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Abstract 18 

We present a new and improved version (V4.0) of the NASA standard nitrogen dioxide (NO2) 19 

product from the Ozone Monitoring Instrument (OMI) on the Aura satellite. This version 20 

incorporates the most salient improvements for OMI NO2 products suggested by expert users and 21 

enhances the NO2 data quality in several ways through improvements to the air mass factors 22 

(AMFs) used in the retrieval algorithm. The algorithm is based on geometry-dependent surface 23 

Lambertian equivalent reflectivity (GLER) operational product that is available on an OMI pixel 24 

basis. GLER is calculated using the vector linearized discrete ordinate radiative transfer 25 

(VLIDORT) model, which uses as input high resolution bidirectional reflectance distribution 26 

function (BRDF) information from NASA’s Aqua Moderate Resolution Imaging 27 

Spectroradiometer (MODIS) instruments over land and the wind-dependent Cox–Munk wave-28 

facet slope distribution over water, the latter with contribution from the water-leaving radiance. 29 

The GLER combined with consistently retrieved oxygen dimer (O2-O2) absorption-based effective 30 

cloud fraction (ECF) and optical centroid pressure (OCP) provide improved information to the 31 

new NO2 AMF calculations. The new AMFs increase the retrieved tropospheric NO2 by up to 50% 32 

in highly polluted areas; these differences arise from both cloud and surface BRDF effects as well 33 

as biases between the new MODIS-based and previously used OMI-based climatological surface 34 

reflectance data sets. We quantitatively evaluate the new NO2 product using independent 35 

observations from ground-based and airborne instruments. The new V4.0 data and relevant 36 

explanatory documentation are publicly available from the NASA Goddard Earth Sciences Data 37 

and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/), 38 

and we encourage their use over previous versions of OMI NO2 products. 39 
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Introduction 40 

The Dutch/Finnish-built Ozone Monitoring Instrument (OMI) has been operating on board the 41 

NASA EOS-Aura spacecraft since July 2004 (Levelt et al., 2006, 2018). The primary objectives 42 

of OMI’s mission are to continue the long-term record of total column ozone and to monitor other 43 

trace gases relevant to tropospheric pollution worldwide. Observations of sunlight backscattered 44 

from the Earth over a wide range of UV and visible wavelengths (~260-500 nm) made by OMI 45 

allow for the retrieval of various atmospheric trace gases, including nitrogen dioxide (NO2). NO2 46 

is a critically important short-lived air pollutant originating from both anthropogenic and natural 47 

sources. It is the principal precursor to tropospheric ozone and a key agent for the formation of 48 

several toxic airborne substances such as nitric acid (HNO3), nitrate aerosols, and peroxyacetyl 49 

nitrate. Satellite-based observations yield a global, self-consistent NO2 data record that can 50 

complement field measurements. 51 

During more than 16 years of operation, OMI has provided a unique, practically uninterrupted 52 

daily NO2 data record that has been widely used for atmospheric research and applications, 53 

accentuating demands for accurate NO2 data products. The power of OMI to track NO2 pollution 54 

is demonstrated through observations of enhanced column amounts over polluted industrial areas 55 

(e.g., Boersma et al., 2011; Lamsal et al., 2013; Krotkov et al., 2016; Kim et al., 2016; Cai et al., 56 

2018; Montgomery and Halloway, 2018), weekly patterns with significant reduction on weekends 57 

following energy usage (e.g., Ialongo et al., 2016), and seasonal patterns (e.g., van der A et al., 58 

2008) that reflect changes in NOx emissions and photochemistry (e.g., Shah et al., 2019). 59 

Exploiting the close relationship between NOx emissions and tropospheric NO2 columns, OMI 60 

NO2 data have been used to detect and quantify the strength and trends of NOx emissions from 61 

power plants (Duncan et al., 2013; de Foy et al., 2015; Liu et al., 2019), ships (e.g., Vinken et al., 62 

2014a), lightning (e.g., Picketing et al., 2016), soil (e.g., Vinken et al., 2014b), oil and gas 63 

production (e.g., Dix et al., 2020), forest fires (Schreier et al, 2014), and other area sources such 64 

as cities in the US (Lamsal et al., 2015; Lu et al., 2015; Kim et al., 2016), Europe (e.g., Zhou et 65 

al., 2012; Castellanos et al., 2012; Vinken et al., 14a), Asia (Ghude et al., 2013; Goldberg et al., 66 

2019a), and other world urban areas (Krotkov et al., 2016; Duncan et al., 2016; Montgomery and 67 

Halloway, 2018). OMI NO2 observations have frequently seen used to evaluate chemical transport 68 

models (CTMs) (e.g., Herron-Thrope et al., 2010; Han et al., 2011; Hudman et al., 2012; Pope et 69 

al., 2015; Rasool et al., 2016), to study atmospheric NOx chemistry and lifetime (e.g., Lamsal et 70 
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al., 2010; Beirle et al., 2011; Canty et al., 2015; Tang et al., 2015; Laughner and Cohen, 2019), 71 

and to infer ground-level NO2 concentrations (Lamsal et al., 2008; Gu et al., 2017), NO2 dry 72 

deposition (Nowlan et al., 2014, Geddes and Martin, 2017), and emissions of co-emitted gases 73 

including carbon dioxide (CO2) (Konovalov et al., 2016; Goldberg et al., 2019b, Liu et al., 2019). 74 

Over the last decade, there have been considerable efforts to improve NO2 data quality from OMI 75 

and other satellite instruments (e.g., Boersma et al., 2018). A special emphasis has been placed on 76 

improving auxiliary information (e.g., a priori NO2 vertical profiles, surface reflectivity), 77 

particularly with respect to spatial and temporal resolution. For instance, the global OMI NO2 78 

products are based on a priori NO2 profiles from relatively coarse-resolution (>1.0°× 1.25°) global 79 

CTM simulations (Boersma et al., 2011; Krotkov et al., 2017, Choi et al., 2020). Many regional 80 

studies suggest a general low-bias in the global tropospheric NO2 column products, particularly 81 

over polluted areas, that can be partially mitigated by using a-priori information from high-82 

resolution CTM simulations (Russell et al., 2011, McLinden et al., 2014; Lin et al., 2014; 2015; 83 

Goldberg et al., 2018; Choi et al., 2020). Current global NO2 retrievals are based on a low-84 

resolution (0.5°× 0.5°) static climatology of surface Lambert-Equivalent Reflectivity (OMLER) 85 

product (Kleipool et al., 2008), which is likely biased high due to insufficient cloud and aerosol 86 

screening. This bias in surface reflectivity can lead to an underestimation of tropospheric NO2 87 

retrievals (Zhou et al., 2010; Lin et al., 2014; Vasilkov et al., 2017). In addition, the OMLER data 88 

do not account for the significant day-to-day (orbital) variability in surface reflectance caused by 89 

changes in sun-satellite geometry, a phenomenon often expressed by the bi-directional reflectance 90 

distribution function (BRDF). Zhou et al. (2010) demonstrated the impact of both the spatial 91 

resolution and the BRDF effect on OMI tropospheric NO2 retrievals over Europe by using high-92 

resolution surface BRDF and albedo products from the Moderate Resolution Imaging 93 

Spectroradiometer (MODIS). Taking advantage of the MODIS high resolution data, albeit 94 

neglecting the BRDF and atmospheric effects, Russell et al (2011) and McLinden et al (2014) 95 

created improved NO2 products from the NASA Standard Product (Bucsela et al., 2013; Lamsal 96 

et al., 2014) over the continental US and Canada, respectively. While these and subsequent studies 97 

(e.g., Kuhlmann et al., 2015; Laughner et al., 2019) addressed the limitation of climatological LER 98 

data on NO2 retrievals, they did not account for the surface BRDF effect on the OMI cloud products 99 

(cloud pressure/fraction), which are also inputs to the NO2 algorithm. Applying the MODIS BRDF 100 

data consistently to both the NO2 and cloud retrievals demonstrably improves the quality of OMI 101 
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NO2 retrievals over China (Lin et al., 2014, 2015, Liu et al., 2019). However, this approach is 102 

computationally expensive and is applicable to land surfaces only. Our previous work (Vasilkov 103 

et al., 2018) proposed an approach appropriate for satellite NO2 data processing on a global scale 104 

(a) by using MODIS BRDF information consistently in the cloud and NO2 retrievals; (b) for both 105 

land and water; and (c) in an efficient way. Here, we apply the approach globally for the first time 106 

in the standard NASA OMI NO2 algorithm. 107 

In this paper we describe various updates made in the version 4.0 (V4.0) NASA OMI NO2 108 

algorithm, discuss their impact on the retrievals of tropospheric and stratospheric NO2 column 109 

amounts, and provide an initial quantitative assessment of NO2 data quality. Section 2 describes 110 

the OMI NO2 algorithm and various auxiliary data used by the algorithm. We present validation 111 

results in Section 3. Section 4 summarizes the conclusions of this study. 112 

2 OMI and the NO2 Standard Product 113 

OMI is a ultraviolet-visible (UV-Vis) spectrometer on the polar-orbiting NASA Aura satellite 114 

(Levelt et al., 2006, 2018). Aura, launched on July 15, 2004, follows a sun-synchronous orbit with 115 

an equator crossing time near 13:45 local time. OMI employs two-dimensional CCD detectors and 116 

operates in a push-broom mode, registering spectral data over a 2600 km cross-track spatial swath. 117 

The broad swath enables global daily coverage within 14-15 orbits. In the OMI visible channel 118 

used for NO2 retrievals, each swath, measured every two seconds, comprises 60 cross-track fields 119 

of view (FOVs) varying in size from ~13 km × 24 km near nadir to ~24 km × 160 km for the FOVs 120 

at the outermost edges of the swath. Each orbit consists of ~1650 swaths from terminator to 121 

terminator. OMI’s full daily coverage has been affected by data loss due to an anomaly presumably 122 

caused by material on the spacecraft outside the instrument that results in reduced coverage to 123 

about half of its original swath as discussed in Section 2.4.  124 

The OMI NO2 Standard Product (OMNO2) algorithm provides retrievals of NO2 column (total, 125 

tropospheric, and stratospheric) amounts by exploiting Level-1B calibrated radiance and irradiance 126 

data from the Vis channel (350-500 nm with 0.63 nm spectral resolution). The algorithm employs 127 

a multi-step procedure that consists of 1) a spectral fitting algorithm to calculate NO2 slant column 128 

densities (SCDs) as discussed in Section 2.1; 2) determination of air mass factors (AMFs) to 129 

convert SCDs to vertical column densities (VCDs) as discussed in detail in Section 2.2; 3) a 130 

scheme to remove cross-track dependent artifacts or stripes; and 4) a stratosphere-troposphere 131 

separation scheme to derive tropospheric and stratospheric NO2 VCDs. The AMF depends upon a 132 
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number of parameters including optical geometry (solar and viewing azimuth and zenith angles), 133 

surface reflectivity, cloud pressure and fraction, and the shape of the NO2 a priori vertical profile. 134 

Since the first release of OMNO2 in 2006 (Bucsela et al., 2006; Celarier et al., 2008), there have 135 

been significant conceptual and technical improvements in the retrieval of NO2 from space-based 136 

measurements. Prior versions developed a new scheme for separating stratospheric and 137 

tropospheric components in version 2.1 (V2.1) (Bucsela et al., 2013, Lamsal et al., 2014) and a 138 

new algorithm for improved NO2 SCD retrievals in V3.0 (Marchenko et al., 2015, Krotkov et al., 139 

2017), and included improved cloud products (Veefkind et al., 2016) in V3.1 (Choi et al., 2020). 140 

The current version, V4.0, further improves on the retrievals in a number of significant ways for 141 

NO2 AMF and VCD calculations. Figure 1 shows a schematic diagram of the retrieval algorithm, 142 

and Table 1 summarizes the differences and similarities between previous (V3.1) and current (V4) 143 

versions. Some of the approaches in the V4 algorithm are similar to those used in V3.1, but there 144 

are several important changes as discussed in detail in Sections 2.1 and 2.2. 145 

2.1 NO2 and O2-O2 spectral fitting 146 

2.1.1 NO2 spectral fitting algorithm 147 

The spectral fitting algorithm for the operational standard OMI NO2 product is described in detail 148 

in Marchenko et al. (2015). Briefly, the algorithm retrieves NO2 slant column densities (SCDs) by 149 

using a Differential Optical Absorption Spectroscopy (DOAS) approach (e.g., Platt and Stutz, 150 

2006). In the DOAS approach, laboratory-measured spectra of NO2 (Vandaele et al., 1998) and 151 

glyoxal (Volkamer et al., 2005), HITRAN08-based water vapor spectra (Rothman et al., 2009), 152 

and rotational Raman (RR; Ring effect) filling-in are sequentially fitted to the OMI-measured 153 

reflectance spectrum in the 402-465 nm wavelength range. The slant column represents the 154 

integrated abundance of NO2 along the average photon path from the Sun, through the atmosphere, 155 

to the satellite. The Ring spectra are calculated as a linear combination of the atmospheric (Joiner 156 

et al. 1995) and the liquid-water (Vasilkov et al., 2002) RR spectra, convolved with the wavelength 157 

and cross-track dependent OMI transfer function (Dirksen et al., 2006). The algorithm employs a 158 

multi-step, iterative retrieval procedure for removal of the Ring and spectral under-sampling 159 

(Chance, et al., 2005) patterns as well as a low-order polynomial smoothing prior to estimation of 160 

SCDs for all interfering species. This is in contrast with the conventional DOAS approach that 161 

treats the Ring effect as a pseudo-absorber and fits all absorbers simultaneously with the 162 
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polynomial functions. For accurate wavelength shifts (radiances vs. irradiances), the standard 163 

product algorithm splits the entire fitting window into seven carefully selected, partially 164 

overlapping micro-windows, iteratively evaluates the RR spectrum amplitudes, performs 165 

wavelength adjustments for each segment, and then iteratively retrieves the NO2, H2O, and glyoxal 166 

in the windows best suited for a particular trace-gas species.  167 

The OMI NO2 SCDs from the standard product were compared with improved SCD retrievals 168 

from the Quality Assurance for Essential Climate Variables (QA4ECV, http://www.qa4ecv.eu/), 169 

BIRA-IASB’s (Royal Belgian Institute for Space Aeronomy) QDOAS software (http://uv-170 

vis.aeronomie.be/software/QDOAS/), and the latest KNMI retrievals (van Geffen et al., 2015) and 171 

are shown to agree within 2% (Zara et al., 2018). The typical NO2 SCD uncertainties amount to 172 

~0.8×1015 molec cm-2, or 5-7% in high-SCD areas and 15-20% in low-SCD values (Marchenko et 173 

al., 2015).  174 

2.1.2 O2-O2 spectral fitting algorithm 175 

The oxygen dimer (O2-O2) slant column fitting algorithm shares many features of the NO2 fitting 176 

algorithm and is described in detail in Vasilkov et al. (2018). It consists of a multi-step, iterative 177 

retrieval approach with three carefully selected micro-windows sampling the flanks and the core 178 

of the broad O2-O2 feature centered at 477 nm. The algorithm exploits OMI-measured reflectance 179 

spectra in the 451-496 nm range to determine the wavelength shifts and RR amplitudes. The Ring 180 

patterns are removed from the original OMI reflectances during the iterative adjustments for 181 

differences in the wavelength registration of radiances and irradiances. The O2-O2 slant columns 182 

are retrieved after removal of the NO2 and H2O absorptions estimated by the algorithm discussed 183 

in the previous section, and of the ozone absorption using total ozone data from Veefkind et al. 184 

(2006). After removal of the interfering signals, the 477 nm O2-O2 absorption profile is carefully 185 

normalized to the adjacent O2-O2 absorption-free reflectance levels accounting for very different 186 

wavelength dependencies of surface reflectances over various geographical sites (e.g., the open-187 

ocean and desert area), as described in Vasilkov et al. (2018). The normalized O2-O2 absorption 188 

profiles are then iteratively fitted with the temperature-dependent cross-sections from Thalman 189 

and Volkamer (2013) over the 463-488 nm range to derive O2-O2 SCDs. These are used to estimate 190 

the cloud properties as discussed below in Section 2.2.2.  191 
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2.2 Improved air mass factor calculations 192 

The AMF, which is defined as the ratio of SCD to VCD, is needed to calculate the retrieved NO2 193 

VCD. Details of the AMF and its calculation are given in Palmer et al. (2001). The AMF for each 194 

FOV is calculated by combining altitude (z)-dependent scattering weights (w) computed with a 195 

radiative transfer model and a local a priori vertical NO2 profile shape (S), taken from a chemistry-196 

transport model:  197 

𝐴𝑀𝐹 = ∫ 𝑤(𝑧)𝑆(𝑧)𝑑𝑧!!
!"

.       (1) 198 

For the tropospheric AMF, the integral extends from the surface to the tropopause, whereas the 199 

integral from the tropopause to the top of the atmosphere provides the stratospheric AMF. The 200 

scattering weight at a given altitude describes the sensitivity of the backscattered radiation to the 201 

abundance of the absorber at that altitude. For an optically thin absorber like NO2, scattering 202 

weights are a function of atmospheric scattering and are considered to be independent of the 203 

species’ vertical distribution (Palmer et al., 2001). Factors affecting scattering weights include 204 

wavelength, optical geometry (solar and viewing azimuth and zenith angles), surface reflectivity, 205 

and cloud pressure and fraction. The wavelength dependence of scattering weights is accounted 206 

for by creating an average of scattering weights derived from the values at multiple wavelengths 207 

within the NO2 spectral fitting window. To compensate for the effect of the assumed constant NO2 208 

temperature (220 K) in the NO2 SCD retrievals, the scattering weights are corrected for the 209 

atmospheric temperature effect using local climatological monthly temperature profiles as 210 

discussed in Bucsela et al. (2013). These profiles are based on the meteorological field from the 211 

Modern‐Era Retrospective Analysis for Research and Applications (MERRA-2) (Gelaro et al., 212 

2017). 213 

The a priori NO2 profile shapes are computed from a monthly mean climatology of vertical NO2 214 

profiles constructed from the Global Modeling Initiative (GMI) CTM simulation (Douglass et al. 215 

2004, Strahan et al., 2007, Strode et al., 2015) driven by MERRA-2 meteorology. The spatial 216 

resolution of the model is 1.25° in longitude and 1.0° in latitude, and the atmosphere is divided 217 

into 72 pressure levels extending from the surface to 0.01 hPa. The model output is sampled 218 

between 13:00 - 14:00, local time, consistent with the OMI overpass time. The use of monthly 219 

NO2 profiles helps capture the seasonal variation in the NO2 vertical distribution (Lamsal et al., 220 

2010). The simulation is based on yearly varying NOx emissions, as discussed in Strode et al., 221 

(2015); this is necessary to account for the effect of rapidly changing NOx emissions (e.g., Tong 222 
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et al., 2015; Duncan et al., 2016; Miyazaki et al., 2017) on local NO2 profile shapes (Lamsal et al., 223 

2015; Krotkov et al., 2017).  224 

For each FOV, AMFs are computed for clear (𝐴𝑀𝐹"#$) and cloudy (𝐴𝑀𝐹"#%) conditions. The AMF 225 

of a partially cloudy scene is calculated by assuming the independent pixel approximation:   226 

𝐴𝑀𝐹 = (1 − 𝑓$) × 𝐴𝑀𝐹"#$ + 𝑓$ × 𝐴𝑀𝐹"#%,     (2) 227 

where 𝑓$ is the cloud radiance fraction (CRF), defined as the fraction of the measured radiation 228 

that comes from clouds and scattering aerosols, and is computed at 440 nm from the retrieved 229 

effective cloud fraction (ECF), 𝑓" using Equation 8 (see below). 𝐴𝑀𝐹"#$ is calculated for the 230 

ground reflectivity of 𝑅& and at terrain pressure 𝑃&, whereas 𝐴𝑀𝐹"#% is calculated assuming a 231 

Lambertian surface of reflectivity 0.8 at the retrieved cloud pressure. Below we provide a detailed 232 

discussion of each of these input parameters that are incorporated in the OMNO2 V4.0 algorithm. 233 

2.2.1 New surface reflectivity product for NO2 and cloud retrievals 234 

Surface reflectivity is an important input parameter for UV/Vis satellite retrievals of trace gases 235 

and cloud information. The surface reflectance over both ocean and land depend upon viewing and 236 

illumination geometry and can be accurately described by the bidirectional reflectance distribution 237 

function (BRDF). This effect is, however, neglected by most currently available trace gas and 238 

cloud algorithms which use a climatological Lambert-equivalent reflectivity (LER) for the surface. 239 

To account for surface BRDF effects in the NO2 and cloud retrievals, here we use the geometry-240 

dependent surface LER (GLER) product derived using the Moderate Resolution Imaging 241 

Spectroradiometer (MODIS) BRDF data and the Vector Linearized Discrete Ordinate Radiative 242 

Transfer (VLIDORT) calculation (Vasilkov et al., 2017; Qin et al., 2019; Fasnacht et al., 2019). 243 

The GLER allows for a computationally efficient approach that does not require major changes to 244 

the existing trace gas and cloud algorithms. 245 

We derive GLER by inverting the top-of-atmosphere (TOA) radiance (I) of a Rayleigh atmosphere 246 

over a non-Lambertian surface for each specific FOV and Sun-satellite geometry within the 247 

Lambertian framework, i.e.,  248 

𝐼 = 𝐼' + 𝐺𝐿𝐸𝑅 × 𝑇/(1 − 𝐺𝐿𝐸𝑅 × 𝑆(),     (3) 249 

where 𝐼' is the TOA radiance calculated for a black surface, T is the total (direct + diffuse) solar 250 

irradiance reaching the surface converted to the ideal Lambertian-reflected radiance (by dividing 251 

by π steradians) and then multiplied by the transmittance of the reflected radiation between the 252 
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surface and TOA in the direction of a satellite instrument, and 𝑆( is the diffuse flux reflectivity of 253 

the atmosphere for the case of its isotropic illumination from below (Dave, 1978). The value of I0, 254 

T, and Sb are pre-computed with VLIDORT and stored in a look-up table. The GLER values are 255 

calculated at wavelengths relevant for both NO2 (440 nm) and cloud (466 nm) retrievals.  256 

Over land, the BRDF is calculated using the Ross-Thick Li-Sparse kernel model (Lucht et al., 257 

2000) in VLIDORT (Spurr, 2006):  258 

𝐵𝑅𝐷𝐹 = 𝑎)&* + 𝑎+*#𝑘+*# + 𝑎,-*𝑘+*#,     (4) 259 

where the coefficients, 𝑎)&*, 𝑎+*#, and 𝑎,-* come from the Moderate Resolution Imaging 260 

Spectroradiometer (MODIS) Collection 5 gap-filled, seasonal snow-free BRDF product 261 

MCD43GF (Schaaf et al., 2002, 2011) for band 3 (459-479 nm) available at 30 arc-second spatial 262 

resolution and 8-day temporal resolution. The term 𝑎)&* is the isotropic contribution describing the 263 

Lambertian part of light reflection from the surface, the volumetric kernel (𝑘+*#) describes light 264 

reflection from a dense leaf canopy, and the geometric kernel (𝑘,-*) describes light reflection from 265 

a sparse ensemble of surface objects casting shadows on the background assumed to be 266 

Lambertian. The kernels are the only angle-dependent functions, the expressions of which are 267 

given in Lucht et al. (2000). The band 3 BRDF coefficients spatially averaged over an actual 268 

satellite FOV are used to calculate TOA radiance and GLER at 466 nm. To calculate GLER at 440 269 

nm, we apply a scaling method using the ratio of OMI-derived lambert equivalent reflectivity 270 

(LER) data at 440 nm and 466 nm: 271 

𝐺𝐿𝐸𝑅..' = 𝐺𝐿𝐸𝑅.// × 𝑓&.        (5) 272 

The value of 𝑓& =
012##$
012#%%

 is taken from the gridded monthly LER ratio data at 1°×1° or coarser 273 

resolution. The LER is determined from OMI TOA radiance measurements as discussed in 274 

Vasilkov et al. (2017, 2018). We use clear-sky (effective cloud fraction <0.02) and aerosol free 275 

(OMI UV Aerosol Index (Torres et al., 2007) <0.5) OMI LER data to create the monthly gridded 276 

data. The cloud and aerosol screening is necessary because the spectral dependence of surface 277 

features differ from that of clouds and aerosols.   278 

Over water, the surface reflectance is calculated at the two wavelengths, 440 nm and 466 nm, using 279 

VLIDORT. To calculate TOA radiance, we include light specularly reflected from a rough water 280 

surface as well as diffuse light backscattered by water bulk. We also account for contributions 281 

from oceanic foam that can be significant for high wind speeds. Reflection from the water surface 282 
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is described by the Cox–Munk slope distribution function, which depends on both the wind speed 283 

and the wind direction (Cox and Munk, 1954). Polarization at the ocean surface is accounted for 284 

by using a full Fresnel reflection matrix as suggested by Mishchenko and Travis (1997).  285 

We use wind speed data from a pair of satellite microwave imagers that include the Advanced 286 

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument onboard the 287 

NASA Aqua satellite (Wentz and Meissner, 2004) for 2004-2011 and the Special Microwave 288 

Imager/Sounder (SSMIS) onboard the Air Force Defense Meteorological Satellite Program 289 

(DMSP) Satellite F16 (Wentz et al., 2012) afterwards. Wind direction data are taken from the 290 

Global Modeling Assimilation Office (GMAO) Goddard Earth Observing System Model Forward 291 

Processing for Instrument Teams (GEOS-5 FP-IT) near real time assimilation.  292 

Diffuse light from the ocean is described by a Case 1 water model with a single input parameter 293 

of chlorophyll concentration (Morel, 1988) taken from the monthly Aqua/MODIS data. The 294 

common Case 1 water model developed for the Vis (Morel, 1988) was extended to the UV using 295 

data from Vasilkov et al. (2002, 2005). To calculate water-leaving radiance, we require the 296 

downwelling irradiance at the surface (i.e., atmospheric transmittance). Since the transmittance 297 

and the water-leaving contribution are coupled, we develop a simple coupling scheme in 298 

VLIDORT that ensures the value of water-leaving radiance used as an input at the ocean surface 299 

will correspond to the correct value of the downwelling flux reaching the surface interface 300 

(Fasnacht et al., 2019).  301 

For OMI ground pixels covering land and water surfaces, the TOA radiance (I) is calculated as an 302 

average of radiance for land (𝐼0) and water (𝐼3) weighted by the pixel land fraction (𝑓): 303 

𝐼 = 𝑓𝐼0 + (1 − 𝑓)𝐼3.        (6) 304 

The value of  𝑓 is determined by converting various surface categories in the MODIS data (note 305 

that these are of much higher spatial resolution than the OMI data) into a binary land-water mask 306 

(e.g., treating all shorelines and ephemeral water as the land category and classifying all other 307 

water sub-categories simply as water). The areal fraction of land (or water) for each OMI pixel is 308 

then computed as the statistics of the binary categories. 309 

Figure 2 shows an example of changes in surface reflectivity used in the previous (V3.1) and the 310 

current (V4.0) version of the OMI NO2 algorithm. The GLER data computed for OMI observations 311 

as discussed above for March 20, 2005 differ considerably from the OMI-derived climatological 312 



12 
 

monthly LER data (Kleipool et al., 2008) for March. As shown in Figures 2 and 3(a), the GLERs 313 

are generally lower than climatological LERs data except at swath edges with large viewing angles 314 

and over areas affected by sunglint that correspond to higher values of GLER. Changes over the 315 

sunglint areas are rather large, reaching up to 0.3. The climatological LER data derived by 316 

analyzing histograms of five years of OMI-based LER data likely overestimate the actual surface 317 

reflectivity due to residual cloud and aerosol contamination and underestimate over sunglint areas 318 

as the procedure ignores sun glint affected observations. In contrast, the GLER data over land are 319 

based on atmospherically corrected radiances from high-resolution MODIS observations, 320 

minimizing the impact of both cloud and aerosols.   321 

2.2.2 Improved cloud products retrieval 322 

We develop a new algorithm that provides cloud parameters, namely cloud radiance fraction 323 

(CRF) and cloud optical centroid pressure (OCP), and use them in the OMNO2 algorithm. Similar 324 

to the standard OMCLDO2 algorithm (Veefkind et al, 2016), our cloud algorithm exploits the O2-325 

O2 absorption to retrieve O2-O2 SCD as discussed in Section 2.1.2, but derives the two cloud 326 

parameters using the GLER and other ancillary data that are used in the NO2 algorithm, 327 

maintaining inter-algorithm consistency. The OMCLDO2 algorithm retrieves these parameters 328 

using the climatological LER data from Kleipool et al. (2008). In the following, our new cloud 329 

product is referred to as OMCDO2N.   330 

The derivation of CRF and OCP is based on a simple cloud model called the mixed Lambertian-331 

equivalent reflectivity (MLER) model (Joiner and Vasilkov, 2006; Veefkind et al., 2016). The 332 

MLER model treats cloud and ground as horizontally homogeneous, opaque Lambertian surfaces 333 

and mixes them using the independent pixel approximation (IPA). According to the IPA, the 334 

measured TOA radiance,	𝐼4, is a sum of the clear-sky (𝐼,) and overcast (𝐼") subpixel TOA 335 

radiances that are weighted with an effective cloud fraction (ECF), 𝑓" (e.g., Stammes et al., 2008): 336 

𝐼4 = 𝐼,(1 − 𝑓") + 𝐼"𝑓" .       (7) 337 

We choose the wavelength of 466 nm that is not substantially affected by rotational Raman 338 

scattering (RRS) or atmospheric absorption to derive 𝑓". The parameters 𝐼, and 𝐼" are a function 339 

of the ground and cloud LERs, respectively, and are calculated using VLIDORT (Spurr, 2006) and 340 

obtained with an interpolated look up table. We use GLER discussed above for ground reflectivity 341 
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and a uniform cloud reflectivity of 0.8 (Koelemeijer et al., 2001; Stammes et al., 2008). The value 342 

of 𝑓" is calculated by inverting Equation (7). Note that aerosols are implicitly accounted for in the 343 

determination of 𝑓", as they are treated (like clouds) as particulate scatters. CRF (𝑓$) defines the 344 

fraction of TOA radiance reflected by cloud:  345 

 𝑓$ = 𝑓" ×
5&
5'

.          (8) 346 

We use pre-computed look-up tables of the TOA radiances generated using VLIDORT. Due to its 347 

wavelength dependence, we calculate CRF at 466 nm for OCP at 440 nm for NO2 retrievals.  348 

The MLER model compensates for photon transport within a cloud by placing the Lambertian 349 

surface somewhere in the middle of the cloud instead of at the top (Vasilkov et al., 2008). The 350 

pressure of this surface corresponds to OCP, which can be modeled as a reflectance-averaged 351 

pressure level reached by backscattered photons (Joiner et al., 2012). We retrieve cloud OCP from 352 

the O2-O2 SCD discussed above (Section 2.1.2). The cloud OCP,	𝑃", is estimated by inversion 353 

using the MLER method to compute the appropriate O2-O2 AMFs:  354 

𝑆𝐶𝐷 = 𝐴𝑀𝐹, × 𝑉𝐶𝐷, × (1 − 𝑓$) + 𝐴𝑀𝐹" × 𝑉𝐶𝐷" × 𝑓$,    (9) 355 

where VCD (= SCD/AMF) is the vertical column density of O2-O2 over ground (𝑉𝐶𝐷,) and cloud 356 

(𝑉𝐶𝐷6). The clear-sky (𝐴𝑀𝐹,) and overcast or cloudy (𝐴𝑀𝐹") subpixel AMFs are calculated at 357 

477 nm with ground (GLER) and cloud (0.8) reflectivity, respectively. Look-up tables for the 358 

AMFs were generated using VLIDORT. Temperature profiles needed for estimation of VCD and 359 

AMF are taken from the GEOS-5 global data assimilation system (Rienecker et al., 2011).  360 

In addition to OCP, we retrieve the so-called scene pressure. The scene pressure is derived from 361 

Eq. (9) assuming that 𝑓$ = 1	and cloud reflectivity = scene LER. The scene LER is determined 362 

from the measured TOA radiance using the equation (Eq. 3) that defines TOA radiance in the 363 

Rayleigh atmosphere over a Lambertian surface. In the absence of clouds, aerosols, and any major 364 

gas absorptions, the scene pressure should be equal to the surface pressure. The scene pressure is 365 

therefore an important diagnostic tool for evaluation of the performance of cloud pressure 366 

algorithms.  367 
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Figure 4 shows an example of cloud products retrieved with our algorithm compared with those 368 

retrieved from the standard OMCLDO2 algorithm (Veefkind et al., 2016). The retrieved OCP and 369 

CRF from the two algorithms exhibit broadly consistent spatial patterns in both cloud altitude and 370 

amount. The values of OCP generally range from 370 hPa to 1001 hPa in OMCDO2N versus 150 371 

hPa to 1011 hPa in OMCLDO2N. For both products, CRF varies from 0 for clear-sky to 1 for 372 

overcast conditions. A systematic difference is evident with generally higher values in OMCDO2N 373 

for OCP by 147 hPa and CRF by 0.01 as compared to OMCLDO2. For OCP, there is a general 374 

pattern in difference with OMCDO2N OCP higher for low-altitude clouds (>700 hPa) and lower 375 

values for high-altitude clouds (<300 hPa) (Figure 3(c)). The largest OCP differences occur for 376 

cases where cloud pressures in OMCLDO2 are clipped to 150 hPa. For CRF, larger differences 377 

occur for partially cloudy scenes with higher CRF values in OMCDO2N by 0-0.1 for both land 378 

and water surfaces (Figure 3(b)). Exceptions are over sun-glint areas, where CRF in OMCDO2N 379 

is lower by 0-0.3 with the mean difference of 0.13.   380 

2.2.3 Treatment over snow and ice surfaces 381 

Over ice and snow surfaces, identified by the Near-real-time Ice and Snow Extent (NISE) flags 382 

(Nolin et al., 2005) in the OMI Level 1b data, the following treatments are made for surface 383 

reflectivity. In case of permanent ice and snow surfaces, the MCD43GF product provides BRDF 384 

parameters, allowing us to calculate GLER. Over seasonal snow area usually with data gaps in 385 

MCD43GF, we calculate OMI-derived LER but capped by a constant snow albedo of 0.6 following 386 

Boersma et al. (2011). In rare cases of pixels not flagged by NISE and gaps in MODIS data, we 387 

use OMI LER climatology (Kleipool et al., 2008), regardless whether the surface is either snow/ice 388 

covered but missed by NISE or snow/ice free.   389 

The OMI-derived scene reflectivity and scene pressure are used for NO2 and cloud retrievals over 390 

seasonal snow covered areas. If the NISE flags are set as true, the following assumptions are made 391 

in our CRF, OCP, and NO2 retrievals. Over bright surfaces (scene reflectivity > 0.2), we consider 392 

the scenes as snow or cloud covered and assign the scene pressure to OCP. In addition, if a 393 

difference between the surface pressure and scene pressure is smaller than 100 hPa, the scene is 394 

considered to be either cloud free or covered by optically thin clouds following the cloud over 395 

snow classification by Vasilkov et al. (2010), and CRF for the pixel is set to zero. If the difference 396 

between the surface pressure and scene pressure exceeds 100 hPa, the scene is considered to be 397 

overcast by optically thick (shielding) clouds (Vasilkov et al., 2010), and CRF for the pixel is set 398 
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to one. To avoid a possible NISE misclassification (Cooper et al., 2018) for low-reflectivity scenes 399 

(scene reflectivity < 0.2), we consider such scenes as being snow/ice-free and calculate CRF, OCP, 400 

and NO2 AMF using the standard procedure with GLER for those scenes. 401 

2.2.4 Improved terrain height/pressure calculation 402 

Terrain pressure is a critical parameter to the AMF in NO2 and cloud algorithms as well as to the 403 

total optical depth of the Rayleigh atmosphere in the GLER algorithm. Prior studies have shown 404 

that errors in terrain pressure can introduce over 20% errors in retrieved NO2 VCD, especially in 405 

areas of complex terrain (Zhou et al, 2010; Russell et al., 2011). 406 

Here, we use a 2-arc minute Global Relief Model of global land-water surface data (ETOPOv2, 407 

National Geophysical Data Center, 2006) to derive terrain height for each individual OMI ground 408 

pixel. We derive the pixel-average terrain height by collocating and averaging the high resolution 409 

data as discussed in Qin et al. (2019). The corresponding terrain pressure for each OMI pixel (𝑃&) 410 

is calculated from the terrain pressure-height relationship established based on MERRA-2 monthly 411 

terrain pressure (𝑃&_895) at a spatial resolution of 1° latitude × 1.25° longitude used in the GMI 412 

model discussed above:  413 

𝑃& = 𝑃&_895𝑒
:(()* ),         (10) 414 

where ∆𝑧 (= 𝑧 −	𝑧895) represents the difference between the average terrain height for an OMI 415 

pixel (𝑧) and the terrain height at GMI resolution (𝑧895). The parameter, 𝐻 = =>
9,

, represents the 416 

scale height, where k is the Boltzmann constant, T is the temperature at the surface, M is the mean 417 

molecular weight of air, and g is the acceleration due to gravity.  418 

2.3 Impact of the changes on AMF  419 

Figure 5 shows an example of how changes in each individual input parameter affect tropospheric 420 

AMFs which, in turn, translate inversely to tropospheric NO2 column retrievals. Replacing 421 

climatological LER from OMLER with daily GLER data affects scattering weight profiles in the 422 

lower troposphere, resulting in lower values of tropospheric AMF almost everywhere, except over 423 

sun glint areas, where the use of GLER enhances scattering weights and tropospheric AMF (Figure 424 

5(a)). The changes in tropospheric AMF with GLER usually range from -50% to 25%, 425 

occasionally reaching up to -100%. The effect is small (-6% to 1%) for overcast scenes (CRF>0.9), 426 
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and increases (-28% to 17%) over clear and partially cloudy scenes (CRF<0.5), for unpolluted 427 

regions, and surges (-62% to 3%) over polluted areas (>5´1015 molec. cm-2).  Figure 6(a) shows 428 

GLER-driven changes in clear-sky (CRF<0.5) tropospheric AMF for different surface and scene 429 

types, separated by tropospheric NO2 column amounts. For 80% of cases over land, 97% over 430 

water outside of sunglint areas, and 98% over sunglint areas, tropospheric NO2 columns are < 431 

1.5´1015 molec. cm-2 and the average GLER-driven differences are small at –6.6±17.3%, -432 

3.8±7.1%, and 4.0±12.9%, respectively. The differences increase gradually with column amount 433 

over NOx source regions (e.g., cities and highly polluted coastal areas) with binned (of size 1´1015 434 

molec. cm-2) average differences ranging from -10±20.1% to -30±19.7%. Over snow and ice 435 

surfaces, changes are rather large, reaching up to a factor of two. The impact of change in the 436 

surface reflection data on stratospheric AMFs is negligible (<2%). 437 

Figures 5(b) and 6(b) show how changes in the cloud parameters (CRF and OCP) affect 438 

tropospheric AMF. Replacing OMCLDO2-based cloud parameters with those from OMCDO2N 439 

changes scattering weight profiles in a complicated way. Higher values of OCP in OMCDO2N 440 

will include additional portions of scattering weights between the OMCDO2N- and OMCLDO2-441 

based OCPs, especially in the lower troposphere, thereby reducing the tropospheric AMF. On the 442 

other hand, the higher CRF values lead to an increased contribution of the cloudy AMF in the 443 

calculation of tropospheric AMF, thereby increasing its value. Their combination causes a wide 444 

range of scenarios as well as large variation in the AMF effect. Overall, the change in cloud 445 

parameters causes enhancement of tropospheric AMFs for partially cloudy and overcast scenes 446 

and reduction for clear-sky scenes, especially over polluted areas. The AMF differences are 447 

generally large for low AMF values that are driven by enhanced differences in either OCP, CRF, 448 

or both as discussed in Vasilkov et al (2017). The changes in tropospheric AMF with the 449 

OMCDO2N-based cloud parameters usually range from -17% to 28% with a larger variation over 450 

land (-34% to 40%) as compared to water (-12% to 25%), and for low (<1) AMF (-47% to 41%) 451 

as compared to high (>3) AMF (-4% to 18%). The largest changes in AMF (-96% to 62%) occur 452 

over snow and ice surfaces that result from the difference in the treatment of snow and ice for 453 

cloud and NO2 retrievals as discussed in Section 2.2.3. For clear-sky and partially cloudy scenes 454 

with CRF < 0.5, the effect of the changes in cloud parameters differs between land and water 455 

surfaces as well as sunglint and non-sunglint geometries and becomes more pronounced over 456 
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polluted land and coastal areas (Figure 6b). As in the case of surface reflectivity, the impact of the 457 

change in cloud parameters on stratospheric AMF is <1%. 458 

Figure 5c presents an example of changes in tropospheric AMF differences between the previous 459 

approach of using terrain pressure at OMI pixel centers and the pixel average terrain pressure 460 

implemented in the current version (V4.0). In general, the AMF changes driven by the changes in 461 

terrain pressure are within ±1% over ocean and ±3% over land, although at times they can reach 462 

up to 30%, especially for observations over complex terrain such as mountainous regions (Figure 463 

5c inset).    464 

Figures 5d and 6c show the AMF differences arising from the combined effect of changes in all 465 

parameters discussed above. The effect arising from the replacement of the climatological OMLER 466 

with GLER is partially compensated by the effect arising from the change in cloud parameters in 467 

places where the two parameters exhibit opposite trend. Exceptions are over polluted land and 468 

coastal areas, the GLER effect on AMF is augmented by the cloud effect. The average AMF 469 

changes arising from all parameters (2%) are lower than the changes arising from either GLER (-470 

2.3%) or cloud parameters (4.1%), although the combined effect leads to a wider range of variation 471 

in AMF changes (-100% to 57%) as compared to the effect from individual parameters. The 472 

changes arising from all parameters are somewhat smaller (-21% to 34%) for overcast scenes 473 

(CRF>0.9) as compared to (-47% to 29%) over clear and partially cloudy scenes (CRF<0.5), and 474 

are substantial (-137% to 30%) over highly polluted areas (>5´1015 molec. cm-2) and over snow/ice 475 

surfaces (-126% to 99%). Differences in the AMF effect are evident among land, water, and 476 

sunglint areas (Figure 6c). The impact of the changes is below 1% for the stratospheric AMF.  477 

2.4 Row anomaly and removal of stripes 478 

The retrieved NO2 SCDs have persistent relative biases in the 60 cross-track FOVs and show a 479 

pattern of stripes running along each orbital track. This instrumental artifact is corrected using the 480 

“de-striping” procedure described in detail in Bucsela et al (2013). Briefly, the de-striping 481 

algorithm estimates the mean cross-track biases using measurements obtained at latitudes between 482 

30S and 5N and from orbits within 2 orbits of target orbit. These correction values, one for each 483 

cross-track position, are then subtracted from the retrieved SCDs to derive the de-striped SCD 484 

field. 485 
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Starting June 25, 2007 and presumably even earlier, OMI experienced a more severe form of 486 

anomaly that affects the quality of radiance data in certain rows at all wavelengths (Dobber et al., 487 

2008; Schenkeveld et al., 2017). This effect, called the “row anomaly” (RA), has developed and 488 

changed over time. Currently, the RA has affected approximately half of the OMI’s FOVs, 489 

resulting in OMI’s global coverage now in two days instead of one before the onset of the RA. 490 

The quality of radiance data for the RA-affected FOVs is sufficiently poor as to prevent reliable 491 

NO2 retrievals. Therefore, we abandon retrieval calculations for all measurements that are flagged 492 

by the RA-detection algorithm used in the Level-1 processing. We found that this RA-detection 493 

algorithm may not be sufficiently sensitive to the relatively small (but important for our purposes) 494 

RA changes. Figure 7 shows an example of anomalous rows not flagged by the RA-detection 495 

algorithm but observed in the NO2 retrievals. Shown are time series of average NO2 SCDs 496 

normalized by geometric AMFs over the Pacific Ocean for the RA-unaffected row of 20 (0-based) 497 

compared with three rows that show significant degradation in the quality of SCD retrievals. These 498 

particular rows are in the immediate proximity to the main RA area, thus showing the gradual RA 499 

evolution: at the present epoch the RA slowly shifts towards the high-numbered rows – note the 500 

sequential timing of the big drops in the retrievals in the rows 44-46. While the data from the three 501 

rows start deviating from row 20 beginning from summer 2016, the data quality degrades further 502 

for rows 44, 45, and 46 from September of 2017, 2018, and 2019, respectively, to the extent that 503 

they cannot be sufficiently corrected by the de-striping algorithm. In such cases, we implement 504 

additional RA-flagging for those rows that start showing anomalous behavior, and exclude those 505 

data from Level-2 and higher level NO2 products. 506 

2.5 Calculation of stratospheric and tropospheric NO2 columns 507 

We use an observation-based stratosphere-troposphere separation scheme to estimate the 508 

stratospheric NO2 field as discussed in detail in Bucsela et al. (2013), and the algorithm remains 509 

unchanged in the current version. Briefly, the stratospheric field for an orbit is computed by 510 

creating a gridded global field of initial stratospheric NO2 VCD estimates (𝑉)?)@) with data 511 

assembled from within ±7 orbits of the target orbit: 512 

𝑉)?)@ =
A+,-.,

B9C+,-.,
= A:A,-/0_.0

B9C+,-.,
.       (11) 513 

Here 𝑆&@$D@ and 𝐴𝑀𝐹&@$D@ represent stratospheric SCD and AMF, respectively. An a priori 514 

estimates of the tropospheric contribution (𝑆@$*E_DE) are subtracted from the measured, de-striped 515 
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SCDs (𝑆), and grid cells where this contribution exceeds 0.3×1015 molecules cm−2 are masked. 516 

This masking ensures that the model contribution to the retrieval is minimal, especially in the 517 

polluted areas. The residual field of the initial stratospheric VCDs measured outside the masked 518 

regions mainly over unpolluted or cloudy areas is smoothed by a boxcar average and a 2-519 

dimensional interpolation, yielding an estimate for stratospheric NO2 VCD (𝑉&@$D@) for an 520 

individual ground pixel. 521 

The estimation of the stratospheric NO2 VCD allows for the computation of the tropospheric NO2 522 

VCD (𝑉@$*E) from the de-striped NO2 SCD (𝑆) and the tropospheric AMF (𝐴𝑀𝐹@$*E): 523 

𝑉@$*E =
A,-/0

B9C,-/0
= A:A+,-.,

B9C,-/0
,       (12) 524 

where stratospheric NO2 SCD (𝑆&@$D@) is calculated from stratospheric AMF (𝐴𝑀𝐹&@$D@) and 𝑉&@$D@ 525 

computed in the previous step.  526 

With the updates in surface and cloud treatments as discussed in Section 2.2, the current version 527 

has made significant improvements particularly in tropospheric AMFs and consequently in VCD 528 

estimates. Further improvement to the retrievals is possible by enhancing the quality of a priori 529 

NO2 profiles through improvements in model resolution, emissions, and chemistry, which remain 530 

unchanged in the current version. If improved a priori NO2 profiles become available, one can first 531 

use Eq. 1 to readily re-calculate 𝐴𝑀𝐹@$*E	by combining them with scattering weights (𝑤(𝑧)) 532 

archived in the data files and then use Eq. 12 together with other supplied parameters to re-533 

calculate 𝑉@$*E. The same approach can be applied to remove the effect of a priori profiles used in 534 

retrievals altogether, while comparing NO2 columns from a model simulation with retrievals 535 

(Eskes and Boersma, 2003; Lamsal et al., 2014).  536 

Figure 8 shows a comparison of tropospheric and stratospheric NO2 columns retrieved from V3.1 537 

and V4.0 algorithms for 20 March, 2005. As expected, the updates implemented in V4.0 yield 538 

higher (∼10–40%) tropospheric NO2 columns in polluted areas, with less-pronounced (±10%) 539 

differences in background and low-column areas. These results are consistent with the observed 540 

differences in the tropospheric AMF as discussed above in Section 2.2.4 as well as with other 541 

previous regional studies over land surfaces (Zhou et al, 2010; McLinden et al, 2014; Lin et al., 542 

2014, 2015; Laughner et al., 2019; Liu et al., 2019) that implemented one or more of the changes 543 

applied in V4.0. In contrast to changes in tropospheric NO2 retrievals, changes in stratospheric 544 

NO2 estimates range between -3.6´1014 molec. cm-2 and 3.2´1014 molec. cm-2 and are close to the 545 
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range of expected uncertainties of stratospheric NO2 estimates (Bucsela et al., 2013). The relative 546 

differences in stratospheric NO2 column between the two versions is close to 0% on average, 547 

usually range between -2.5% and 2.0%, and occasionally reach up to ±13%. This difference in 548 

stratospheric NO2 estimates is much larger than the difference in stratospheric AMFs and is caused 549 

by differences in tropospheric AMFs that influence NO2 observations over unpolluted and cloudy 550 

areas used by the stratosphere-troposphere separation scheme. 551 

Figure 9 shows the seasonally averaged tropospheric NO2 columns over the selected domains of 552 

North America, Europe, southern Africa, and Asia for the months of June, July, and August in 553 

2005. These domains contain highly polluted areas with significant NOx emissions where the 554 

impact of changes in surface reflectivity and cloud parameters on tropospheric NO2 retrievals 555 

becomes increasingly important. The use of more accurate pixel-specific information for surface 556 

and cloud parameters in V4.0 results in significantly enhanced tropospheric NO2 column retrievals 557 

almost everywhere. The effect, however, varies with the vertical distribution of NO2, with the 558 

largest effects in high-column areas. This spatially-varying effect arising from algorithm changes 559 

could have significant implications for estimates of trends and emissions of NOx from satellite 560 

observations. 561 

Figure 10 shows the seasonal average tropospheric NO2 columns for December through February. 562 

While seasonal differences in NO2 columns are evident owing to changes in NOx lifetime and 563 

boundary layer depth, the impact of algorithm changes in V4.0 remains similar. There are two 564 

notable exceptions specifically related to observations over snow and ice surfaces. First, there are 565 

significant data gaps in V3.1 but nearly none in V4.0. In V3.1, retrievals over snow and ice areas 566 

were considered to be highly uncertain and therefore discarded, following the recommendation of 567 

Boersma et al. (2011). As discussed above in Section 2.2.3, V4.0 incorporates changes in surface 568 

and cloud treatment in NO2 algorithm that allows us to retain more observations that we determine 569 

to be our acceptable level of cloudiness. Next, these algorithm changes led to profound changes in 570 

the calculated tropospheric AMFs and resulting NO2 column amounts. The reduction in 571 

tropospheric NO2 retrievals in V4.0 over snow and ice covered surfaces arises from a combined 572 

effect of enhanced values of surface reflectivity, their impact on the CRF and OCP retrievals, and 573 

an inconsistent number of samples used in the calculation of the seasonal average. Nevertheless, 574 

due to inferiority in the quality of BRDF data as well as complexities in separating snow from 575 

clouds, caution is needed when interpreting winter time data at high latitudes.   576 
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Figure 11 shows some examples of how changes in the algorithm from V3.1 to V4.0 affect monthly 577 

domain average tropospheric NO2 columns over areas affected by various NOx sources. In contrast 578 

to minor changes over the pristine Pacific Ocean, month-to-month changes over source regions 579 

vary considerably. The differences in tropospheric NO2 columns between V4.0 and V3.1 range 580 

from -11 to 15% over Beijing, China and from 0 to 29% over the Ruhr area in Germany, suggesting 581 

variations in relative differences among cities and industrial areas. The changes over a major 582 

biomass burning area of Democratic Republic of Congo, Angola, and Zambia range 13-56% 583 

during the biomass burning season of May through August, but are <5% in other months. 584 

Differences between the two versions are small over areas influenced by lightning NOx emissions. 585 

 586 

In Figure 12, we examine monthly variation of tropospheric NO2 columns from the two versions 587 

over five highly populated and polluted cities that vary in terrain types ranging from coastal (e.g., 588 

Shanghai, Tokyo) to mountainous (e.g., Mexico City). NO2 columns in V4.0 are generally higher 589 

than V3.1 by 0-30%, but the difference can occasionally reach up to 50% in some months. Changes 590 

of that order of magnitude in highly polluted areas have implications for estimation of NOx 591 

emissions and trends using these data.         592 

3 Assessment of OMI NO2 product 593 

In this section, we compare OMI NO2 columns with total column retrievals from ground-based 594 

Pandora measurements and integrated tropospheric columns from aircraft spirals at several 595 

locations of the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn 596 

and VERtically Resolved Observations Relevant to Air Quality) field campaign held between 597 

2011 and 2014.  598 

3.1 Comparison between OMI and Pandora total column NO2  599 

Here, we compare the total column NO2 retrievals from OMI and the ground-based Pandora 600 

spectrometer. Pandora is a compact sun-viewing remote sensing instrument that provides estimates 601 

of NO2 column amounts from the surface to the top of the atmosphere (Herman et al., 2009, 2018). 602 

The NO2 retrieval approach for Pandora is similar to that of OMI and consists of the DOAS spectral 603 

fitting procedure to derive NO2 SCD and its conversion to VCD using AMFs. However, the details 604 
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differ due to the lack of top-of-atmosphere radiance measurements for the spectral fitting and 605 

simplicity in the AMF calculation for Pandora due to its direct sun measurements.   606 

To compare with the OMI observations, we use Pandora data for sites listed in the Pandonia Global 607 

Network (https://www.pandonia-global-network.org/). Out of 22 sites, we select 18 sites that we 608 

determined to be suitable for comparison. Data from some of the sites (e.g., Rome, Italy) are 609 

consistently higher than OMI by over a factor of two, suggesting that the sites may be in close 610 

proximity to local sources that cannot be resolved by OMI. Although, some of the selected sites 611 

have sporadic and short-term measurements (e.g., Ulsan, S. Korea), we consider them for 612 

improved sampling and coverage. The collocation criteria include spatial and temporal matching 613 

between OMI and Pandora observations by selecting the OMI pixels that encompass the Pandora 614 

site and using Pandora 80-sec total NO2 column data averaged over ±10 minutes of OMI 615 

observations. We use high quality data obtained under clear sky conditions with root-mean-square 616 

of spectral fitting residuals < 0.05 and NO2 retrieval uncertainty < 0.05 DU (~1.3´1015 molec. cm-617 
2) for Pandora and with CRF < 0.5 for OMI. 618 

Figure 13 shows a comparison of OMI total NO2 columns (sum of tropospheric and stratospheric 619 

columns) with coincidently sampled Pandora direct-sun NO2 column retrievals at a clean site of 620 

Izaña in Tenerife Island, Spain, and a more polluted site in Greenbelt (Maryland, USA). The Izaña 621 

Atmospheric Observatory is located on the top of a mountain plateau, with an elevation of 2373 622 

meters above sea level. Since the site is free of local anthropogenic influences, Pandora 623 

observations likely provide stratospheric and free tropospheric NO2 amounts. In contrast, the 624 

Greenbelt site in a suburban Washington DC area has traffic and air quality typical of polluted US 625 

cities. As shown in Figures 13(a) and 13(b), OMI NO2 retrievals from the two versions are highly 626 

consistent (r>0.92) with somewhat higher values in V4.0 as compared to V3.1, by on average 13% 627 

in Greenbelt and just 1% in Izaña. The variations of OMI NO2 from both versions are also broadly 628 

consistent with the Pandora measurements. The OMI and Pandora NO2 columns are fairly 629 

correlated (r = 0.32, N = 232) at Izaña, and moderately correlated (r = 0.51, N = 123) at Greenbelt; 630 

often times the differences between each individual OMI and Pandora observations are significant. 631 

Overall, the total column NO2 data from OMI is higher than Pandora, with the average difference 632 

of <16%. Occasional large discrepancies between OMI and Pandora reflect a combination of 633 
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spatial heterogeneity, differences in spatial and temporal sampling, differences in vertical 634 

sensitivity of satellite and ground-based observations, and errors in OMI and Pandora retrievals. 635 

Figures 13(c) and 13(d) show the multi-year monthly mean variation of OMI and Pandora NO2 636 

columns. The seasonal variation in Pandora and OMI NO2 columns is highly consistent and 637 

exhibits a summer maximum and a fall minimum at Izaña, and a winter maximum and summer 638 

minimum in Greenbelt. The seasonal variation in the total column reflects that of the stratosphere 639 

for Izaña and of the troposphere in Greenbelt. For Izaña, the monthly mean differences between 640 

OMI and Pandora range from 8.2% in June to 38% in October for V4.0 and from 7.0% in June to 641 

37% in October for V3.1. This discrepancy is likely due to the large aerial coverage of OMI pixels 642 

including nearby cities, unlike the point measurements made by Pandora at the mountain top. The 643 

average tropospheric NO2 column observed by OMI is 8.9×1014 molec cm-2, suggesting significant 644 

NO2 amounts in the troposphere with 20-32% contributions to total column NO2 on a monthly 645 

scale. For Greenbelt, the monthly mean differences between OMI and Pandora are within ±12% 646 

for the majority of the cases for both versions, with V4.0 improving agreement for February, April, 647 

May and December, and worsening somewhat in other months, especially in September and 648 

November, when the two versions exhibit larger differences in tropospheric NO2 retrievals.  649 

Figure 14 shows average total NO2 columns measured by Pandora and OMI at the 18 selected 650 

sites. Although there is a wide range of differences between individual sites, Pandora and OMI 651 

observations exhibit a good spatial correlation, with slightly improved correlation for V4.0 652 

(r=0.65, N=1082) as compared to V3.1 (r=0.62). The site-specific average values generally agree 653 

to ±35% for columns < 1016 molec. cm-2. For more polluted sites, OMI retrievals tend to be lower 654 

than the Pandora data. Although the relationship between Pandora and OMI has not changed 655 

appreciably with the updates made in the OMI V4.0 product, the corrections are in the right 656 

direction for a majority of the sites. The observed differences should not be interpreted as biases 657 

in retrievals but rather as the combined effect of differences in spatial coverage, heterogeneity in 658 

the NO2 field, preferential placement of Pandora instruments, and potentially, a lack of site-659 

specific profile shapes assumed in OMI retrievals.     660 

3.2 Assessment using DISCOVER-AQ observations 661 

We also use NO2 observations from the DISCOVER-AQ field program to assess V4.0 OMI NO2 662 

retrievals. The DISCOVER-AQ campaign was composed of four field deployments:  Baltimore-663 

Washington area in Maryland (MD) in July 2011; the San Joaquin Valley in California (CA) in 664 
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January-February 2013; Houston, Texas (TX) in September 2013; and Denver, Colorado (CO) in 665 

July-August 2014. An observing strategy of the campaign was to carry out systematic and 666 

concurrent in situ and remote sensing observations from a network of ground sites and research 667 

aircraft that spiraled over each site 2-4 times a day. The payload of the P-3B research aircraft 668 

included in situ measuring instruments to measure NO2 profiles in the 0.3-5 km altitude range. 669 

Each campaign hosted ground-based networks of surface monitors to provide in situ NO2 670 

observations as well as Pandora spectrometers to measure NO2 column amounts.  671 

We use Pandora NO2 column observations and in situ NO2 spiral data spatially and temporally 672 

matched to OMI on clear and partially cloudy (cloud radiance fraction < 0.5) days. Airborne 673 

measurements were carried out using the 4-channel chemiluminescence instrument from the 674 

National Center for Atmospheric Research (Ridley and Grahek, 1990) and the Thermal 675 

Dissociation Laser-Induced Florescence from the University of Berkeley (Thornton et al., 2000). 676 

Despite differences in the measurement technique and sampling strategy, NO2 measurements from 677 

the two instruments are highly consistent and generally agree within 10%, with the exception of 678 

~32% difference for Houston (Choi et al., 2020). Here, we use the 1-second merged data from the 679 

chemiluminescence instrument only, taking advantage of its high frequency measurements. The 680 

spiral data are extended to the ground by using coincident in situ surface NO2 measurements 681 

sampled over the duration of spiral (~20 minutes). To account for NO2 amounts in the missing 682 

portion from the highest aircraft altitude to the tropopause, we use NO2 from the GMI simulation. 683 

Like the surface data, the Pandora total column NO2 data are averaged over the duration of each 684 

aircraft spiral. For OMI, we include data from all cross-track positions that are not subject to the 685 

row anomaly. 686 

Figure 15 and Table 2 show a summary of the comparison of OMI V4.0 NO2 columns with 687 

vertically integrated tropospheric columns from the P-3B aircraft at 20 spiral locations. Overall, 688 

tropospheric NO2 columns from OMI and aircraft spirals suggest a poor agreement but a good 689 

correlation (r=0.74, N=100), although the agreement and correlations vary by campaign locations 690 

(r=0.4 for MD to r=0.81 for CA). OMI retrievals are usually lower than the aircraft data, with 691 

larger differences for sites with larger NO2 gradients and columns (e.g., Denver La Casa, CO; 692 

Fresno, CA). OMI is rarely higher than the aircraft data as this usually happens over relatively 693 

cleaner sites (e.g., Fairhill, MD). This alternating nature of the variation in results in polluted 694 

versus clean areas suggests that OMI’s large footprint size and narrow spiral radius (~4 km) of the 695 
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aircraft are likely the primary cause for the observed differences. This was demonstrated in Choi 696 

et al. (2020) by using high-resolution Community Multi-scale Air Quality Model (CMAQ) 697 

simulations. Additional contributions to the observed differences could come from OMI retrieval 698 

errors arising from the use of a coarse resolution GMI-based a priori NO2 profile shapes in the 699 

AMF calculation. Such profile-related retrieval errors can be partially accounted for by replacing 700 

GMI profiles with the aircraft observed NO2 profiles (OMIobs). The use of observed profiles in the 701 

OMI retrievals leads to a slight change in correlation, but 20-35% reduction in mean difference 702 

between OMI and aircraft observations, highlighting the role of a priori profiles in NO2 retrievals 703 

as suggested by previous studies (Russell et al., 2011; Lamsal et al., 2014; Goldberg et al., 2017; 704 

Laughner et al., 2019; Choi et al., 2020). The campaign-average difference between OMI and 705 

aircraft observations is -23.1%. We note here that the aircraft observed profiles can be very 706 

different from the actual profiles over OMI’s FOVs (pixels) due to a difference in the sampling 707 

domains for the two measurements. 708 

Figure 15 and Table 2 also show the comparison between the OMI and Pandora total column 709 

retrievals at the 20 DISCOVER-AQ sites. The correlation between collocated OMI and Pandora 710 

observations for individual campaign locations vary from fair (r=0.13 for MD) to good (r=0.70 for 711 

CO), with a moderate correlation (r=0.56, N=83) for all observations from the four locations. As 712 

compared to the aircraft observations, the OMI data generally show better agreement with the 713 

Pandora retrievals, with the smallest difference in MD and the largest difference in CO. The use 714 

of aircraft-observed NO2 profiles in AMF calculations leads to higher OMI column retrievals than 715 

those from Pandora for MD and TX, and lower columns than Pandora for CA and CO. Overall, 716 

total column retrievals from OMI are 16.3% lower than Pandora. The observed discrepancy 717 

between the OMI, aircraft spiral, and Pandora data points to general difficulties in comparing 718 

observations of different spatial resolutions for a short-lived trace gas like NO2 that has large 719 

spatial gradients, especially in the boundary layer. 720 

4 Conclusions 721 

We have described a series of significant improvements made to the operational OMI NO2 722 

Standard Product (OMNO2) algorithm. The new version, version 4.0 (V4.0), of the OMNO2 723 

product, released recently to the public at the NASA Goddard Earth Sciences Data and Information 724 

Services Center (GES DISC), mainly relies on improved methods and high-resolution inputs for a 725 

more accurate determination of air mass factors (AMFs). Major improvements include (1) a new 726 
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O2-O2 cloud algorithm to estimate cloud radiance fraction (CRF) and cloud optical centroid 727 

pressure (OCP), both required for the AMF calculation; 2) a new MODIS BRDF-derived 728 

geometry-dependent surface Lambertian Equivalent Reflectivity (GLER) input data used in both 729 

the NO2 and cloud retrievals; (3) improved terrain pressure calculated for OMI’s footprint; and (4) 730 

improved surface and cloud treatments over snow and ice surfaces. Over open-water areas, inputs 731 

to the GLER calculations include chlorophyll concentrations from MODIS, the wind speed data 732 

from the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) and 733 

the Special Microwave Imager–Sounder (SSMIS) instruments, and the wind direction data from 734 

the NASA GEOS-5 model. The following algorithmic steps remain unchanged: the scheme for 735 

separating stratospheric and tropospheric components, first implemented in Version 2.1 (Bucsela 736 

et al., 2013; Lamsal et al., 2014); an optimized spectral fitting algorithm used for NO2 slant column 737 

density retrievals (Marchenko et al., 2015); and the use of annually varying monthly mean Global 738 

Modeling Initiative (GMI) derived inputs (e.g., NO2 vertical profile shapes), as implemented in 739 

Version 3.0 (Krotkov et al., 2017). 740 

The changes in inputs result in substantial changes tropospheric AMFs (and thus VCDs) in V4.0 741 

relative to the previous version (V3.1). The geometry-dependent GLER data computed for OMI 742 

observations used in V4.0 differ considerably from the OMI-derived climatological LER data 743 

(Kleipool et al., 2008) used in V3.1. The data from GLER (a unitless value with 0.0-1.0 range) are 744 

generally lower, by <0.05, than the climatological LER data over land and ocean outside of 745 

sunglint areas; GLER is much higher over the sunglint areas that reaches more than 0.3 due to the 746 

geometry-dependent Fresnel reflection. The cloud parameters (OCP and CRF) retrieved from by 747 

new O2-O2 cloud algorithm described here and those from the operational cloud algorithm 748 

(Veefkind et al., 2016) used in V3.1 exhibit significant differences with generally larger values for 749 

both parameters in V4.0 as compared to V3.1, with noticeable exceptions over sunglint areas, 750 

where CRFs in V4.0 are lower than V3.1 by <0.3. Over snow and ice surfaces, identified by the 751 

Near-real-time Ice and Snow Extent (NISE) flags in the OMI L1b data, various adjustments are 752 

made in V4.0 for GLER, OCP, and CRF by using other diagnostic parameters (e.g., scene pressure) 753 

retrieved by the new cloud algorithm. The scattering weights and tropospheric AMFs for NO2 754 

respond to the changes in these input parameters in a complicated way. Typically, tropospheric 755 

AMFs decrease with the use of GLER and increase with the use of the new cloud parameters, with 756 

exceptions over water surfaces affected by sunglint, where we observe the opposite effect. Over 757 
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highly polluted areas, the effect from GLER is augmented by the effect from the new cloud 758 

parameters, resulting in a considerable decrease in the tropospheric AMF. Changes in tropospheric 759 

AMFs resulting from the updates in treatment of the snow and ice-covered areas are also 760 

significant. Changes in the adopted terrain pressure (V4.0 vs V3.1) can also have a sizable effect 761 

on tropospheric AMFs, particularly over areas with a complex terrain. In contrast, for stratospheric 762 

AMFs the combined impact of all of these algorithmic updates is negligible.  763 

The changes in tropospheric AMFs translate directly into changes in tropospheric NO2 retrievals 764 

and indirectly into stratospheric NO2 estimates. Over background and low column NO2 areas, 765 

tropospheric NO2 column estimates have not changed appreciably from V3.1 to V4.0. Over more 766 

polluted areas, the tropospheric NO2 retrievals have typically increased by 10-40% from V3.1 to 767 

V4.0, mostly in a direct proportion to the pollution level. Most of the increase in the highly polluted 768 

areas is driven by the change in the surface reflectivity data used in the AMF calculation, with 769 

additional increase due to changes in the cloud parameters. Changes in the stratospheric NO2 770 

estimates are usually within ±2.5%, which is close to the range of estimated uncertainties of 771 

stratospheric NO2 estimates. 772 

A global assessment of V4.0 tropospheric and stratospheric NO2 products was performed by a 773 

thorough evaluation of their consistency with the data from V3.1, which was carefully evaluated 774 

in our previous works (e.g., Krotkov et al., 2017; Choi et al., 2020). In addition, we use 775 

NO2 measurements made by independent ground- and aircraft-based instruments to evaluate the 776 

V4.0 product. The comparison of OMI total column NO2 data with collocated Pandora 777 

observations at its 18 global network and 20 DISCOVER-AQ locations suggests that OMI and 778 

Pandora are generally highly consistent, exhibit similar seasonal variation, and agree within their 779 

expected uncertainties of 2.7x1015 molec cm-2 for Pandora (Herman et al., 2009) and ~30% for 780 

OMI under clear-sky conditions (Boersma et al., 2011; Bucsela et al., 2013). Individual data points 781 

differ considerably, and OMI tends to be lower than Pandora over highly polluted areas with 782 

spatially inhomogeneous NO2. The comparison of OMI tropospheric NO2 column retrievals with 783 

columns derived from the aircraft spirals and surface data during the DISCOVER-AQ campaign 784 

also suggests general agreement in spatial variation, but OMI values are about a factor of two 785 

lower in polluted environments. This difference is due partly to inaccurate a priori assumptions, 786 

but primarily to OMI’s relatively large pixels. The use of observed NO2 profiles as a priori 787 

information reduces the bias from ~50% to 23%, on average. The  Multiple-Axis Differential 788 
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Optical Absorption Spectrometer (MAX-DOAS) (e.g., Chan et al., 2019) or high spatial resolution 789 

measurements from aircraft (e.g., Nowlan et al., 2016; Lamsal et al., 2017; Judd et al., 2019) would 790 

provide a more comprehensive validation by mapping the NO2 distributions over the complete 791 

areas of aircraft spirals and the satellite FOVs. 792 

In this study, we focused on improving the surface and cloud parameters in the NASA standard 793 

NO2 product retrievals. To further improve the retrieval accuracy, it is important to incorporate 794 

improved retrieval methods and auxiliary information, such as high resolution a priori NO2 795 

profiles. For instance, current cloud algorithms based on the MLER model treat aerosols implicitly 796 

by providing effective (cloud + aerosol) CRF and effective cloud OCP, both necessary inputs for 797 

AMF calculations. Cloud effects on trace gas retrievals can be compromised by the unknown 798 

aerosol effects, which lead to errors in AMF calculations. Therefore, the use of the GLER product 799 

in the NO2 algorithm will greatly benefit from an explicit accounting for aerosol effects, 800 

particularly over polluted regions. We have recently developed an explicit and consistent aerosol 801 

correction method which can be applied consistently in both the cloud and NO2 retrievals 802 

(Vasilkov et al. 2020); it uses a model of the aerosol optical properties from a global aerosol 803 

assimilation system paired with radiative transfer calculations. This approach allows us to account 804 

for aerosols within the OMI cloud and NO2 algorithms with relatively small changes and will be 805 

used in the next version of the NO2 algorithm. 806 

 807 

Code/Data availability: The Level-2 swath type column NO2 products (OMNO2) is available 808 

from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) 809 

website (https://disc.gsfc.nasa.gov/datasets/OMNO2G_003/summary). Other OMNO2-associated 810 

NO2 products such as the Level-2 gridded column product, OMNO2G, and the Level-3 gridded 811 

column product, OMNO2d, both sampled at regular 0.25° latitude x 0.25° longitude wide grids are 812 

distributed through the NASA GES-DISC 813 

(https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary) and GIOVANNI 814 

(https://giovanni.gsfc.nasa.gov/giovanni/) websites. An additional high spatial resolution (0.1° x 815 

0.1° latitude-longitude grid) OMNO2d product (OMNO2d_HR) is also made available through 816 

the NASA AVDC website 817 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/). The AVDC 818 
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website also hosts overpass files for several hundred sites around the globe 819 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMNO2/). 820 
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 1279 
Figure 1:  Schematic diagram of the NASA OMI NO2 algorithm, version 4.0, which is coupled 1280 
with the cloud and geometry-dependent surface Lambertian Equivalent Reflectivity (GLER) 1281 
algorithms that ultimately produces stratospheric (strat) and tropospheric (trop) NO2 vertical 1282 
column densities (VCDs). Acronyms used here are described in relevant sections below. 1283 
VLIDORT: Vector Linearized Discrete Ordinate Radiative Transfer; MODIS: Moderate 1284 
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Resolution Imaging Spectro-radiometer; BRDF: bidirectional reflectance distribution function; 1285 
DEM: Digital Elevation Model; NISE: Near-real-time Ice and Snow Extent; AMSR-E: Advanced 1286 
Microwave Scanning Radiometer for Earth Observing System (EOS); SSMIS: Special Sensor 1287 
Microwave Imager / Sounder; GEOS-5: Goddard Earth Observing System, Version 5; Ps: surface 1288 
(terrain) pressure over OMI pixel; ECF: Effective Cloud Fraction; CRF: Cloud Radiance Fraction; 1289 
OCP: Optical Centroid Pressure; Sw: Scattering weight; LUT: Look-up table GMI: Global 1290 
Modeling Initiative; AMF: Air Mass Factor; SCD: Slant Column Density. 1291 
 1292 

 1293 

Figure 2: Surface reflectivity at 440 nm (top) derived using MODIS BRDF data with OMI 1294 

geometry (GLER) on March 20, 2005 compared with (middle) OMI-based monthly LER 1295 

climatology (OMLER) for the month of March (Kleipool et al., 2008). The bottom panel shows 1296 

the difference between MODIS-based and climatological surface reflectivity data. 1297 
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 1298 

Figure 3: Differences (V4.0 – V3.1) in (a) surface reflectivity, (b) cloud radiance fraction, and (c) 1299 

cloud optical centroid pressure for March 20, 2005, as used in V3.1 and V4.0 algorithms and 1300 

binned by the values of corresponding parameters from V4.0. Data are separated for land (blue) 1301 

and ocean surfaces, and by sunglint (green) and non-sunglint (orange) geometry over ocean. The 1302 

vertical bars represent the standard deviation for each bin of those parameters.   1303 

 1304 
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 1305 

Figure 4: Cloud optical centroid pressure at 477 nm (left) and cloud radiance fraction at 440 nm 1306 

(right) retrieved for March 20, 2005 with OMNO2 V4.0 (top) and V3.1 (middle) algorithms, 1307 

respectively. The bottom rows show their differences. The gray color represents the OMI pixels 1308 

with retrieved cloud pressure equal to terrain pressure in V4.0 on the left and over snow/ice surface 1309 

identified by the NISE flag on the right.  1310 
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 1311 

Figure 5: Impact on tropospheric AMF (i.e., V4.0 – V3.1) from changes in (a) surface reflectivity, 1312 

(b) cloud and surface treatment, (c) terrain pressure, and (d) their combination on March 20, 2005. 1313 

The figure 5(c) inset shows zoomed view of impact over complex terrain in the western US. 1314 
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 1315 

Figure 6: The impact on tropospheric AMF (i.e., V4.0 – V3.1) from changes in (a) surface 1316 

reflectivity, (b) cloud, and (c) their combination for clear and partially cloudy scenes (CRF<0.5) 1317 

on March 20, 2005. Percent differences in tropospheric AMF are sorted by tropospheric NO2 1318 

columns, separating them by land (blue) and ocean, and by sunglint (green) and non-sunglint 1319 

(orange) geometry over ocean. The vertical bars represent the standard deviations for the 1320 

tropospheric NO2 column bins. 1321 

 1322 

 1323 

 1324 

   1325 
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 1326 
Figure 7: The time series of OMI NO2 SCD normalized by the geometric AMF for clear-sky and 1327 

partially cloudy conditions (CRF<0.5) over the Pacific Ocean. The data are separated by cross-1328 

track scan position, comparing the presumably RA-free row 20 (black) with rows 44 (red), 45 1329 

(orange), and 46 (green). The row numbers are 0-based. 1330 

 1331 
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 1332 
Figure 8: Tropospheric (a) and stratospheric (b) NO2 VCD from V4.0 and their differences (c, d) 1333 

with V3.1 data (V4.0 – V3.1) for March 20, 2005. The gray color in the tropospheric NO2 maps 1334 

represent cloudy areas (CRF>0.5). Bottom panels show average (black circles) and standard error 1335 

(vertical bars) of the relative difference, 100 ´ (V4.0 – V3.1)/V3.1, for tropospheric (e) and 1336 

stratospheric (f) NO2 VCDs plotted as a function of respective NO2 column amounts. The green 1337 

symbols represent the logarithm of the number of samples.  1338 
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 1339 
Figure 9: Three-month (June, July, August) average tropospheric NO2 columns for low cloud 1340 

conditions (CRF<0.5) in 2005 over North America (1st row), Europe (2nd row), southern Africa 1341 

(3rd row), and Asia (4th row) from V4.0 (1st column), V3.1 (2nd column), and their difference (V4.0 1342 

– V3.1).  1343 
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 1344 
Figure 10: Same as Figure 9, but for December, January, and February. The gray areas represent 1345 

a lack of good observations as determined by data quality flags. 1346 

 1347 

 1348 

 1349 

 1350 
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 1352 
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 1357 

 1358 

 1359 
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 1360 
Figure 11: Monthly average tropospheric NO2 columns in 2006 calculated from V3.1 (black) 1361 

and V4.0 (red) data over selected 5º latitude × 5º longitude boxes from locations that are 1362 

dominated by either anthropogenic (Beijing, China and Ruhr area, Germany), biomass burning 1363 

(Democratic Republic of Congo (DRC), Angola, and Zambia), lightning (DRC), or no significant 1364 

(Pacific) NOx sources. The vertical bars show the monthly standard deviation. The blue symbols 1365 
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that correspond to the right y-axis show monthly relative difference (in percent) between V4.0 1366 

and V3.1. 1367 

 1368 
Figure 12: Same as Figure 11, but for 1º latitude × 1º longitude wide box over the five highly 1369 

populated and polluted cities.  1370 

 1371 
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 1372 

 1373 

 1374 
Figure 13: The time series of NO2 total columns retrieved from Pandora (black circles) and OMI 1375 

at (a) Izaña, Spain and (b) Greenbelt, Maryland, USA, with the OMI retrievals represented by the 1376 

filled blue (V4.0) and open purple (V3.1) circles. Right panels show monthly variation of NO2 1377 

total columns at (c) Izaña for 2016–2019 and (d) Greenbelt for 2018-2019, as calculated from 1378 

Pandora (black line with filled circles) and OMI measurements (bars). OMI NO2 total columns 1379 
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retrieved with V4.0 (blue) and V3.1 (purple) are separated into tropospheric and stratospheric 1380 

components. The vertical lines represent the standard deviation from the average. 1381 

 1382 

 1383 
Figure 14: The scatter plot of Pandora versus OMI V4.0 (black) and V3.1 (green) average total 1384 

column NO2 for 18 Pandora sites. The vertical and horizontal lines represent the standard 1385 

deviations for Pandora and OMI, respectively. The dotted line represents the 1:1 relationship. 1386 

 1387 

1388 
Figure 15: Site average total (circles) and tropospheric (bars) NO2 column data from P-3B spiral 1389 

(white bars), Pandora (green circles), and OMI (orange and red). The OMI tropospheric columns 1390 
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are derived using GMI-simulated (OMIGMI, orange) and P-3B (OMIobs, red) NO2 profiles. The 1391 

vertical bars for sites with over 2 observations represent the standard deviations.  1392 

 1393 

Table 1. Summary of algorithms and approaches used in the NASA NO2 algorithms versions 3.1 and 4.0 1394 

Algorithm Component Version 3.1 (Released 2018) Version 4.0 (Released 2019) 

 
Spectral 
fit 

NO2 Modified DOAS fit  
(Marchenko et al, 2015) 

Same as in V3.1 

O2-O2  DOAS fit from KNMI 
(Veefkind et al, 2016) 

Modified DOAS fit (Vasilkov 
et al, 2018) 

 
 
 
 
 
 
 
 
AMF 

Terrain 
reflectivity 

Monthly climatology 
(Kleipool et al., 2008) 

Daily GLER data (Vasilkov 
et al., 2017; Qin et al., 2019; 
Fasnacht et al., 2019) 

Terrain pressure At pixel center (calculated 
from terrain height and GMI 
terrain pressure) 

Average over pixel 
(calculated from terrain 
height and GMI terrain 
pressure)  

Cloud pressure 
and fraction 

Operational O2-O2 cloud 
product (OMCLDO2) v2.0 
(Veefkind et al., 2016) 

New O2-O2 cloud product 
(OMCDO2N) derived using 
the GLER product (Vasilkov 
et al., 2018) 

Cloud radiance 
fraction  

Calculated at 440 nm from 
OMCLDO2 v2.0 cloud 
fraction using VLIDORT-
based look-up-table 

Calculated at 440 nm from 
OMCDO2N cloud fraction 
using VLIDORT-based look-
up-table 

Scattering 
weights 

TOMRAD-based look-up 
table 

Same as in V3.1 

A-priori NO2 
profiles 

GMI-derived yearly varying 
monthly mean profiles at 
1°×1.25° 

Same as in V3.1 

Stripe correction Based on data from 30°S - 
5°N of 5 orbits 

Same as in V3.1 

Stratosphere-troposphere 
separation 

Spatial filtering and 
interpolation (Bucsela et al., 
2013), but with minor 
changes in box sizes  

Same as in V3.1 

 1395 

 1396 

 1397 

 1398 

 1399 
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Table 2: Comparison of OMI NO2 retrievals based on a priori NO2 profiles from GMI (OMI V4.0) 1400 

and P-3B aircraft observations (OMIobs) with P-3B and Pandora column observations during the 1401 

DISCOVER-AQ field campaign. Shown here are correlation coefficient (r) and mean difference, 1402 

which is calculated as OMI minus validation data.       1403 

Campaign  
locations 

OMI V4.0 
vs P-3B 

OMIobs 
vs P-3B 

OMI (V4.0) 
vs Pandora 

OMIobs 
vs Pandora 

Mean 
diff. (%) 

r Mean 
diff. (%) 

r Mean 
diff. (%) 

r Mean 
diff. (%) 

r 

Maryland -33.9 0.40 -5.0 0.69 -13.0 0.13 25.6 0.27 
California -44.6 0.81 -18.7 0.83 -49.8 0.33 -24.6 0.49 
Texas -53.7 0.68 -18.8 0.85 -25.3 0.67 31.7 0.81 
Colorado -66.2 0.70 -45.4 0.70 -67.6 0.70 -46.7 0.65 
All -50.3 0.74 -23.1 0.79 -46.9 0.56 -16.3 0.63 

 1404 

 1405 


