becomes larger, the 19 

scattering amplitude across the entire distribution is too small for the OPC to detect, 20 
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resulting in a mass reading of zero. Both OPCs exhibit this effect, but for the high-end 1 

OPC, fewer particles will fall below the size cutoff of the OPC than for the low-cost OPC, 2 

resulting in a less dramatic underestimation of the mass. Most commercially available 3 

OPCs are more similar to the low-cost OPC, with lower limits of detection of around 500 4 

nm. If operating in an environment in which the aerosol is strongly absorbing, large 5 

underestimates in PM2.5 should be expected. Even under conditions where the aerosol is 6 

not absorbing, the low-cost OPC largely underestimates the mass due to its high 7 

minimum size cutoff. For nephelometers, the errors are not as drastic, but still do depend 8 

strongly on the RI of the calibration aerosol used. 9 

 10 

3.3 Changes in the Particle Size Distribution (PSD)  11 

The ability of optical particle sensors to adapt to perturbations in the underlying particle 12 

size distribution (PSD) is important because PSDs can be highly variable over short 13 

periods of time, especially in urban areas with varying contributions from various local 14 

sources. Fig. 5 shows the accuracy of all three OPSs as the function of the PSD of the 15 

particles being measured. These calculations assume a single lognormal mode with all 16 

other properties of the aerosols (density, refractive index, and hygroscopicity) held 17 

constant. For the purpose of the model, the OPCs were calibrated using PSLs at each bin 18 

boundary, and the nephelometer was calibrated using ammonium sulfate (N=1e4 cm-3, 19 

GM=400 nm, and GSD=1.65). The entire population of ammonium sulfate particles is 20 

then evaluated while varying the number-weighted mean particle diameter (GM) and the 21 

width of the distribution (GSD). For each PSD, we compute the relative accuracy of each 22 

device and plot the results in Fig. 5, in which the color and contours correspond to the 23 

Mm/Ma metric.  24 

 25 
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The nephelometer substantially underestimates the mass concentration (by 50%-70%) for 1 

most PSDs, since it is calibrated to a single PSD. As the PSD changes, the ratio of total 2 

scattered light to integrated mass changes, causing the accuracy to change as well. (The 3 

accuracy depends somewhat on viewing angle, as shown in Figure S4, but errors are still 4 

substantial across a wide range of PSDs.) OPCs are potentially better since they measure 5 

the size of the particles and can theoretically account for changes in the PSD; however, 6 

they are still subject to errors given their limitations in detected size range. In particular, 7 

the low-cost OPC considerably underestimates the mass (by 60%-90%) for most PSDs as 8 

the bulk of the mass is below the detectable size limit of the OPC. As the geometric mean 9 

diameter increases in size, or the width of the distribution becomes larger, a larger 10 

fraction of the particles enters the detectable range, slightly improving the results for the 11 

low-cost OPC. The high-end OPC is most able to adapt to the changes in the PSD due 12 

to its significantly smaller Dmin (100 nm); there is roughly a 20% difference across the entire 13 

range of PSDs shown. Unlike the low-cost OPC, a majority of the mass falls within the 14 

detectable range of the high-end OPC, resulting in little to no effect of changes to the 15 

PSD on accuracy of the mass concentration measurement. 16 
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 1 
Figure 5. Mass concentration accuracy (Mm/Ma) of OPSs for a range of particle size distributions 2 
(PSDs). Accuracy is shown for all combinations of PSDs with number-weighted geometric mean 3 
diameters (GMs) between 100 - 1000 nm and geometric standard deviations (GSDs) between 1.2 4 
– 2.0.  Perturbations in the PSD can lead to large errors for nephelometers and optical particle 5 
counters with high minimum particle size cutoffs. All results are shown for ammonium sulfate 6 
particles; the OPCs were calibrated with PSLs and the nephelometer was calibrated with 7 
ammonium sulfate (N=1e4 cm-3, GM=400 nm, and GSD=1.5). A black dashed line indicates the 8 
“1:1” line, where Mm/Ma = 1. 9 

 10 

While previous work has highlighted the importance of the varying PSD and its effect on 11 

making accurate mass measurements with OPSs (Di Antonio et al., 2018; Gao et al., 2013; 12 

Malings et al., 2020), the effect of ‘missing mass’ – the mass below the lowest size bin of 13 

an OPC – has received relatively little attention. The standard way to treat this missing 14 

mass is to empirically correct via regression analysis (Dacunto et al., 2015; Malings et al., 15 
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2020). While this can mitigate absolute errors, it requires the assumption that the PSD is 1 

constant in shape, varying only in magnitude. With particle loadings that are mostly below 2 

10’s of µg m-3 throughout the United States, this assumption is unlikely to be a large 3 

source of absolute error. However, if the same approach were used in highly polluted 4 

environments where sub-300 nm aerosol loadings can easily reach hundreds of  µg m-3  5 

(Bhandari et al., 2020; Gani et al., 2019, 2020), changes in the PSD are likely to lead to 6 

large errors (in both an absolute and relative sense) in mass loading measurements.  7 

Overall, nephelometers and OPCs with high minimum size cutoffs are prone to 8 

substantial uncertainties as the underlying PSD changes, whereas for OPCs with low 9 

minimum size cutoffs this effect is relatively minor. 10 

 11 

4. Implications and future work 12 

In this work, we have laid out a framework for understanding the sensitivity of low-cost 13 

optical particle sensors to the various physical and optical properties of aerosols. We 14 

described a new Mie theory-based software package (opcsim) for modeling the response 15 

of OPSs to various aerosols and demonstrated its use for better understanding the 16 

strengths and limitations of various low-cost particle sensors. We also used the model to 17 

investigate how various potential pitfalls (e.g., changes to environmental conditions, 18 

mismatches between calibration particles and particles being measured) may contribute 19 

to errors in mass concentration measurements. A summary of these results is given in 20 

Table 3. 21 

 22 

 23 

 24 
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Table 3. Effects of changing environmental/aerosol parameters on the relative error in 1 
measured mass loading by different OPS types. 2 

Parameter changed 
OPS type 

Low-Cost OPC High-End OPC Nephelometer 
RH & 

Hygroscopicity 
(Figure 2) 

Very high for (20-200%) for hygroscopic materials  
when RH > ~75% 

Optical Properties 
(Figure 4)1 

High 
(30 – 100%) 

Medium 
(20 – 60%) 

Medium 
(20 – 75%) 

Particle Size 
Distribution 
(Figure 5) 

High 
60 - 90% 

Low 
< 20% 

High 
50 – 70% 

 3 

1 Primarily a source of error when an OPS calibrated with non-absorbing particles measures absorbing 4 

particles (or vice versa). 5 

 6 

Consistent with previous studies, our results suggest that relative humidity is a large 7 

source of uncertainty for all OPSs when the aerosol is hygroscopic and relative humidities 8 

are above the deliquescence point, typically around 75%; additionally, the error 9 

introduced by relative humidity is highly sensitive to the aerosols’ affinity for water. This 10 

is correctable, at least to first order, limiting the impact of RH error on final results (Crilley 11 

et al., 2018; Di Antonio et al., 2018; Malings et al., 2020). Differences in aerosol optical 12 

properties can also lead to substantial errors in mass loadings for low-cost OPCs, with 13 

smaller but still substantial errors for high-end OPCs and nephelometers. This is 14 

especially important when the aerosol is strongly absorbing, as the amount of scattered 15 

light can make small particles undetectable with inexpensive optical detectors. If it were 16 

possible to measure some proxy for aerosol composition in real time, it would be possible 17 

to vastly reduce this error and improve the accuracy of mass measurements using OPSs 18 

for real-time data collection. Additionally, this work highlights the importance of the 19 

underlying particle size distribution: differences in size distributions can lead to large 20 
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errors in mass measurements from low-cost OPCs and nephelometers, while being only 1 

a small source of error for high-end OPCs that can properly count and size particles at 2 

low sizes. The ability of a given OPC to measure small particles is particularly important, 3 

with marginal improvements in minimum detected size leading to large gains in ability to 4 

accurately infer mass. Finally, the choice of calibrant is shown to be extremely important 5 

for both nephelometers and OPCs. Ensuring that OPSs are calibrated intelligently (i.e., 6 

using particles similar to the aerosol to be detected) can lead to significant improvements 7 

in expected performance.  8 

 9 

Table 4 summarizes these results within the context of measurements of representative 10 

real-world aerosol types. It provides an overview of the potential errors associated with 11 

different types of optical particle sensors under various scenarios, with recommendations 12 

for the type of calibration particles that would minimize errors in PM2.5 mass 13 

measurements. Generally, in environments where small particles (< 300 nm) comprise a 14 

large percentage of the total mass, low-cost OPCs will be subject to considerable error. 15 

This will also be the case in environments with substantial levels of light-absorbing 16 

aerosol, such as wildfires or soot-heavy environments. (Sensor calibration using 17 

absorbing particles could help mitigate this effect, though this would introduce new 18 

errors when measuring non-absorbing aerosol.) In environments in which the underlying 19 

aerosol size distribution is variable (especially on short (sub-hour) timescales), such as 20 

urban environments or evolving wildfire plumes, nephelometers and low-cost OPCs will 21 

struggle to keep up with the changes in the relationship between the total scattered light 22 

and mass loading, leading to large variance in mass estimates. 23 

 24 

The estimates and recommendations given in Table 4 are not intended to be 25 

comprehensive, but rather serve as a starting point for characterizing the strengths and 26 
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limitations of low-cost OPSs using Mie theory (and specifically the opcsim software 1 

package). Additional opcsim simulations carried out across a range of sensor designs, 2 

calibrant particles, and measured particle types could provide more comprehensive and 3 

quantitative estimates of errors in measured particle sizes and mass loadings, including 4 

for individual sensors and individual use-cases. Future improvements to opcsim could be 5 

made to allow for the simulation of more complex aerosols (e.g., externally-mixed 6 

populations, other particle morphologies) or the inclusion of more complex bin-7 

assignment algorithms; comparison with laboratory studies (in which Mm/Ma is measured 8 

rather than just estimated) would also be useful. Additionally, co-located data with size-9 

resolved measurements would allow for improved validation of the OPC component of 10 

this model. It is hoped that the Mie-theory-based  approach described here will lead to 11 

an improved understanding of the errors associated with low-cost optical PM 12 

measurements, insight into calibration techniques that minimize such errors, and 13 

ultimately guidance into the design of new PM sensors for improved low-cost 14 

measurements of air quality and human exposure. 15 

 16 

 17 
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Table 4. Summary of expected performance and recommendations for calibration materials for 
use of low-cost optical particle sensors to measure the particulate mass loadings of different 
aerosol types. 

   SENSOR PERFORMANCE BY OPS TYPE 1 
AEROSOL 

TYPE 
AEROSOL 

PROPERTIES 
SUGGESTED 
CALIBRANT Low-Cost OPC 

High-End 
OPC Nephelometer 

FOSSIL-FUEL 
COMBUSTION 

Very small 
GMD, mostly 

non-
hygroscopic, 

moderate 
absorbing RI 2  

Calibrate 
with aerosols 
closer in RI, 
such as from 
combustion 
sources 

Will perform 
poorly due to the 
small GMD and 
absorption 
component of 
the aerosol 

Will perform 
moderately 
well though 
will miss 
ultrafine 
particles 

Can perform 
moderately well 
if calibrated 
using 
appropriate 
materials 

WILDFIRE 

Varying PSD, 
moderate 
absorbing 

component of 
RI 3  

Calibrate 
with aerosol 
of similar 
optical 
properties 
and GMD 
(ideally 
biomass 
smoke) 

Will likely 
undersize and 
underestimate 
mass due to the 
absorbing 
component of 
the aerosol; the 
GMD will change 
with proximity to 
the source 
leading to 
changes in 
accuracy 

Will perform 
moderately 
well, though 
may mis-size 
the particles 
as the 
properties 
of the 
aerosol 
change as 
the plume 
evolves  

Can perform 
well under 
certain 
circumstances; 
moderate error 
should be 
expected as the 
GMD of the 
wildfire plume 
evolves 

URBAN 

Varying GMD, 
moderate 

hygroscopicity 
4 

Calibrate 
with NIST 
urban 
aerosol or 
collected 
urban 
aerosol 

Performance 
depends on 
uniformity of 
sources; large 
errors will occur 
as aerosol source 
(and GMD) 
changes 

Will perform 
moderately 
well to well, 
though will 
miss 
ultrafine 
particles 

Will perform 
moderately well 
if averaged over 
a long period of 
time to 
normalize the 
GMD 

DUST 
Large GMD, 

non-
hygroscopic 5  

Calibrate 
with Arizona 
Road dust or 
collected 
dust 

Likely to perform 
well, given the 
large particle 
sizes 

Likely to 
perform 
well, given 
the large 
particle sizes 

Likely to perform 
well 

 

1 Based on properties of the aerosol only, and not external environmental parameters (i.e., RH). 
2 (Bond et al., 2002; Bond and Bergstrom, 2006; Chang et al., 2004) 
3 (Laing et al., 2016; McMeeking, 2004) 
4 (Hussein et al., 2004; Wehner and Wiedensohler, 2003) 
5  (Petzold et al., 2009; Rocha-Lima et al., 2018)
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