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Abstract. Ozone(Os) plays a significant role in weather and climate on regional to global spatial scales. Most stukées on
variability in thetotal column ofO3 (TCO) are typically analysed usirdpytime data. Based on knowledgettod chemistry
and transport dbs, significant deviations between daytime and nighttdgare only expected either in the planetary boundary

layer (PBL) or high in the stratosphere or mesosphere, having little effettieoT CO. Hence, we expect the daytime and

nighttime TCO to be very similaHowever, a detailed evaluation of satellite measurements of daytime and nighttime TCO is

still lacking, despite the existence of lategmrecords of bothComparing daytime amgighttime TCOshus provides a novel
approach to verify the retrieval algorithmsfaf examplehe Atmospheric InfraRed Sounder (AIRS) and the Microwave Limb
Sounder (MLS)In addition, such a comparison also helps in assessing the value of nighttimm&@@ntific research.
Applying this verification on the AIRS and the MLS data we identified inconsistencies in observatifioaf both satellite
instruments. For AIRS, daytimmghttime differences were found over oceans resembling cloud covemgatind over land,

mostly over dry land areas, likely related to infrared surface emissivity. These differences point to issues with theatieprese

of both processes in the AI RS retrieval al endingd ¢ S ene ndriom g

orbit flag, used to discriminate nighttime and daytime MLS measurements. Disregarding this issue, Mightddifferencs Q

were significantly smaller than AIRS danyght differencesproviding additional support for retrieval methodgini of AIRS
day-night TCO differences. MLS dapight differences are dominated the upper stratospheric and mesospheric diudgal

cycle. These results provide useful information for impraving infr@gproducts and at the same time will allow study th

day-night differences of stratospheric and mesospl@yic

1 Introduction

Atmosphericozone(0s) is a key factor in the structure and dynamics of the Bt h 6 s  altomdonsl@86) €he £987
Montreal Protocol on Substances that DepleteCthieayer formally recognized the significant threat of chlorofluorocarbons
and otherOsz-depleting substances (ODCs) to fBelayer andmarks the start ofoint international effortsa reduce and

ultimately phaseout the global produmn and consumption of ODG¥elders et al., 2007)ndeed, concesmnboutchanges
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in Oz due to catalytic chemistry involving mamade chlorofluorocarbons hagcomean important topic for the scientific
community,the general pulid and government@-ioletov et al, 2002)

In response to this conceand associated environmental policidaring the last two decades a large number of studies
have focused on estimating leterm variations and trends g@tratospheric column of {qSCO) A summary of the state of
the science is frequently reported in the quadrerialssessment Reports issued by the United Nations Environmental
Program (UNEP) and the World Meteorological Organization (WMOQ). These reports are written in response to the global
treaties aiming at mimizing emissions o0®DSs. The signatories of these treaties ask for regular updates on the state of the
science and knowledge. Thmost recentOz Assessment reports extensively discuss H@mm variations and trends in
stratospheric @in relation to epected recoveryWMO, 2011, 2014, 2018)According to WMO (2018) Antarctic
stratospheri®s has started to recover, while outside of the polar regions, upper stratosphiesie also increase®n the
other hand, no significant trend hheen detected in global (66&0N) total column Oz over the 19972016 period with
average values for the years since the last Assessment remaining roughly 2% below-i880%64rage. Moreover, recently
a debate has emerged over the question as éthethlower stratospherios between 60S60N has continued to decline
despite decreasin@s;depleting substancéBall et al., 2018Ball et al., 2019)In addition to the quadrenni@ Assessments,
the Bulletin of the American Meteorological SociéBAMS)annual |y publ i shes it sincdizBt5at e
includestropospheric @trends and effects frorl Nino-Soutrern Oscillation (ENSO) and description of the relevant
stratospheric events of the past year, the state of the Ant@gdtile, as well as an annual update of global and zoewadi$
in stratospheri©s. These regularly recurringgports and publications illustrate tbentinued attention and monitoring of the
Os layer and its recovery, in which the lomerm records of satellite observations play a cruec@é. Establishing and
maintaining the quality of the satellite observations of stratospBeigctherefore highly relevant.

A variety of techniques exist to measthe Os; columnand stratospheri®©s. UV absorption spectroscopy with the sun or
starsas sources of UV light is the mibusedmethodto deriveOs; (Weeks et al., 197&ussen et al., 200Fu et al., 2013;
Koukouli et al., 201} In additionto the UV occultatiormethod the absorption of infrared radiation has also been tsed
detectOs profiles throughout the columfGunson et al., 199@rihl et al., 1996) Another technique is the detection of the
molecular aygen dayglow emissior®llynczak and Drayson, 199®arsh et al., 2002 Some groundbased instruments use
Osemissions in the microwave region to infer @gensity in the mesosphe(Bommerfelds et al., 198&€onnor et al., 1994)
Infrared emission measurements overcome the limitations idotla time coverage of solar occultation and dayglow
technique and their altitude resolution is significantly higher compaitednicrowave measuremer{tsaufmann et al., 2003)

The strongesDsinfrared absorptiomentreear 9.6 um.

Based on knowledge of chemistry anahnsport 0fOs, significant deviations between daytime and nighttgare only
expected either in the planetary boundary layer (PBL) and high in the stratosphere or mesosphere, having little effect on th
total column ofO; (TCO). Hence, we expect thite daytime and nighttime TCO to be very similBhis slightvariation in
diurnal TCO can serve as a natural test signal for remote sensing instruments and data retrieval téemeeesto clarify

how sensitive different spadmsed instruments are TCO slight changes and to distinguish potential biases from retrieval
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artefacts.Day-night intercomparisons psent a unique opportunity to ass the internal consistency offrared Os
instrumens (Brihl et al., 1996;Pomnier et al., 2012Parrish et al., 2014Bystematic differences could potentially arise, for
example, from temperature effects within the instrument, from differenségnal magnitudéetween daytime and nighttime
or from the retrieval algorithm& he Stratosphere Aerosol and Gas Experiment (SAGE) appliediglaty differences to
validateOs; profilesand found daytimealueshave a low bias due trrors inthe retrieval method since the magnitude of the
difference was much $s in a photochemicaladel (Cunnold et al., 1989)There are satellite instruments, like Atmospheric
InfraRed SoundefAIRS) and The Microwave Limb Sounder (MLS), that provide global daytime and nighEG@ESCO
and Oz profiles. Although their daytimes retrievals have been validatéivesey et al., 2008Sitnov and Mokhov, 2016)
day-night differences in TCO anBiCOarestill largely unexploredApplying this daynight verification on the AIRS and the
MLS datacan asesstheir capacitieso characterize atmospherig Gurthemore an accurate assessment gfv@riation is
needed for a reliabl@nd homogeneous lofigrmtrend detection in the globak@istribution.

The Oz diurnal cycledepends otatitude,altitude,weatherandtime. Thevariations ofthe diurnal cycle arkess than 5%
in the tropicsand subtropics anidcreasdo more than 15%n the upper stratosphederringthe polar daynear70N (Frith et
al., 2020) There exist diurnal variations in atmosphediat certain altitudes. There are two disti@gimaxima in the typical
vertical profile of theOs volume mixing ratio, one in thiower stratosphere and one ihet mesosphere. The secondary
maximum in the mesosphere is presentrduboth day and nighfEvans and Llewellyn, 19724ays and Roble, 1973)
Chapmar(1930)revealed the photochenaicscheme in the mesosphefte reactions dhe Chapman cycle are important for

us to undersind diurnalOs variation.

0 WO ¢l _ ¢ té&md, (1)
6 0 090 0, (inwhich M stands for an air molecule) 2
6 0°¢0 , (3)
6 OO OU_ ppEm, (4)

In the daytime mesosphere, cataly@isdepletion byodd hydrogen has to be considered iditioin to the Chapman cycle
The anticorrelation ofOsand temperature is mainly due to the temperature dependencelbéthieal rate coefficien{€raig
and Ohring, 1958Barnett et al., 1975Huang et al(2008) and Huang et al(1997) found midnightOs increases in the
mesosphere, based on SABER anllS data, respeively. Zommerfelds et al(1989) surmised that eddy transpanay
explain this increasewhile Connor et al(1994) stated thalatmospheric tides are expected to causeesyaic daynight
variations

During daytime, photolysis is the major loss process. The main nighftiseurcein the mesospheiie atomic oxygen,
while its sinks are atomic hydragend atomic oxyge(Smith and Marsh, 2005)n addition toOs; chemical reactions with
active hydrogen and molecular, the turbulent mass transport also plays an important role in the explahasecafdary
Os maximum(Sakazaki et al., 201&chanz et al., 2014)
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TroposphericOs is mainly produced during chemical reactions when mixtures of organic precursorsui@Hhon
methane volatile organic carbon, NMVOC), CO, and nitrogen oxides (q), N@ exposed to the U\adiation in the
tropospherg¢Simpson et al., 201447t night, in the absence of the sunlight, there i©gproduction, busurfaceOsdepogtion
anddark reactions transform the NOOC mixture and remov©®s. The dark chemistry affect3; and its key ingredients
mainly depend on the reactions of two nocturnal nitrogen oxides (f© nitrate radical) and 49s (dinitrogen pentoxide).

NOjs oxidizes VOC at night, while reaction of.8s with aerosol particles containing water removes NOx. Both processes
removeQOzas well at nigh{Brown et al., 2006)

The durnal cycle of @Qin the middle stratosphere had generally been considered small enough to be inconsequential,
with known largewariations in the upper stratosphere and mesosfReaither, 1981Palliger and Tuck, 1983} aterstudies
have highlighted observed amibdelledpeakto-peak variations of the ordef 5% or more in the middle stratosphere between
30 and 1 hPéSakazaki et al., 201Barrish et al., 2014chanz et al., 2014)

In terms of dynamics, vertical transport due to atmospheric tides is expected to contribute toGdivametions at
altitudes where backgrour@:; levels hae a sharp vertical gradie(fbakazaki et al.,@L.3). The Brewer/Dobson circulation
transports air upwards in the tropics, polewards and downwards at high latitudes, with stronger transportieweamntks t
pole (Chipperfield et al., 2017)

The main objective of this paper isdoalyseday-night differences in the AIRS TChd the MLS €0, as well as in
MLS upper atmospheri©s profiles. Section 2 discusses the data used. Section 3 presents results for AIRS, MLS, the
comparson of AIRS with MLS, and an application of AIRS TCO dater the Pacific low @regionsto highlight how day
night differences affect use and interpretation of TCO daitaally, ®ction 4 ends the paper with a brief summary and

conclusions

2 Data
2.1 AIRS total column of Os retrievals

The AlRSsatellite instrument wathe first in a new generation of high spectral resolution infrared sounder instruments
flown aboard the National Aeronautics and Space Administration (NASA) Earth Obs&yétgm (EOS) Qua satellite
(Aumann ¢ al., 2003, 2020; Chahine et al., 2008yakarla et al., 2008)The AIRS radiance data at 9.6 pm band are used to
retrieve colmn Oz andOs profiles duringboth day and night (ieding the polar nightjPittman et al., 200%u et al., 2018
Susskind et al., 2002011, 2014 The AIRS V6 level 3 daily standard phyaiaetrieval products (2002018)provide TCO
and profiles of retrieved ©OThe daily level 3 products compridaily averaged measurements on the ascending and descending
branches of an orbit with the quality indicators 'best' and 'good’ and binne&iifdatitude xlongitude) grid cells. The G
profile is verticaly resolved in28 levels between 1100 hPa and 0.1 HHds makes it possible to compare SCO between
AIRS and MLS.Besides, estimates of the errors associated with cloud and surface psoiseptirt of th&IRS V6 level 2

standardphysicalretrieval productwhich we used het® discussurtherdetails.Outside of the polar zon¢80N -90N and
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9035-60%), ascending and descending correspond respectively to daytime (13:30 in localrs)lantl nighttimé€01:30 in
local solartime)Her eaft er we refer to fidayo and fini g-6WN.olnthepolan

zones, it is inappropriate to use ascending/descending mode to define daytime/nighttime, therefost¢, campare

er

differences betweeascending andescendingnode AIRS TCO measurementagree well with the global Brewer/Dobson

Network station measurements with a bias of less than 4% and a root mean squared error (RMSEedif approximately

8% (Divakarla et al., 2008\alli et al., 2018 Smith and Barnet, 2019Analysis of AIRS TCO monthly maps revealed that
retrievals depict seasonal trends and patterns in concurrence with OMI and SBUV/2 obsdatidasla et al., 2008Tian
et al., 2007.

2.2 MLS stratospheric column of Gand Osprofile retrievals

The MLS instrument ofboard Aura satellite, which was launched on 15 July 2004 and placed into-poteaEarth
orbit at 705 km with an inclination of 985 uses the microwave limb sounding technique to measure vertical profieasioél
constituents and dynamical tracers between the upper ttogr@sand the lower mesosphé¥éaters et al.2006) Its orbital
ascending mode is at 13:42 (local solar time) and the orbital descending mode at 01:42 (local saeerti6®-60N . In
this study, we use the MLS v4.2x stand@gbroduct duringg0052018 Its retrieval is using 24GHz radiane, providing

its

t

nearglobal spatial coverag823 to 82N latitude), with each profile spaced 1.5 degrees or ~165 km along the orbit track.

This Osproduct includes th®;profile on 55 pressure surfaces and the recommended useful vertical range is ftord.2g@1

hPa. In addition, it contains aBs column, which is the integrated stratospheric coludomn to the thermal tropopause

calculated fom MLS measured temperatuiidvesey et al., 2015)Jiang et al(2007)found the MLS stratospherics@ata

between 120 and 3 hPa agreed well with ozonesonde measurements, within 8% for the global dailyFavielagaix et al.

(2008)reported MLSstratospheric @uncertainties of the order of 5%, with values closer to 10% (and occasionally 20%) at

the lowest stratospheric altitudésvesey et al(2008)estimated the MLS ©accuracy as ~40 ppbv £5% (~20 ppbv £20%

at 215 hPa)Expectations and comparisons with other observasbos/ good agrements for the ML®s product, generally

consistent with the sy@matic errors quoted abave

3 Results

3.1 AIRS Os retrievals day-night differences

Figure 1showsspatial variations in the differences between the AIRS day and night measurements. Generally|

(o)

b of

t he wor | doé ssmalerR8ingligBtne icosnpared to daytime. The reduction of AIRS T&@r landat nightis

greaterthan over oceandepending o surfacetype Seasonal averagé€gs day-to-night relative difference shown in Figgre

la to 1d reveal that AIRS TC@ay and night difference variations Asia, Europe and North America during winter in the

Northern Hemisphere (DJF) amsmaller than during summeitime (JJA) in line with the efficiencyof photochemical

production between seasons in the Northern HemisphkeeSaharaesert shows maxiom difference value duringinter-
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summertime. The presence of dayight differences apparently correl

time when there are large daight temperature differenceBhe same enon is observed in Western Australia during
Dvith surface infrared emissivity properties of dry

desert regions is consistent withasiello et al. (2014)who discussed the varidity of surfaceinfrared emissivityin the
Sahara desert and recommended to take the diurnal variation of surface enmgsigitgountn infrared retrieval algorithms.

Figure 1e shows for the annual mean large differences of AIRS TCO retrievals over défardace patterns over the
oceans associated withe Intertropical Convergence Zone (ITCZ well as regions with persistent seasonal subtropical
stratocumulusiélds. The spatial patterns over land mimic regions with low IR surface emissivity and/or regions where IR
surface emissivity exhibits large seasonal variations (Feltz et al., Z8i88)e 1f shows absolute differences between all
subsequent pixels in tHengitude direction. The figure reveagnificantnon-physical TCO changegdiscontinuities)for
adjacentand-oceanpixels(visible at coast lines running in Nof8outh direction)All these effects are important parameters
for the retrieval algorithnbut bear no physical relation with totat.d0’he observed diurnal cycle in AIRS TCO is related to
either the measurements or to the algorithm. If the diurnal cycles in AIRS TCO are related to the retrieval algoritimn, it has
be caused by the represematof a process in the algorithm having a diurnal cycle, some8nmith and Barnes (2018)gue
is not in the algorithm but should be taken into accddance, the differences shown in Figure 1 prodtteng indications
that the largest AIRS dayight TCO differences are domated by retrieval artefactés such changes are unphysical, it
confirms thehypothesighatclouds and theurface type (landésert/vegetation/snow or ice) affettte AIRS TCOretrievals
Note that TCO dayight differences oveand could also be (partly) related to clouds.

The AIRS emissivity etrieval usegshe NOAA regression emissivity product as a first gusss land. The NOAA
approachs based on clear radiances simulated fronEtlm®pean Centre for MediuvRange WeatheforecastsE CMWF)
forecast and a surfacenessivity training data s¢Goldberg et al., 2003 he training data set used for the AIR&algorithm
has a limited number of sail, ice, and snow types and very little emissivity variability in the training ensemble. In the AIRS
V5 version, the regression coefficient set has been upgraded using a number of published emissivity spectna (fb2 spec
ice/snow, 14 for land) blendeandomly for land and id&hou et al., 2008)These improvements generated a bettésgvity
first guess for use with the AIRS V5, and improved reaigwover the desert regio(Bivakarla et al., 2008)n AIRS V6, a
surface climatology was constructed from the 2008 monthly MODIS MYD11C3 emissivity product, and extended to the AIRS
IR frequency hinge poistusing the baselidét approach descrigd bySeemann et a(2008) Note that AIRS observations
with low information content (especially around the poles) will be drawn to the AlR®@ value.This AIRS apriori for
Os is a climatology without diurnal variation. If either the day or night observation has a lower information content than the
other, this too can result in a daight difference. This is probably the reason for the differenc&sgure 1 over pole ice.
Nevertheless, using dayght differences for evaluation of the AIRS g product suggest that further refinements for better

surface emissivity retrievals are required #mat issues related tdoud covemeedto be solved.
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190 3.2MLS Ogsretrievals day-night differences
3.2.1MLS Ogzprofile

In order to better understand daight differences iTCO, we also study dagight changes in the vertical profile G
using MLSOz profile measurements. Figure 2a shows that the global {60@) differences between day and night MICs
profile occur in the mesosphere (10 hRal hPa). Thésmixing ratios are about an order of magnitude larger during night

195 in the mesosphere, whighas revealed biduang et al(2008)previously Different latitude bands (30 degree) betwee?560
and 60N all display similar results.

We also find an unexpected polar batshigh latitudesn Figure 2d and 2g. Othe one hand, the larger differences
betweerascendind fi d a y anddescéniling fi n i g hMLS Dsprefibe)at high latitude extend from the stratosphere to
the mesosphere. On the other hastendingzis smaller thamlescendings at 10 hPa over 60 -90N in Figure 2d, which

200 is in contrast with the result of other latitude bands.

3.2.2 MLS Ozretrievals in 905 -6035 and 60N -90N D

The MLSOsprof il e pol ar bias mentioned above turns out to

MLS v4.2x standards product in 905603 and 60N -90N. We counted the daily number of pixels at both polsen
observation mode is ascending ¢BescMode = 1) and descending (AscDescModB respectivelyFigures 3a and 3¢ show

205 there is a clear change on 142015 in the daily number ascendinfflescendingixels, comistent with the change of
MLS SCO in Figure 3b an8d. Before 14 My 2015 there arevery large difference(about500 pixels 95% of total pixels
in the number of pixels betweascendin@nddescending modaswell as the differences in MLSC®. After 14 May 2015,
the ascending and descendiMl.S SCO are much closer with sniad difference (about20 pixels 2% of total pixel} of
ascending and descendipixels.

210 For the MLSOs profile in Figure 4, differences betweascending and descendilti.S Oz profiles at high latitudefor
20162018 are much smaller and more realistic compared to the differences feP@DO5The large differences in the

stratosphere disappear in pol ar r e gd0IBnFser 60NOANN astehding mode r e ¢

Osalso becmes larger thadescendingmodésat 10 hPa in Figure 4b. This indica
correct for 20162018.
215 The Osretrieval algorithm adopted by the MLS v2.2 products has been validated to be highly accurate using multiple

correldgive measurements and the data have been used \déketyg et al., 200Froidevaux et al., 2008Yhe MLS v3.3 and
v3.4,03 profile was reported on a finer vertical grid and the bottom pressure level with scientifically reliable(MilGe®;
accuracy was estimated at ~20 ppbv +10% at 261 ihB@ases from 215 to 261 hRavesey et al., 2015)The latest MLS
v4.2x Oz profile used in this study, releasedH@bruary?015, were in general similar to the previous version. One of the major
220 improvements of MLS v4.2x was the handling of contamination from cloud signals in trace gas retrievals that resulted in

significant reduction in the number of spurious MLS profileciaudy regions and a more efficient screening of cloud

7
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contaminated measurements. Furthermore, the @48 oducts have been improved through additional retrieval phases and
reduction in intefierences from other speci@sivesey et al., 2015)We find no indications that changes in instrument or
algorithm are responsible for this O06AscDescModed flag i
60N.

3.3 Comparison betweenAIRS and ML S Qs retrievals

Figure 5 preses comparison of yearly and monthly avera@iO for 20052018 ¢====ved by AIRS and MLS three

latitude bads. Note that figure 5 is not meant as a validation of AIRS SCO with ML D), but to explore the seasonality of

eitherAIRS or MLS SCO daynight differences, and explore whether the seasonality imidgnt SCO varies in unison over

the seasons:igure 5a shows the dykar averagdaytimeAIRS SCO (250 hPd 1 hPa)andMLS SCO(261 hPad 0.02 hPa)

in 605 -60N f or 20052018. The time average MLSC® column is 260.62 DU ardlIRS SCO is264.24DU. The average

MLS SCO daynight differences for 2008018 (0.8 DU) is smaller than the AIRSC® daynight differences observed for

the same time period 24 DU). The daynight difference of MLS SCO is 0.79 DU in the mesosphere (10 BPahPa) and

0.03 DU in the stratosphere (100 @ hPa)The daynight difference of AIRS SCO is31 DU in the mesosphere (10 hPa
-1hPa) and 35 DU in the stratosphe(@00 hPa 10 hPa)Compared to thAIRS SCO daynight differences, the magnitude

of MLS SCO daynight differences in the stratosphere and in the mesosphere are much $tiekebeen poied out that

errors in temperature profiles and watapourmixing ratios will adversely affect the AIRS@etrieval. Significant biases (0

- 100%) may exist in the region between ~300 hPa and ~80M&eg et al., 201Wlsen et al., 2017AIRS Osretrievals do

not distinguish portions of thes@rofile as being oflifferent qualities, because all AIRS Ehannels sense the surface as well
atmospheric @ Thus AIRS O; retrievals arecompromised if the surface is not well characteri@@tben et al., 2017)n

addition, AIRS SCO retrievals show smaller daght differences in the polar zonesZ1DU) than in 60560\ (4 -5 DU).

This is related to clouds and the surface type which affect the ARSt@evals as mentioned above. Figure 5b shows the
monthly 14year average daytime AIRS SCO and MLS SCO in the-®08I for 20052018. Seasonal or random changes of
clouds and the surface emissivity have more significant impact on each monthly AIRS SCO retrieval than on the MLS SCO
retrieval. Compared with the 6080N region, surface types in polar zones are less dive&ssew or ice). Therefore, the
monthly 14year average daytime AIRS SCO and MLS SCO in Figure 5d and 5f show similar patterns. Figures 5c to 5f also
confirm that MLS SCO has a polar bias when compared with AIRS SCO at high latitudes. In addition, foE®IkiSF3gure

5f, the biggest dayight differences (5&0 DU) occur in September and October during the Antarctinof®.

3.4 Daynight difference of equatorial Pacific lowOsregions

Generally, the Pacific loMdsregon (TCO < 220 DU)exist all year round and its size is larger at night than during the

day, unlike the season&sholewhich occursover Antarcticaduring the Southern Hemisphere polar win@n the one hand D

there ae limited direct NQ emissions causing lo@sover ocans compared to land. On the other hahd,lowOsover the

tropical western Pacific can be attributed to troposph@yloss in this aredts presence is related agpronounced minimum

8
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There is a well known longitudinal dependence in TCO in the tropics, sometimes called the "wave 1 feature" .  However, the minimum in TCO is around 250 DU, and is located in the central Pacific. It is caused by wave 1 feature in the trop O3 column, which is located in the central Pacific. See the reference below. 

 Ziemke, J. R., S. Chandra, G. Labow, et al. 2011. "A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements." Atmos. Chem. Phys., 11 (17): 9237-9251 [10.5194/acp-11-9237-2011]

Since the central Pacific low in trop O3 is caused by low NOx, it is unlikely that it varies diurnally. 
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in the tropospheric column dds over the west Pacific, which loss due tophotochemical mechanism with higher air
255 temperatures and higher water concentration®%otn addition, high seaurface temperatures alfsvourstrong convective
activity in the tropical West Pacific, which can lead to I@gmixing ratiosin the convective outflow regions in the upper
troposphere in spite of the increadiéetime of odd oxyger(Kley et al., 1996Rex et al., 2014)A further reduction in the
tropospheri®sburden through bromine and iodine emittedriroperocean marine sources has been pattdlby numerical
models(Vogt et al., 1999yon Glasow et al., 2002pn Glasow et al., 200&;ang et al., 20053nd observation@Read et al.,
260 2008)
Figure 6a and 6¢c show the lo@s region is mainly located over the western Pacific by AIRSjab et al.(2013)
investigated similar low TCO in Malaysia using AlR&a. They found the highe€d:; concentration occurred in April and
May and the lowedD; concentration occurred during November and December, which is consistent with osiindsglire
6f. They also found thaDs; concentrations exhibited an inverséatmnship with rainfall, but was positively correlated with
265 temperatureFigure 6b showghat besides ithetropical Western Pacifidpw Osregionsfor MLS appeaiall over the tropical
zone (30%-30N) at night. HoweverFigure 6d showshe occurrenceréquency and intensity afaytimelow Osregions by
MLS SCO retrievals drastically reduces agdsts mainly in tropical western Pacifla. Figure 6e and 6f, yearly and monthly
averaged AIRS TCO and MLS SCO of the I@aregionsshowno consistency andegularity. The analysis of daytime MLS
SCO of the low @regions is based on only a few observatidle. cannot distinguish whether it is an algorithm problem or
270 a chemical mechanism that caused this phenométwnAIRS, clouds over oceans may have tgeanpact on the AIRS
TCO retrievals at night. For MLS, more active chemical reactions may occur in theSeegions at night.
For past, current and future monitoring of atmospheric phenonmerité Pacific tropospheric lows@rea, it is important
that observations are sufficient accurate. The evaluation ehigay differences in both MLS and AIRS has revealed the
existence of biases in the satellite data that are sufficiently large in comparison to expected variations and changes i

275 atmospheri®sthat they may hamper the use of these satellite data studying them.

4 Conclusions

Comparisorof daytime and nighttime AIRS TCO has revealed small but not insignificant biases in AIRS TCO. The
differences are likely related to surface type (land/desgtation/snow or ice) and infrared surface emissivity, especially
over regions that exhibit smaller infrared emissivity or large seasonal variability in infrared emissivity. Differencely typic

280 were of the order of a few percent, which is significanegithat long term changes in TCOs related to anthropogenic
emissions of stratosphel@; depleting substances outside of polar regions are also of the order of a few percent.

Over land, patterns in day/night differences appear to be dominated by the dryness of the surface, suggesting tha
emissivity may not be well represented or that reduced sensitivity to the lower troposphere during night compared to day ovel

hot surfaces maults in a different AIRS TCO. The spatial inhomogeneity of day/night AIRS TCO differences over drier regions
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points to emissivity dominating these differences. Infrared satellite retrieval artefacts due to land surface emisslisity is w
known phenomeno(zhou et al., 2013; George et al., 2015; Bauduin et al., 2017)

There were major changes to the surface emissivity retrieval in AIRS V6 compared to previous versions resulting in a
very significant improvement in yield and accuracy for surface tempematdremissivity over land and ice surfaces compared
to previous versions. Nevertheless, our results indicate that the AIRS V6 TCO still can be further imtiovegiard to the
representation of infrared emissivity addition, AIRS TCO differences oveceans bear a clear cloud cover signature which
is likely related to uncertainties in the representation of clouds in the retrieval algorithm. The latter may also inpact AIR
TCO retrievals oveland, although detection ofoud features in AIRS TCO dayght differencesover landis difficult due
to the presence of the land surface emissivity related bias.

The strongest diurnal cycles in cloud fraction are found in the tropics over land, following strong daytime heating (Noel
et al., 2018)Over oceangjiurnal cyclesn cloud fraction are weaker, but very broadly indicate reduced cloudiness during day
compared to night, especially in the tropics and subtropics (Noel et al., 2018). In case of clouds, AIRS TCQoabpears
larger during daytime compared nighttime. Thisis consistent with the notion of increased cloudiness during the night,
increasing the chance of shielding by undetected or unrecognized clouds in the AIRS rétoewvakanregiors with
persistent clouslduring day and nighffor exanple overITCZ), Figure Sl in the supplemenshowsthat variationsf cloud
layer heighthavea greater impact on AIRS TCO daijght differences thaaf thecloud fraction.

Our results do not provide much evidence of another possible causkg/ofght dfferences in AIRS TO: the
photochemical diurnal £xycle in the lower troposphesnd upper atmospherg&he strongest diurnals@ffects occur in the
boundary layer over land due to nighttime surface deposition and daytime photochepicad @tion inthe presence of air
pollution. In the marine boundary layer, the diurnaldycle is much weaker due to absence of air pollution and a general slow
Os destruction regimg~10%/day) Similarly, in the free troposphere, the diurnad €cle is also weak due to lowsO
production rates (generally low levels of pollution relevant fgrp@duction).Hence, the diurnal ©cycle in the free
troposphere above 750 hPa is negligible (Petetin et al., 2B1€)mmary, any tropospheric photoatieal diurnal Qcycle
effect should resemble some correspondence with air pollution. Thaigltydifferences in AIRS TCO clearly do not
resemble patterns of surface air pollution (FigureM)S day/night differences are confined to the mesosphere dlah&
higher) As shown in Smith et al. (20}L4he lifetime of Qdue to chemistrys strongly altitude dependent 20 min in the
upper mesosphere above 0.01 hRa)ly in the mesospheréhe chemical lifetime ofO; is long enoughto see significant
differences between average daytime and nighttime concentrafimnsyver, theontributionof mesospheric €0 MLS SCO
is negligible. The mesospheric diurnal €cle thus will also have a negligible effect on day/night AIRS TCO differences. In
addition, Strade et al. (2019) simulatetie globaldiurnal cycle in the tropospherig@olumns, their results indicatéoiat the
mean peako-peak magnitude of the diurnal variability in troposphericiOapproximately 1 DU. Figures230 b in the
supplementlsoshowthatthe AIRS TCO retrieval artefacts dominate the day/night variability of tropospheriesituals
(TOR = AIRS TCOi MLS SCO).
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In summary, our analysis has identified evidence and indications that clouds, land surface infrared emissivity, and
sendivity of satellite measurements to the lower troposphere, influence AIRS satellite TCO observations, pinpointing to areas
and processes for algorithm improvement.

The MLS v4.2x was very useful for verifiion of daytime and nighttimeC® andOs; profile between 60S60N . MLS
day-night differences in SO andO; profiles show that dawpight differences are only small <DU) and likely to ben the
upper stratosphere and mesosphere. However, a®0Niamdinonsi s
905 -6083, resulting in inconsistent profiles in these regions befagrblay 2015.In processor version v4.22 and later versions
this issue has been fixed, but since it is a relatively small issue, the MLS data set before 2016 has not sedeproc

A case studyf daynight differences @over equatorial Pacific revealed thaith AIRS and MLS @retrievals have
biasesin comparison to expected variations and chan@es. results show that maintaining the quality of the satellite

observation®f stratospheric &s therefore highly relevant.
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Figure 1: (a) AIRS TCO averaged dayto-night relative difference for Dec-Jan-Feb during 20032018 (b) Mar-Apr-May. (c) Jun-
Jul-Aug. (d) Sep-Oct-Nov. (e)AIRS TCO 16-year averaged dayto-night relative difference during 20032018 (f) Absolute difference
580 between twoadjacent pixels at the same latitude in (e)Note: The relative difference is calculated as: 108(daytime - nighttime) /

daytime (in percent, %).
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Figure 5: Yearly and monthly averagedAIRS SCO and MLS SCO for 20052018.AIRS SCOs arecalculatedfrom 250 hPa to1 hPa
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