1	Assessing the accuracy of low-cost optical particle
2	sensors using a physics-based approach
3	
4	David H Hagan ^{1, 2} , Jesse H Kroll ^{1, 3}
5	
6	¹ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
7	Cambridge, MA 02139, USA
8	² QuantAQ, Inc., Somerville, MA 02143, USA
9	³ Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
10	02139, USA
11	
12	Corresponding Author Emails: david.hagan@quant-aq.com or jhkroll@mit.edu
13	
14	
15	
16	

1 Supplemental Information

2

3 Impact of viewing angle of scattered light collection

The viewing angle for a given OPC can strongly influence its ability to correctly count and 4 size particles. Increasing the viewing angle typically leads to a larger fraction of the 5 incident light being collected which can be helpful when inexpensive light detectors are 6 being used. In addition to the total signal of the scattered light, it can also lower the 7 8 influence of the Mie resonance by integrating over a wider degree. Figure S1 shows the 9 impact that widening the viewing angle can have on an OPC with the same laser wavelength (658 nm) – the smallest viewing angle (blue) collects the least amount of light 10 and shows the largest impact from the Mie resonance, whereas the red line ,which has a 11 viewing angle similar to that of a nephelometer, shows the least impact from the Mie 12 resonance and collects the most light. 13

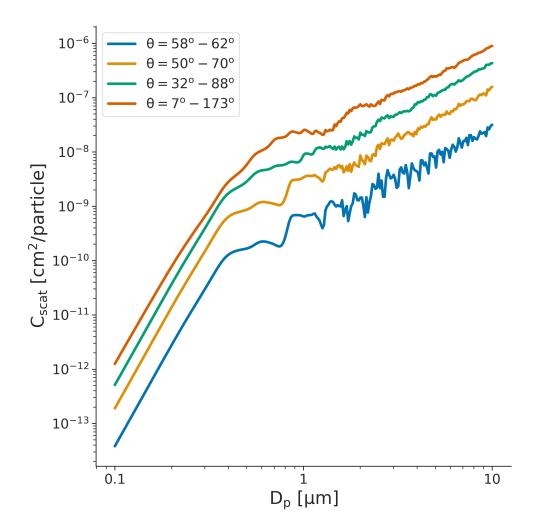


Figure S1. The amount of scattered light changes as a function of the OPC's viewing angle for a given incident laser wavelength. Above, the blue line depicts the total scattered light collected for a photometer-like instrument with a very narrow viewing angle. As the viewing angle is widened, the total amount of scattered light collected increases and the effect of the Mie resonance decreases.