Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Preprints
https://doi.org/10.5194/amt-2020-199
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2020-199
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  16 Jun 2020

16 Jun 2020

Review status
This preprint is currently under review for the journal AMT.

Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap-GC-AED) for atmospheric trace gas measurements

Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams Einar Karu et al.
  • Atmospheric Chemistry Department, MaxPlanckInstitute for Chemistry, 55128 Mainz, Germany

Abstract. A gas detection system has been developed, characterized and deployed for pressurized gas phase sample analyses and near real-time online measurements. It consists of a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED III). Here the CryoTrap–GC–AED instrumental setup is presented and the performance for iodine (1635 ± 135 counts I-atom-1 pptv-1), sulfur (409 ± 57 counts S-atom-1 pptv-1), carbon (636 ± 69 counts C-atom-1 pptv-1), bromine (9.1 ± 1.8 counts Br-atom-1 pptv-1) and nitrogen (28 ± 2 counts N-atom-1 pptv-1) emission lines is reported and discussed. The limits of detection (LODs) are in the low pptv range (0.5–9.7 pptv) and the signal is linear to at least 4 orders of magnitude, which makes it a suitable method for diverse volatile organic compound (VOC) measurements in the atmosphere, even in remote, unpolluted regions. The new system was utilized in a field study in a boreal forest at Hyytiälä, Finland in late summer 2016 which made monoterpene measurements possible among the other VOCs. Furthermore, pressurized global whole-air sample measurement collected onboard the Lufthansa Airbus A340-600 IAGOS-CARIBIC aircraft in the upper troposphere and lower stratosphere region was carried out with the new setup, providing the observational data of many VOCs, including the long-lived organosulfur compound carbonyl sulfide.

Einar Karu et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment

Einar Karu et al.

Viewed

Total article views: 164 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
114 39 11 164 22 7 11
  • HTML: 114
  • PDF: 39
  • XML: 11
  • Total: 164
  • Supplement: 22
  • BibTeX: 7
  • EndNote: 11
Views and downloads (calculated since 16 Jun 2020)
Cumulative views and downloads (calculated since 16 Jun 2020)

Viewed (geographical distribution)

Total article views: 225 (including HTML, PDF, and XML) Thereof 225 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 20 Sep 2020
Publications Copernicus
Download
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. The instrument combines cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED’s instrumental setup, limits of detection and elemental performance are presented and discussed. Two measurement case studies are reported: one in Finnish boreal forest and other based on an aircraft campaign.
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an...
Citation