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Abstract. Cloud types are important indicators of cloud characteristics and short-term weather forecasting. The meteorological 

researchers can benefit from the automatic cloud type recognition of massive images captured by the ground-based imagers. 10 

However, by far it is still of huge challenge to design a powerful discriminative classifier for cloud categorization. To tackle 

this difficulty, in this paper, we present an improved method with region covariance descriptors (RCovDs) and Riemannian 

Bag-of-Feature (BoF). RCovDs model the correlations among different dimensional features, that allows for a more 

discriminative representation. BoF is extended from Euclidean space to Riemannian manifold by k-Means clustering, in which 

Stein divergence is adopted as a similarity metric. The histogram feature is extracted by encoding RCovDs of the cloud image 15 

blocks with BoF-based codebook. The multi-class support vector machine (SVM) is utilized for the recognition of cloud types. 

The experiments on the ground-based cloud image datasets validate the proposed method and exhibit the competitive 

performance against state-of-the-art methods. 

1 Introduction 

Clouds have a strong impact on the Earth’s energy budget balance, climate modeling and weather prediction. Cloud type 20 

variations (e.g., variations in cloud-top height and water content) may affect both shortwave and longwave radiative fluxes. 

During climate variations, the distribution and frequency of different cloud types may change (Chen et al., 2000). Additionally, 

accurate cloud classification, especially convective cloud identification, are essential to Hazardous weather monitoring (Zhang 

et al., 2018a). In recent years, the growing appeal on renewable solar energy pushes additional interest on cloud coverage 

measurement and cloud classification (Heinemann et al., 2006; J. Huertas, 2017; Martínez-Chico et al., 2011). Therefore, 25 

accurate cloud type classification is in great need. Currently, the classification task is mainly undertaken by manual observation, 

which is labor-intensive and time-consuming. Benefiting from the development of ground-based cloud image devices, we are 

able to continuously acquire cloud images and automatically classify the cloud types. 

Clouds are by their very nature highly variable (Joubert, 1978), which makes the automatic classification a tough task. It is 

found that structure and texture are suitable to describe the visual appearance of clouds. The structural features include intensity 30 
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gradient (Luo et al., 2018), mean grey value (Calbó and Sabburg, 2008; Liu et al., 2011), the census transform histogram (Xiao 

et al., 2016; Zhuo et al., 2014), edge sharpness (Liu et al., 2011), and features based on Fourier transform (Calbó and Sabburg, 

2008). The textural features contain the scale invariant feature transform (SIFT) (Xiao et al., 2016), the grey level co-

occurrence matrix (GLCM) (Cheng and Yu, 2015; Heinle et al., 2010; J. Huertas, 2017; Kazantzidis et al., 2012; Luo et al., 

2018), the local binary patterns (LBP) (Cheng and Yu, 2015) and its extensions (Liu et al., 2015; Wang et al., 2018b). 35 

Commonly, no single feature is best suited for cloud type recognition, thus most existing algorithms tend to integrate multiple 

features to describe the cloud characteristics. However, those algorithms rarely consider the correlations between different 

dimensional features, which could lower the classification accuracy. 

Within recent years, convolutional neural networks (CNNs) have been exploited to tons of image recognition and has 

achieved remarkable performance (Krizhevsky et al., 2012). Being different from hand-crafted features, CNNs extract 40 

hierarchical features including the low-level details and high-level semantic information. Recently, plenty of works (Shi et al., 

2017; Ye et al., 2017) have obtained encouraging results by extracting the cloud signature from pre-trained CNNs, such as 

AlexNet (Krizhevsky et al., 2012) and VGGNet (Simonyan and Zisserman, 2015). In addition, attempts have been made to 

simply exploit end-to-end CNN models for cloud categorization (Li et al., 2020; Liu et al., 2019; Liu and Li, 2018; Liu et al., 

2018; Zhang et al., 2018b). However, the insufficiency of labelled samples might make the network hard to converge in the 45 

training stage. 

The main challenges of the ground-based cloud image classification task can be ascribed to the following reasons: (1) One 

single feature cannot effectively describe different types of clouds, we need to extract textural, structural, and statistical features 

simultaneously. (2) The scale of cloud varies greatly, therefore, the extracted features should be robust in the presence of 

illumination changes and nonrigid motion. (3) Different cloud types may have similar local characteristics, and thus the global 50 

features need to be considered. To address those issues, we utilize the region covariance descriptors (RCovDs) to encode the 

features of the cloud image blocks, and with the aid of Bag-of-Feature (BoF), we aggregate those local descriptors to obtain 

the global cloud image feature for cloud type classification. 

The performance of RCovDs (Tuzel et al., 2006) is proved to be superior on object detection (Carreira et al., 2015; Guo et 

al., 2010; Li et al., 2013; Pang et al., 2008) and classification tasks (Fang et al., 2018; Li et al., 2013; Wang et al., 2012). As 55 

the second-order statistics of the image features, RCovDs can provide rich and compact context representations. The noises 

are largely filtered out by removing the mean values of the features. RCovDs are also scale and rotation invariant, irrespective 

of the pixel positions and numbers of sample points. Despite of their attractive properties, directly adopting RCovDs for cloud 

type classification is still of difficulty on account of their non-Euclidean geometry property. RCovDs are Symmetric Positive 

Defined (SPD) matrices and naturally reside in a Riemannian manifold, therefore, the machine learning algorithms on 60 

Euclidean space should be adapted for the automatic cloud image recognition. 

In Euclidean space, BoF describes an image as a vector from a set of local descriptors (Jégou et al., 2012), and it aggregates 

the local features to obtain a global representation. Inspired by the work in (Faraki et al., 2015a), we encode RCovDs of the 
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local image blocks into a histogram by using Riemannian counterpart of the conventional BoF, taking the geodesic distance 

of the underlying manifold as the metric. 65 

In this paper, we extend our previous work (Luo et al., 2018), and propose an improved cloud type classification method 

based on RCovDs. The diagram is shown in Fig. 1. In the first step, we extract multiple pixel-level features such as intensity, 

color and gradients from the cloud image blocks to form RCovDs. In the second step, RCovDs are encoded by the Riemannian 

BoF to output the histogram representation. In the last step, the histogram is taken as the feed of the multiclass SVM for cloud 

type prediction. 70 

The main contributions of this paper are: 

 The RCovD is firstly introduced to characterize the cloud image local patterns and the Riemannian BoF is applied to 

encode RCovDs into image-level histogram; 

 The impacts of Riemannian BoF codebook size and the image block size on cloud type classification accuracy are 

investigated; 75 

 For The small training dataset, the proposed algorithm offers better performance as compared to the state-of-the-art 

approaches. 

The remainder of this paper is organized as follows. Section 2 introduces the ground-based cloud image datasets and details 

the proposed cloud type classification method. Experimental results and comparisons with other methods are presented in 

Section 3. Section 4 concludes our contributions and discusses the future work. 80 

 

Figure 1: Pipeline of the proposed cloud classification method. Multiple pixel-level features are firstly extracted from the cloud 

image blocks to form RCovDs, then the histogram representation of RCovDs are obtained by Riemannian BoF, finally, the cloud 

type is predicted by multiclass SVM. 
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2 Data and methodology 85 

2.1 Dataset 

(1) SWIMCAT dataset: The Singapore Whole sky Imaging CATegories Database (SWIMCAT) was captured by Wide-Angle 

High-Resolution Sky Imaging System (WAHRISIS) (Dev et al., 2014), a calibrated ground-based whole sky imager. During 

this observation, from January 2013 to May 2014, different weather conditions spanning several seasons are covered and a 

far-going cloud categories are collected. The SWIMCAT dataset involves 784 sky/cloud images, including 5 distinct classes: 90 

clear sky, patterned clouds, thick-dark clouds, thick-white clouds, and veil clouds. Figure 2 shows sample images from each 

category, the images have a dimension of 125 125  pixels (Dev et al., 2015). 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 2: Sample images from the SWIMCAT dataset. The dataset includes five cloud types, namely, (a) Clear sky, (b) Patterned 

clouds, (c) Thick-dark clouds, (d) Thick-white clouds, and (e) Veil clouds. 

(2) zenithal dataset: This dataset was acquired by the whole-sky infrared cloud-measuring system (WSIRCMS), which is 95 

located in Nanjing, China. The zenithal dataset contains 500 sky/cloud images, comprising of five different categories: 

cirriform clouds, clear skies, cumuliform clouds, stratiform clouds and waveform clouds (Liu et al., 2011; Liu et al., 2013). 

Figure 3 illustrates some sample images of different cloud types, and the image size is 320×240 pixels.  

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 3: Sample images from zenithal dataset. (a) Cirriform clouds, (b) Clear sky, (c) Cumuliform clouds, (d) Stratiform clouds 

and (e) Waveform clouds. 100 

2.2 Region Covariance Descriptors 

Let f  be the W H d   feature map extracted from the cloud image I . For a given rectangular region R  with size w w , it 

contains n w w=   pixels of d-dimensional feature vectors , 1,2
i

f i n= . The RCovD is defined by a d d  symmetric 

covariance matrix RC : 
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where 
1

1
=

n

ii
f

n


=  is the mean of the feature vectors. 

The RCovD correlates different components of the feature vectors, the diagonal entry ( , )R i iC  represents the variance of i-

th components of n feature vectors, and the element ( , )R i jC denotes the covariance of i-th and j-th components. Specifically, 

the RCovD subtracts the mean of the feature vectors, so it can filter out the noise to a certain extent. Note that, there might be 

a slight chance that 
RC is not strictly positive definite, in this particular case, the 

RC  could be converted into a symmetric 110 

positive definite (SPD) matrix by adding a regularization term E , where   is a tiny coefficient which is set to 

410 ( )Rtrace−  C  and E is the identity matrix (Huang et al., 2018; Wang et al., 2012; Wang et al., 2018a). 

RCovDs belong to SPD manifold, when it is endowed with a Riemannian metric, it forms a Riemannian manifold. Based 

on the metric, the geodesic distance can be induced to measure the similarity of the image features. The geodesic distance is 

the length of the shortest curve between two SPD matrices on SPD Riemannian manifold. The most common distance is the 115 

Affine Invariant Riemannian Metric (AIRM) (Pennec et al., 2006): 

1 2 1 2( , ) log( )G F
 − −=X Y X YX  (2) 

where
F

is the Frobenius matrix norm and log( )  denotes the matrix logarithm. The matrix logarithm can be calculated by 

singular-value decomposition (SVD), let  T
A = U U be the eigenvalue decomposition of a symmetric matrix, the logarithm 

of A is given by  120 

( )log log( )= 
T

A U U  (3) 

However, AIRM is computationally demanding. Driven by such computational concerns, in this paper, we adopt the Stein 

divergence (Sra, 2012) as a Riemannian distance metric, which is defined as 

1

2
1

( , ) (log log )
2 2

S
+

= −
X Y

X Y XY  (4) 

where  denotes det operator. 125 

2.3 Feature Extraction 

The features for cloud type recognition should be representative and discriminative. In this paper, for the zenithal dataset, 7 

features are extracted, including the image intensity ( , )I x y , the norms of first and second order derivatives of ( , )I x y  in both 

x and y direction, and the norm of gradient. The zenithal cloud image is mapped to a 7-dimensional feature space: 

22

y

T

z x y xx xy y x yf I I I I I I I I
 

= + 
 
       (5) 130 

https://doi.org/10.5194/amt-2020-189
Preprint. Discussion started: 7 August 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

As for the SWIMCAT dataset, we empirically choose the grayscale of B component, norms of first order derivatives of each 

color component, and the norm of gradient. Each pixel of the SWIMCAT image is transformed to a 13-dimensional feature 

map. 

2 2 22 2 2 2 2 2

[

]

s x y z x y z x y z

T

x y z x y z x y z

f B R R R G G G B B B

R R R G G G G G G

=

+ + + + + +

          

  
 (6) 

We divide the cloud image into image blocks and then compute the SPD matrices with the feature maps defined in Eq. (5) 135 

and Eq. (6). With the Riemannian BoF, those local feature descriptors in the form of SPD matrices are converted into a 

histogram feature vector, which is used for cloud type classification.  

2.4 Riemannian Bag-of-Feature 

BoF requires a codebook with k codewords, which are usually obtained by clustering local descriptors. To extend the 

conventional BoF from Euclidean space into SPD Riemannian manifold , two issues should be considered: (1) Construct 140 

a codebook 1{ }
k

j j== C  from a set of training RCovDs 
1{ }M

i i== X . (2) Obtain a k-dimensional histogram from a set of 

RCovDs 
1{ }N

i i== E with the codebook . 

An alternative way to learn a codebook is to apply the conventional k-means on vectorized RCovDs in the tangent space 

(Faraki et al., 2015b), however, it neglects the non-Euclidean geometric structure of SPD matrices. Taking the Riemannian 

geometry of SPD matrices into consideration, a possible way is to compute the cluster centers with Karcher mean (Pennec, 145 

2006). The Karcher mean finds a point that minimizes the following object function 

( )* 2arg min ,
j

j S i j

i

= 
C

C X C  (7) 

where S  is Stein divergence to measure the geodesic distance of iX  and the clustering center 
jC . Given the training set , 

the codebook  is initialized by randomly selecting k RCovDs from , and iteratively update the cluster centers using Eq. 

(7) until the average distance of each point iX  to its nearest cluster is minimized. The procedure is summarized in Algorithm 150 

1. We choose the number of codewords empirically by considering the trade-off between classification accuracy and 

computation consumption, which will be detailed in Section 3. 

Algorithm 1: k-Means clustering for codebook learning 

Input:  

 training set 
1{ }M

i i i== X X，   

 k, the number of clusters 

 nIter, the maximum number of iterations 

Output:  

 codebook 1{ }
k

j j j== C C，  
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1: Initialize the codebook 
1{ }

k

j j== C  by selecting k samples from  randomly. 

2: for 1t nIter= →  do 

3:    Assign each point 
iX  to its nearest cluster in .  

4:    Recompute each cluster center *

jC  using Karcher mean by minimizing Eq. (7). 

5:    Compute the geodesic distance   between new cluster center *

jC  and original cluster center 
jC . 

6:    If   is less than a predefined threshold or t  reaches the maximum number of iterations, then break the loop. 

7: end for 

After obtaining the codebook , the image-level feature can be expressed with the histogram H  of RCovDs. In the most 

straightforward case, H  can be yielded by hard assign each RCovD iE  to the closest codeword in  with Stein divergence. 

The j-th (1 j k  ) dimension of H  denotes the number of RCovDs assigned to the j-th codeword. To demonstrate the 155 

significance of histogram feature generated by Riemannian BoF, we randomly select half of images in the SWIMCAT dataset 

and partition each 125 125  image into 25 non-overlapping image blocks of size 25 25  to extract the second-order tensor 

features in the form of RCovD. Then, we learn a codebook of 10 codewords with Algorithm 1. In the same way, we select 20 

images of each cloud type from the remaining images in the SWIMCAT dataset to construct a set of RCovDs for test, and 

assign each RCovD to the nearest codeword to obtain the RCovD histogram of each cloud type. As shown in Fig. 4, RCovDs 160 

from different cloud types have obviously separable codeword distributions. RCovD distributions of clear sky, pattern and 

thick-dark clouds are relatively concentrated, while the distributions of thick-white and veil clouds are slightly scattered. In 

particular, the RCovDs of veil clouds and clear sky are assigned to almost the same codewords, which makes the categorization 

of these two types challenging. Overall, our proposed Riemannian BoF provides vectorized discriminative representation for 

the cloud classification task. 165 
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Figure 4: Histogram of RCovDs from different cloud types on SWIMCAT dataset. RCovDs from different cloud types have 

distinctive codeword distributions. RCovDs distributions of clear sky, pattern and thick-dark clouds are relatively concentrated, 

while the distributions of thick-white and veil clouds are slightly scattered. RCovDs of veils clouds and clear sky are assigned to 

almost the same codewords, which makes the categorization of these two types challenging. 170 

2.5 Classification 

SVM has significant performance in the classification task, since it establishes an input-output relationship straightly from the 

training dataset, and it exclude the need of any priori assumptions or specific preprocessing phases. Another merit is that, once 

the training procedure is finished, the classification is directly obtained in real time with a strong reduction of computation 

(Taravat et al., 2015). 175 

For m-class classification tasks, there are several ways to build SVM classifiers. In this paper, the “one-against-one” method 

is adopted, in which ( 1) / 2m m− binary classifiers are constructed, and each classifier distinguishes one cloud type to another. 

We use the voting strategy to designate the cloud image to the category with the maximum number of votes (Chang and Lin, 

2007; Hsu and Lin, 2002; Knerr et al., 1990; Kreßel, 1999). The proposed algorithm is summarized in Algorithm 2, in which 

SVM is implemented by the LIBSVM toolbox (Chang and Lin, 2007). 180 

Algorithm 2: The proposed cloud classification algorithm 

Input:  

 Cloud image I  with size W H  

 Codebook 1{ }
k

j j j== C C，  
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Output:  

 Cloud type label L  

1: Extract W H d   feature map f  from cloud image I  

2: Divide f  into N  blocks with size w w d  , and construct RCovDs 
1{ }N

i i== E  using Eq. (1) 

3: Obtain a k-dimensional histogram 
1{ }

k

j jH h ==  representation of 
1{ }N

i i== E : 

4:    Initialize 
1{ }

k

j jH h ==  with zeros 

5:    for 1i N= →  do 

6:        Assign 
iE  to its nearest codeword 

jC , 
jh =

jh +1 

7:    end for 

8: Classify H  using voting strategy: 

9:    Initialize the number of votes 0{ }
m

j jV =  with zeros 

10:    for 1 ( 1) / 2i m m= → −  do 

11:        Use the i-th binary SVM to classify H  and obtain the prediction label 
jL  

12:        Update the number of votes by 1j jV V= +  

13:    end for 

14: Find the maximum number of votes 
jV  and output the corresponding label 

jL  

3 Experiments and discussion 

To demonstrate the performance of our proposed cloud type classification method, we conduct several experiments on the 

SWIMCAT and zenithal datasets. We firstly analyze the effects of the two parameters (i.e. the codebook size k and the image 

block size w w ) involved in the proposed algorithm on cloud type classification accuracy. Then, we design an empirical 

validation with various training/test partitions. Finally, we quantitatively evaluate and compare the best results of different 185 

methods, i.e., WLBP (Liu et al., 2015), BC (Cheng and Yu, 2015), and Luo’s methods (Luo et al., 2018). 

3.1 Parameter Configuration Analysis 

In order to assess the impacts of the codebook size, i.e., the centroids number k, and the image block size w w  on cloud 

classification accuracy, we conduct sensitivity analysis on the SWIMCAT and zenithal datasets. In our experiments, k ranges 

from 5 to 40 with interval 5 and w ranges from 8 to 120 with the step size of 4. For a given w, the W H d   feature map is 190 

divided into W H

w w
d         blocks start from the upper left corner of the feature map and the incomplete blocks at the edges 

are dropped. We randomly choose 9/10 images of the dataset for training and the rest is for testing. The classification accuracy 

of each parameter configuration, as shown in Fig. 5, indicates that, to a certain extent, the larger the number of codebook size, 
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the better performance on both datasets. However, we observe that the improvement is not statistical significance after k 

exceeds 20, while the computing burden increases obviously. In fact, the complexity of the Riemannian BoF is mainly 195 

determined by the cluster center number. We note that as the block size w increases, the classification accuracy increases first 

and then degrades beyond the highest point, this trend is especially evident on zenithal dataset. The reason is that larger blocks 

can capture more abundant texture information, while the local details might be ignored. Therefore, in the following 

experiments, considering trade-offs between classification accuracy and efficiency, we set k = 30, w = 24 for the SWIMCAT 

dataset, and k and w are set to 35 and 52 for the zenithal dataset. 200 

  

(a) Sensitivity analysis on the SWIMCAT dataset (b) Sensitivity analysis on the zenithal dataset 

Figure 5: Sensitivity analysis of parameter k and w in the proposed method on the SWIMCAT dataset and zenithal dataset. 

3.2 Evaluation on Dataset with Small Sample Size 

In machine learning tasks, suitable annotated data samples are in short supply and quite costly for classifier training and testing. 

Since manual labeling requires much workforce, it is of great significance to reduce the dependence of the classification model 

on the labeled dataset. To estimate the performance of the proposed method comprehensively, we extract different proportions 205 

of training images randomly from each dataset and take the rest images as the test set. In order to guarantee the stability of the 

classification results, each experiment was repeated five times to take the average as the final classification result. Figure 6 

shows that in the situation of small sample size, for the SWIMCAT dataset, the proposed method achieves accuracy more than 

90% on the test set with only 3% images (i.e., 24/784) of the dataset as the training set. The accuracy can be improved by 5% 

at least when the training set accounts for 9% images (i.e., 72/784). As for the zenithal dataset, our method obtains more than 210 

90% classification accuracy on the test set when we randomly select 6% images (i.e., 30/500) of the dataset as training set, and 

achieving more than 95% accuracy when the proportion of training images increases to 10%. Generally, our proposed method 

significantly fulfills a high classification accuracy in small training sample situations. This is remarkable, considering that our 

proposed method is combining just RCovDs and Riemannian BoF. In conclusion, the proposed method requires only a few 

manually labeled samples to achieve a high cloud type recognition accuracy. 215 
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Figure 6: Performance analysis of training images with different proportions on the SWIMCAT dataset and zenithal dataset. 

3.3 Comparison with state-of-the-art methods 

Iterated cross validation is chosen as an effective scheme to verify the performance of the classifier. This strategy estimates 

the performance by randomly choose a part of the samples for independent training and testing the model without these samples, 220 

and repeating the procedure dozens of times (Beleites et al., 2013). In each experiment, we randomly select the same proportion 

(i.e., 1/10, 5/10, 9/10) of images for each category as the training set, and the remaining images are used as the test set. Each 

classification experiment is repeated 50 times to obtain the average accuracy as the final experimental result.  

We compare the performance of our method with the best results published on the SWIMCAT dataset in Table 1.Notice 

that our algorithm utilizing RCovDs has a 2.58% accuracy rate at SWIMCAT dataset than other methods when the training 225 

sample accounts for 1/10 of the total data. And when the training sample accounts for 5/10 and 9/10, the proposed method is 

slightly higher than Luo’s method and much higher than the other two methods. Figure 7 shows the confusion matrix of 

classification results with our proposed method on SWIMCAT dataset, with 9/10 of the dataset as training set. The 

discrimination rates of clear sky, pattern clouds and thick-dark clouds are perfect 100%, which demonstrates that these three 

types tend to be easily distinguished among all cloud types since they have the most significant features. Figure 8 shows two 230 

misclassified examples of SWIMCAT dataset, where yellow labels are the ground truth, and the red labels are the predicted 

cloud types predicted by our method. Notice that the veil clouds are prone to be misclassified as clear sky, since the veil clouds 

are thin and have highlight transmittance. Moreover, some veil clouds are misclassified as thick-white cloud, when the camera 

lens is contaminated, and the clouds is too thick. Besides, a small amount of thick-white clouds is misclassified as clear sky, 

pattern clouds or veil clouds. 235 
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Figure 7: The confusion matrix of the SWIMCAT dataset classification results using our proposed method. 9/10 of the dataset is 

used for training and the rest is used for testing, the overall classification accuracy is 98.4%. 

 

Figure 8: Misclassified images of SWMINCAT dataset. The yellow labels are the ground truth, and red labels are predicted cloud 240 
types. The veil clouds are prone to be misclassified as clear sky, since the veil clouds are thin and have high light transmittance, some 

veil clouds are misclassified as thick-white cloud, when the camera lens is contaminated and the clouds is too thick. Besides, a small 

amount of thick-white clouds is misclassified as clear sky, pattern clouds or veil clouds. 

As for the zenithal dataset, Table 2 illustrates that the proposed method gains the highest overall accuracy compared with 

the other approaches. Figure 9 displays the confusion matrix of classification results with our method on the zenithal dataset, 245 

when 90% of the dataset is used as the training set. The discrimination rates of clear sky, cumuliform clouds and stratiform 

clouds are up to 100%. Only a small part of waveform clouds is misclassified as clear sky or cirriform clouds. In addition, 

some of the cirriform clouds are misclassified as clear sky or waveform clouds. Figure 10 illustrates the misclassified images 

of the zenithal dataset, waveform clouds and cirriform clouds are easy to be categorized as clear sky if the size of sky area is 

much larger than that of clouds. The reason why the waveform clouds and cirriform clouds are confused with each other is 250 

that they sometimes own extremely similar textures. 
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Table 1: Classification accuracy (%) of the SWIMCAT dataset obtained by different methods. 

Method 1/10 5/10 9/10 

WLBP(Liu et al., 2015) 72.31 84.52 88.86 

BC(Cheng and Yu, 2015) 93.86 94.87 95.04 

LUO(Luo et al., 2018) 91.83 97.72 97.86 

Our method 96.44 98.40 98.40 

Table 2: Classification accuracy (%) of the zenithal dataset obtained by different methods. 

Method 1/10 5/10 9/10 

WLBP(Liu et al., 2015) 81.64 92.24 93.48 

BC(Cheng and Yu, 2015) 81.30 81.32 81.32 

LUO(Luo et al., 2018) 90.85 95.98 96.36 

Our method 95.00 97.40 98.60 

 

Figure 9: The confusion matrix of the zenithal dataset classification results using the proposed method. 9/10 of the dataset is used 255 
for training and the rest is used for testing, the overall accuracy is 98.6%. 
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Figure 10: Misclassified images of the zenithal dataset. The yellow labels are the ground truth, and red labels are predicted cloud 

types. Waveform clouds and cirriform clouds are categorized as clear sky because the size of sky area is much larger than that of 

clouds, and these two cloud types are easily confused as they share similar local patterns.  260 

4 Conclusions 

To tackle the challenge of automatic cloud type classification for ground-based cloud images, in this paper, we present a new 

classification method with RCovDs as the local feature representation. RCovDs provide a simple way to fuse multiple pixel-

level features, which improves discriminative ability for cloud images. The image-level information is obtained by applying 

Riemannian BoF to encode RCovDs into a histogram. Finally, we apply the “one-against-one” multi-class SVM as the 265 

classifier. 

It is noted that even we choose relatively simple image features to calculate RCovDs, the performance of the proposed 

method is still impressive. We conduct parameter analysis experiment and figure out how block size w and codewords number 

k affect the accuracy of the proposed method. Classification experiments with different training set sizes demonstrate that our 

method is still efficient in the case of small size training set, which can greatly reduce the labor for labeling. In the third 270 

experiment, we compare our method to the other three cloud classification algorithms with different configurations of 

training/test sets. As the experimental results validate, the proposed method is competitive to state-of-the-art methods on both 

SWIMCAT and zenithal datasets. 

In future work, the features like LBP or GLCM could be gathered and mapped into Riemannian manifold and multi-scale 

block strategy can be taken into consideration for a higher cloud type categorization accuracy. Others, the complex sky 275 

conditions with various cloud types should be deeply investigated to fulfill the application needs. 
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Code and data availability. The code of the proposed method can be made available via email to tangyuzhu9293@163.com. 

The SWIMCAT dataset used in this paper is available for download from http://vintage.winklerbros.net/swimcat.html, and the 

zenithal dataset can be made available via email to tangyuzhu9293@163.com. 
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