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The study of Canonaco et al. reports a significant method development for improved 
PMF based source apportionment by aerosol mass spectrometers and crucially aimed 
at long time series of measurements badly lacking in literature. Recommendations 
and Conclusions are fairly discussed and well balanced which should help future re- 
searchers in properly using the method. The paper is very well written, easy to follow 
and should be accepted after addressing mostly minor comments. 

 

We thank the reviewer for this very positive feedback. We are also convinced that this study 
will be of help for future long-term source apportionment studies. 

 
 
 
 
 
 

Comments 

Line 28. Past tense is more appropriate for the efforts in the past.  

“leads” replaced by “led” 

 

Line 39. ...and slightly higher mean concentrations... 

“and” has been added in front of “slightly higher mean concentrations…” 

 
Line 86. agricultural waste/residue burning. 

“waste/residue” has been added in front of “burning” 

 

Line 125. Average of the average (two-level averaging) reduces the weight of outliers 
and should generally be avoided, because it makes two-level averaged data not strictly 
compatible with one-level averaged tracers. Please elaborate on tracer data in relation 
to that. It is compounding of the fact that arithmetic averaging should not be applied to 
atmospheric variables in general (see later comment) 

The data was re-averaged to 30 minutes due to its rather noisy nature and we were 
therefore more concerned to extract a stable signal for the PMF analysis. The external 
tracers are compatible with the ACSM data, as they had a much higher time resolution 
(one-minute averages) and were then post-averaged to the ACSM time stamp. The 
sentence describing the average has been updated accordingly. ”The data was re-
averaged to 30 min to obtain higher signal to noise ratios for ME-2 analysis”. 

 

Line 144. biomass burning impact 

“influence” has been replaced by “impact” 

 

Line 183. The resultant uncertainty of individual uncertainties can be calculated by the 
square root of squared sum, i.e. three individual uncertainties of 10%, result in 17%. 
So the resultant uncertainty will always be higher, not "might be slightly outside the 
defined a-range". 

What is described in the text is not the uncertainty but the allowed variation in % for a single 
m/z during the PMF iteration. The text never reports the expression “uncertainty”, so we 
believe that there is no action we should do here. 

 

Line 202. Section 0 typo here and later several times. Then Line 305. 
Line 212. missing dot 

All typos corrected. 



 
Line 326. Criterion of highest possible correlation coefficient and maximal data cover- 
age are working against each other, so must be a compromise. What was it? It is not 
clear why 0.6 or 0.8 is best and what data coverage does it correspond to? 

The correlation coefficient (RPearson) of 0.8 resulted from a previous seasonal resampling 
analysis and at first we tried to apply this as a threshold. The problem was that this led to a 
large amount (10 % and more) of non-modeled time points (nnon-modeled). Hence, we 
performed a sensitivity analysis on RPearson by systematically lowering it until the amount of 
nnon-modeled was negligible. This was achieved for RPearson = 0.6. The main text reports this 
already around line 326. So we don’t think there is need for further action here. 
 

Line 333. If COA is well established it should peak every single day just like traffic 
factor during rush hour. If COA was not resolved, maybe its not very real. I was always 
concerned about this factor being a combination of true COA and being a waste basket 
for increasingly processed aerosol during midday when photochemical activity is at its 
highest. That is why tracer m/z as in BBOA case would yield much more credible 
approach. 

Evidence for cooking contributions does not only come from the regular presence of the 
lunch peak during the weekdays, as it was also seen in the previous seasonal analysis of this 
dataset (Canonaco et al., SoFi, an IGOR-based interface for the efficient use of the 
generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to 
aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, 2013, 2013 and 
Canonaco et al., Seasonal differences in oxygenated organic aerosol composition: 
implications for emissions sources and factor analysis, Atmos. Chem. Phys., 15, 6993–7002, 
2015), but also from the fact that the cooking factor has the characteristic fingerprint of 
cooking, i.e., the series m/z 41, 43, 55, 57, 69, 71, etc. with a ratio above one for m/z 55 and 
57, contrary to traffic (e.g., Liu et al., Primary and secondary organic aerosol from heated 
cooking oil emissions, Atmos. Chem. Phys., 18, 11363–11374, 2018). Moreover, this 
fingerprint has shown to be more pronounced with higher contributions close to restaurants 
(Elser et al., High contributions of vehicular emissions to ammonia in three European cities 
derived from mobile measurements, Atmospheric Environment, 175,210-220, 2018). 

 

Line 375. Given the fact that aerosol properties are lognormally distributed due to 
fundamental principles, using arithmetic averages is not appropriate. The study is 
very much grounded in mathematics and statistics where proper usage of terms 
is not only expected but mandatory. I understand that historically inappropriate 
usage is continuing forever. When noted the issue is ignored while when 
demanded is considered harsh. 

The reviewer is right, aerosol properties are lognormally distributed. However, the source 
apportionment was conducted with no size-separation, i.e., non-refractory aerosol particles 
with an aerodynamic particle diameter with less than 1 micron (NR-PM1) were simply 
averaged together, based on the working principle of the ACSM. This truncates the 
relationship between the reported ACSM mass and the lognormal aerosol mass distribution. 
Moreover, when performing bootstrap and a value analysis for the PMF replicates, given their 
random resampling nature, the replicates will be normally distributed. Hence, using average 
and variance to describe the combination of accepted PMF runs is legitimate and we don’t 
think it’s necessary to take some action in this respect. 

 

Line 392. If COA spikes are barbecue related do they all occur during weekend as 
barbecues are rare during weekdays. 

These spikes occur more frequently during the weekends, but they also occur during the 
week. Barbecuing for dinner during warm days happens rather often in Switzerland. 

 

Line 429. ...as the problematic data yields eBCxb concentrations near zero 
anyway... Line 461. likely indicating significant impact of biomass burning. 

Both lines updated as recommended 

 
Line 492. ...last third of the study period... 

“campaign” has been replaced by “measurement”. 
 



Line 502. Here is an example of mixing together lognormal and normal (sigma 
and mean) distributions. 

The reviewer mentions a possible mixing due to the expression of sigma and avg. 
in the error equation and its final lognormal fit. The distribution of the replicates 
per time point follows a normal distribution and hence the use of sigma and avg. 
is legitimate. 
The PMF error reported in this study was based on the following distribution: 
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where 𝜎 is the standard deviation and avg is the mean value of all replicates of a time-
point i. 
This resulting distribution, which is a constructed distribution using the statistics of the 
distribution of the replicates, turns out to be lognormally distributed and consequently a 
lognormal fit had to be used to best describe its shape. The types of distributions are not 
inadvertently mixed and therefore we don’t see the necessity for further action in this 
respect. 

 

Line 535. to achieve complete apportionment. 

Updated as recommended 

 

Figure 2.  b) typed twice instead of c)  

Corrected 

 

Figure 3. ... clogging of ACSM inlet 
orifice. 

Updated as recommended 

 
Figure 5. ... truncated at m/z 125? 

No, the mass spectrum for the source apportionment was only up to 125. 
 

Figure 6. ... of important m/z tracers. 

Updated as recommended 
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Anonymous Referee #2 

Received and published: 13 August 2020 
 

General Comments: The manuscript by Canonaco et al. developed a new method for 
long-term source apportionment with time-dependent factor profiles, which is a nec- 
essary piece of work for long-term field campaigns data. The seasonal variations of 
OA factors in urban background station were investigated. Overall, the paper is well 
written. I recommend acceptance for publication on AMT after minor revisions. 

 

We thank the reviewer for this very positive feedback. We are also convinced that this study 
will be of help for future long-term source apportionment studies. 

 

Specific Comments: 
 
1, line 125: Why has the authors re-averaged the data into half-an-hour resolution 
instead of using the original one? If the reason is the amount of data, then why not just 
averaging the data into two-hour(or three-hour) resolution? Please elaborate. 

Averaging the data to 30 minutes represents a trade-off between a better signal to noise ratio 
and the presence of a sufficiently resolved diurnal cycle (here one-hour resolution), crucial for 
the source validation step. 
 

2, line 391: What is the difference between the mass spectra of COA in May 2011- 
September 2011 (likely due to local barbecuing events) and the general mass spectra 
of COA in this study? Has other studies discussed the characterization of mass spectra 
of different cooking styles? Please compare it. 

The ratio of m/z 55 to 57 as well as m/z 43 and 44 vary in the range of a few 
percentages, but there are no systematic or seasonal changes. Hence, for this study 
not much can be concluded for the temporal variability of the COA fingerprint. The 
largest seasonal change reported in this study is mainly for OOA, SV-OOA in 
particular. 

 
3, LV-OOA was only identified before 1/11/2011 in Fig. 3, but why did the f44 in LV- 
OOA appear throughout the sampling time in Fig.2? In addition, there is no (c) in Fig. 
2. 

f44 in Figure 2 is for both, i.e., LV-OOA and OOA. Hence, during the warm seasons f44 
in Figure 2 is for the LV-OOA factor, whereas in winter it is for OOA only. In Fig. 2 the y 
axis reads now: “f44 in LV-OOA/OOA”. 

c) has been corrected in Fig. 2 
 

4, “Spring 11/Fall 11” in table2 should be “Spring 2011/Fall 2011”. 

Corrected 

 
Please also note the supplement to this comment: 
https://amt.copernicus.org/preprints/amt-2020-204/amt-2020-204-RC1- 
supplement.pdf 

 
The supplement contained the exact same review as already reported here. 
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Abstract. A new methodology for performing long-term source apportionment (SA) 
using positive matrix factorization (PMF) is presented. The method is implemented 
within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF 
solver. The technique is applied to a one-year aerosol chemical speciation monitor 
(ACSM) dataset from downtown Zurich, Switzerland. 
The measured organic aerosol mass spectra were analyzed by PMF using a small (14 
days) and rolling PMF window to account for the temporal evolution of the sources. The 
rotational ambiguity is explored and the uncertainty of the PMF solutions were 
estimated. Factor/tracer correlations for averaged seasonal results from the rolling 
window analysis are higher than those retrieved from conventional PMF analyses of 
individual seasons, highlighting the improved performance of the rolling window 
algorithm for long-term data. 
In this study four to five-factors were tested for every PMF window. Factor profiles for 
primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning 
(BBOA) were constrained. Secondary organic aerosol was represented by either the 
combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA, 
respectively), or by a single OOA when this separation was not robust. This scheme led 
to roughly 40’000 PMF runs. Full visual inspection of all these PMF runs is unrealistic 
and is replaced by predefined user-selected criteria, which allow factor sorting and PMF 
run acceptance/rejection. The selected criteria for traffic (HOA) and biomass burning 
(BBOA) were the correlation with equivalent black carbon (eBCtr) and the explained 
variation of m/z 60, respectively. COA was assessed by the prominence of a lunchtime 
concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated 
based on the fraction of m/z 43 and m/z 44 in their respective factor profiles. Seasonal 
pre-tests revealed a non-continuous separation of OOA into SV-OOA and LV-OOA, in 
particular during the warm seasons. Therefore, a differentiation between four-factor 
solutions (HOA, COA, BBOA and OOA) and five-factor solutions (HOA, COA, BBOA, 
SV-OOA and LV-OOA) was also conducted based on the criterion for SV-OOA. 
HOA and COA contribute between 0.4-0.7 g∙m-3 (7.8-9.0 %) and 0.7-1.2 g∙m-3 (12.2-
15.7 %) on average throughout the year, respectively. BBOA shows a strong yearly 
cycle with the lowest mean concentrations in summer (0.6 g∙m-3, 12.0 %), and slightly 
higher mean concentrations during spring and fall (1.0 and 1.5 g∙m-3, or 15.6 and 18.6 
%, respectively), and highest mean concentrations during winter (1.9 g∙m-3, 25.0 %). In 
summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4 
g∙m-3 (26.5 %) and 2.2 g∙m-3 (40.3 %), respectively. For the remaining seasons the 
seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3-1.1 g∙m-3 (3.4-
15.9 %), 0.6-2.2 g∙m-3 (7.7-33.7 %) and 0.9-3.1 g∙m-3 (13.7-39.9 %), respectively. The 
relative PMF errors modelled for this study for HOA, COA, BBOA, LV-OOA, SV-OOA 
and OOA are on average  34 %,  27 %, 30, 11 %, 25 % and 12 %, respectively. 



1 Introduction 
Atmospheric aerosols are at the center of scientific and political air quality discussions 
due to their highly uncertain direct and indirect climate effects (IPCC, 2013) and 
negative impact on human health (e.g., Peng et al. (2005)). Regulatory policies 
addressing these effects require characterization and understanding of aerosol 
physicochemical properties, sources and formation processes. During the past years, 
the study of submicron particulate matter (PM1) has gained interest (Hallquist et al., 
2009), in particular the organic fraction comprising 20-90% of the total submicron 
aerosol mass (Jimenez et al., 2009). Atmospheric aerosols are typically classified as 
primary or secondary aerosols, where primary aerosols are directly emitted into the 
atmosphere and secondary aerosols are formed by reaction of precursor gases. 
Aerodyne aerosol mass spectrometers (AMS) and aerosol chemical speciation monitors 
(ACSM) have become important and widely used instruments for the on-line chemical 
characterization of non-refractory submicron aerosol (NR-PM1) (Canagaratna et al., 
2007; Ng et al., 2011b; Fröhlich et al., 2013). The resulting aerosol data can be utilized 
to study seasonal trends of PM1 sources to support emission reduction strategies. This 
is highly relevant for very polluted areas like China and India but also for Europe, where 
particulate matter concentrations substantially decreased during the last two decades, 
but still frequently exceed legal thresholds (Barmpadimos et al., 2011; Barmpadimos et 
al., 2012; European Environment Agency, 2019). 
Source apportionment of organic aerosol (OA) measured with an AMS and / or ACSM 
is typically performed using the positive matrix factorization algorithm (PMF, Paatero 
and Tapper (1994)). PMF solutions describe the complex, time-dependent organic 
aerosol composition as a linear combination of static factor profiles (for AMS/ACSM 
data, mass spectra) and their time-dependent contributions. Factors can represent a 
primary organic aerosol emission (POA) or secondary organic aerosol (SOA).  
Many organic source apportionment studies with AMS (see review by Zhang et al. 
(2011)) and ACSM data (e.g., (Aurela et al., 2015; Budisulistiorini et al., 2013; 
Canonaco et al., 2013; Fröhlich et al., 2015; Li et al., 2017; Minguillon et al., 2015; 
Reyes-Villegas et al., 2016; Ripoll et al., 2015; Schlag et al., 2016; Sun et al., 2013; 
Sun et al., 2018; Tiitta et al., 2014; Wang et al., 2017; Zhang et al., 2019; Zhu et al., 
2018)) have successfully employed the PMF algorithm. PMF results suffer from 
rotational ambiguity (Paatero et al., 2002), i.e., several PMF results exist with a similar 
goodness of fit. An approximate method for the quantification of the rotational 
uncertainty, i.e., the amount of rotational ambiguity (Paatero et al., 2014), can be 
obtained using the global fpeak tool, which allows exploration of a single one-
dimensional transect through the multidimensional solution space and is discussed for 
AMS data in Ulbrich et al. (2009). This approach only leads to a rough estimate of the 
rotational uncertainty, as it allows investigation of only a single transect whose selection 
is uncontrollable, while other rotations remain entirely inaccessible. An improved 
method for both uncertainty estimation and factor resolution was demonstrated by 
Canonaco et al. (2013), where intelligent exploration of rotations was implemented 
introducing a priori information in form of factor profiles in the multilinear engine (ME-2, 
Paatero (1999)). Moreover, Ulbrich et al. (2009) also estimated the statistical 
uncertainty via the resampling bootstrap technique (Efron, 1979). This method 
generates a set of new input matrices for analysis from random resampling of the 
original input data. This resampling perturbs the input data by including replicates of 
some points while excluding others, with the main assumption that the overall 
properties of the analyzed data (fingerprints of the factors, contributions of the factors) 
are not systematically changed, i.e., changes are purely statistical. If a sufficient 
number of resamples has been carried out, the variation within the identified factors 
across all bootstrap runs is regarded to represent their statistical uncertainty. 
A crucial limitation of the traditional PMF approach is that the time-dependent variability 
of the composition of the organic aerosol sources cannot be properly modelled using 
static profiles in a year-long PMF model. Both POA and SOA may have time-dependent 
composition. For example, vehicles utilize different fuel blends in winter and summer for 
traffic (Agrola, 2017), while biomass burning may be dominated by different burning 
types and / or materials in different seasons e.g., domestic heating in winter, agricultural 
waste/residue burning in spring/autumn, wildfires in summer. SOA sources may 
likewise be affected by seasonal changes in either precursor emissions (e.g., 
monoterpene emissions increase exponentially with temperature) or physicochemical 
processes (e.g., gas/particle partitioning, oxidant concentrations) (Hallquist et al., 2009). 



Amongst others, Canonaco et al. (2015), Daellenbach et al. (2017) and Sun et al. 
(2018) showed that ACSM SOA mass spectra possess distinct seasonal trends which 
need to be considered during the PMF analysis. For Zurich, Stefenelli et al. (2019) and 
Qi et al. (2019) were able to demonstrate this seasonal variability of SOA 
characteristics by molecular analysis, with terpene related SOA being dominant in 
summer and aged wood burning organic aerosol being dominant in winter. 
Technically, modeling seasonally-dependent mass spectra from a given source family, 
e.g., traffic, biomass burning, or SOA, can be achieved in two ways. PMF can be 
applied to a multi-season data set, with time-dependent source composition modelling 
of a single factor per source or source class, similar to typical representations of SOA in 
short-term field campaigns by two factors with different degrees of oxygenation (Zhang 
et al., 2011). However, multi-factor representations of seasonal changes are likely to 
significantly increase the complexity of the PMF solution, primarily due to a rapid 
increase in the number of factors and thus leading to difficulties in interpretation. 
Another possibility is to perform PMF over a small, moving time frame such that the 
factor profiles evolve with time, while maintaining a single factor per source family. This 
is likely the best choice for long-term data, due to both the relative simplicity of the 
solution and important savings in computational and evaluation time. The latter is also 
more compatible with a continuously growing dataset, e.g. for online source 
apportionment studies, where the entire dataset doesn’t have to be completely 
reanalyzed when new data is included in contrast to classical batch analyses. Parworth 
et al. (2015) have already shown the effectiveness of such an approach, i.e., employing 
a small and moving PMF window for analyzing remote long-term ACSM data with only a 
few unconstrained aerosol sources / components. However, a rotational and statistical 
uncertainty exploration was not conducted. 
This study presents the analysis of ACSM data measured in Zurich between February 
2011 and February 2012. The dataset includes several sources that were difficult to 
separate using unconstrained PMF, which are constrained using known POA sources in 
ME-2 for a small and rolling time window. This strategy allows to adequately account for 
time-dependent variation of the POA and SOA factor profiles. The applied constraining 
technique allows for a more comprehensive and quantitative assessment of the 
rotational uncertainty than the global fpeak tool could achieve. The statistical 
uncertainties of PMF solutions are estimated using a bootstrap resampling technique. In 
this study, the size of the rolling window, tightness of constraints, and several other 
parameters as e.g. number of PMF repeats per rolling window, are discussed and 
validated. 
 

2 Instruments and methods 

2.1 Instrumentation and sampling site 

An ACSM (Aerodyne Research, Inc., Billerica, MA, USA) was deployed at the Kaserne 
station, an urban background station in the city center of Zurich (Switzerland) between 
February 2011 and February 2012 (Lanz et al., 2007; Lanz et al., 2008; Canonaco et 
al., 2013). The ACSM is an instrument based on Aerodyne aerosol mass spectrometer 
(AMS) technology, but optimized for long-term measurements with minimal 
maintenance requirements. The ACSM measures the real-time composition of non-
refractory submicron particulate matter, customarily referred to as NR-PM1. The 
instrument is described in detail in Ng et al. (2011b), (see also Jayne et al. (2000), 
Jimenez et al. (2003), Allan et al. (2003), Allan et al. (2004), and Canagaratna et al. 
(2007) for a more detailed description of the AMS technique). Technical problems on 
the ACSM inlet system during the last third of the campaign resulted in a total of 2-3 
weeks of missing data. 
The ACSM in Zurich was operated with a scan rate of 1 s/amu between m/z 10 and 
140, and produced averaged scans every 15 min. The data was re-averaged to 30 min 
to obtain higher signal to noise ratios for ME-2 analysis. To obtain quantitative mass 
concentrations for ACSM data, a collection efficiency parameter (CE) needs to be 
applied to account for the incomplete detection of aerosol species due to particle 
bounce at the instrument vaporizer (Middlebrook et al., 2012). The effects of the nitrate 
mass fraction and particle acidity on CE have been parameterized for ambient data 



(Middlebrook et al., 2012). As discussed previously (Canonaco et al., 2013; Canonaco 
et al., 2015) CE = 1 for the current study is assumed because of otherwise systematic 
overestimation compared to the PM10 measurements by a tapered oscillating 
microbalance (TEOM, FDMS 8500, Thermo Scientific) calibrated by gravimetric 
measurements of off-line PM10 filters.  
The meteorological data (temperature, relative humidity, solar radiation, precipitation, 
wind speed and wind direction) and trace gases (CO, NOx, O3, total hydrocarbons) were 
measured by the Swiss National Air Pollution Monitoring Network, NABEL (Empa, 
2010). Equivalent black carbon (eBC) was measured with an Aethalometer AE 31 
(Magee Scientific Inc., Berkeley, CA, USA). The data were corrected for loading effects 
and multiple scattering using the method of Weingartner et al. (2003). Mass absorption 
cross sections as determined by Herich et al. (2011) were used to convert 
babs(λ=880nm) to eBC. The measured absorption coefficients at wavelengths 470 and 
880 nm using the alpha-values based on Zotter et al. (2017) were used to estimate the 
contributions to eBC from traffic (eBCtr) and biomass burning (eBCwb). 
Seasonal PMF runs performed on the ACSM data in earlier studies (Canonaco et al., 
2013; Canonaco et al., 2015) showed three primary OA factors and one to two 
secondary OA factors contributing throughout the measurement year. Among the 
primary OA factors a traffic-related hydrocarbon-like organic aerosol (HOA) factor was 
found, which correlated with NOx and eBCtr, as well as a biomass burning organic 
aerosol (BBOA) factor, which correlated with eBCwb as also shown in other studies 
(Lanz et al., 2007; Lanz et al., 2008; Ulbrich et al., 2009; Zhang et al., 2011; Canonaco 
et al., 2013). Given that in summer the daily values of m/z 60 were always higher than 
the threshold for biomass burning impact identified in Cubison et al. (2011), BBOA was 
also modelled during the warm seasons. The third primary OA factor was assigned to 
cooking-related organic aerosol (COA), and exhibited enhanced concentrations during 
mealtimes, similar to previous studies (Allan et al., 2010; He et al., 2010; Slowik et al., 
2010; Sun et al., 2011; Mohr et al., 2012; Crippa et al., 2013; Elser et al., 2016). For 
warm days during the first winter and in spring, summer and fall the variability of the 
bulk OOA (oxygenated organic aerosol) was captured by two distinct factors, i.e., SV-
OOA (semi-volatile oxygenated organic aerosol) and LV-OOA (low-volatility oxygenated 
organic aerosol). For the remaining colder period only one OOA factor accounted for 
the variation of the bulk OOA. 

2.2 Methods 

2.2.1 The multilinear engine (ME-2) 
ME-2 (Paatero, 1999) is a powerful engine for solving the positive matrix factorization 
algorithm (PMF, (Paatero and Tapper, 1994)). Model configuration and post-analysis 
are performed by Source Finder (SoFi Pro 6.8, Datalystica Ltd., Villigen, Switzerland) 
within Igor Pro software environment (Wavemetrics, Inc., Portland, OR, USA) as 
described in Canonaco et al. (2013). In its bilinear mode, PMF describes the measured 
data matrix X as a product of two matrices, G and F and the residual matrix E. In 
element notation the equation is:  
𝑥௜௝ ൌ ∑ 𝑔௜௞ ∙ 𝑓௞௝ ൅ 𝑒௜௝
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   (1) 
In the measured matrix X the columns j are the m/z’s and each row i represents a single 
mass spectrum. p is defined as the number of factors of the selected model solution, 
i.e., the number of columns of G and the number of rows of F. Each column of the 
matrix G represents the time series of a factor, whereas each row of F represents the 
factor profile (i.e., mass spectrum); both are indexed by k. In an unconstrained PMF run 
in ME-2, the model is initialized with random entries in G and F (“seed”) and the 
quantity Q is minimized with respect to all model variables by means of the conjugate 
gradient algorithm (Paatero, 1999): 
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  (2) 
where 𝑒௜௝ are the elements of the residual matrix E and 𝜎௜௝ represents the measurement 
uncertainty for the input point 𝑥௜௝.  
To compare Q-values from various PMF runs with a different size and / or number of 
factors, Q is normally scaled by the remaining degrees of freedom (Qexp, which depends 



on the size of the input data and the number of chosen factors): 
𝑄௘௫௣ ൌ 𝑚 ∙ 𝑛 െ 𝑝ሺ𝑚 ൅ 𝑛ሻ        
   (3) 
PMF is subject to rotational ambiguity, in which different combinations of G and F yield 
similar Q-values. Some of these combinations may contain mixed factors and / or 
environmentally unreasonable descriptions of the data. Previous work has shown that 
constraining expected factor profiles using the a-value approach for AMS/ACSM data is 
an efficient method for isolating the set of environmentally interpretable PMF runs (Lanz 
et al., 2008; Canonaco et al., 2013; Crippa et al., 2014). The a-value determines the 
extent to which the m/z in the mass spectral profile, also referred to as anchor (𝑓௞௝), is 
allowed to vary during the model iteration according to: 
𝑓௞௝′ ൌ 𝑓௞௝ േ 𝑎 ∙ 𝑓௞௝         
  (4) 
The index j stands for the actual variable (m/z) of the kth factor, and the a-value is its 
scalar product. For example, an a-value of 0.1 allows for a variability of ± 10% during 
the iterative process. This implies that some variables might increase and some might 
decrease within this limit. Note that after renormalizing the solution, the extent to which 
the constrained values changed might be slightly outside the defined a-value range. For 
example, consider a case where the a-value is set to 0.1 for all variables of a factor 
profile. The values of all variables but one could decrease by 10% while the value of 
this single variable might increase by 10% during the iteration. After renormalizing the 
factor profile outside ME-2 by, e.g., the sum of the profile, the intensity of this single 
variable will exceed the boundaries set with the a-values during the PMF iteration. 
Moreover, note that the a-value approach defines only the boundaries of a solution and 
does not imply any weighting within these boundaries. 

2.2.2 PMF input preparation step 
The organic data and error matrices (Allan et al., 2003) are computed using the ACSM 
local tool version 1.5.3.2 (Aerodyne Research, Inc., Billerica, MA, USA) in Igor Pro. 
Weak (signal to noise ratio between 2 and 0.2) and bad variables (signal to noise below 
0.2) were downweighted according to the recommendations in Paatero and Hopke 
(2003). The m/z 16, 17, 18 and 28 variables that are replicates of the variability of m/z 
44 were removed for the PMF calculation and recalculated a posteriori as a function of 
the m/z 44 contribution attributed to each factor profile (Elser et al., 2016). This 
approach is preferable to downweighting (Ulbrich et al., 2009), as it maintains a direct 
mathematical relationship between m/z 44 and its dependent variables, which can 
otherwise be distorted by dynamic weighting of outliers in the PMF robust mode. 

2.3 New rolling method using ME-2 

The new method consists in performing PMF runs on a small and moving window that 
is translated across the entire dataset. At each step, many individual PMF runs are 
performed, and the resulting runs are accepted or rejected according to predefined 
criteria. The window is then moved to the next position, with the distance between 
window positions being significantly smaller than the window size itself. The set of all 
accepted PMF runs determines the final source apportionment solution and is also used 
to assess model uncertainties.  
The novelty of this method compared to Parworth et al. (2015) lies in the application of 
ME-2 for enhanced control over the matrix rotations, and in the automated application 
of user-defined criteria to determine the set of accepted PMF runs. Moving properties of 
the window (window-runs) are discussed in Section 2.3.1, whereas the main settings of 
PMF within a window (PMF runs) are described in Section 2.3.2. 

2.3.1 The rolling strategy 
PMF analysis is conducted on a subset of data defined by a small window that is moved 
in 1-day increments across the entire dataset and as such allows capturing seasonal 
variations of the factor profiles. Note that rolling windows containing less than 10 % of 
real-data are automatically skipped by the rolling algorithm. This avoids performing 
PMF runs over large gaps due to, e.g., calibrations or instrument failures. The window 
size (swin) is a free parameter that requires optimization. The rolling window PMF 
analysis of Parworth et al. (2015) utilized a 2-week window, arguing that this length is 
representative of the average lifecycle of aerosols in the atmosphere. Even for (low 



time-resolution) ACSM data, two weeks have been shown to provide enough temporal 
variability to distinguish sources with similar factor profiles such as HOA and COA 
(Fröhlich et al., 2015) In the present study, likewise a 14-day window is selected, after 
additionally assessing the performance of 3, 7, 21, and 28-day windows. 
The model performance in response to swin is assessed by monitoring the value of 
Q/Qexp (which decreases as the mathematical goodness of fit improves) and the 
number of non-modelled time-points (nnon-modelled) as a percentage of the total number of 
measurements. nnon-modelled is defined as any ACSM time-point for which the user-
defined criteria (see Sections 2.3.3 and 2.3.4) are not met for any PMF runs that include 
this measurement (note that for most points this will include PMF runs from multiple 
overlapping windows). Figure 1a shows Q/Qexp and nnon-modelled as a function of swin. The 
Q/Qexp values are minimized for a 7-day window and are approximately 15 % higher for 
the 3- and 14-day windows, and 45 % higher for the 21- and 28-day windows. nnon-

modelled shows a minimum for 14 days with a slight increase for larger windows and a 
steep increase for smaller swin. 
A 14-day window has been chosen for the current dataset, as this avoids significant 
increases in Q/Qexp without inducing unacceptably high nnon-modelled. Moreover, because 
the 1-day step of the rolling window is smaller than the 14-day width, each time-point is 
included in 14 different window-runs (except for those within the first or last 14 days of 
the dataset). As discussed later, these repeats aid the uncertainty analysis. 

2.3.2 Window settings 
The rolling strategy described above defines a new window after every window shift. 
Within this new window, a PMF run, referred to as repeat in the text, is generated via 
ME-2, which initializes new seeds, a-values, and bootstrap resampling of the PMF 
input. The seed initializes all model entries in G and F, and unconstrained information 
therein is randomly initialized. Additionally, a priori information on the factors from the 
seasonal pre-tests is used to confine the solution space and thus to decrease the 
rotational ambiguity of the solution. 
In the current study, constraints are applied only to profiles of the POA factors, namely 
traffic (HOA), cooking (COA) and biomass burning (BBOA). The HOA and COA profiles 
are taken from Crippa et al. (2013), while BBOA is the averaged mass spectrum 
reported by Ng et al. (2011a). These anchor profiles were also successfully used for the 
seasonal analysis of the Zurich-Kaserne data (Canonaco et al., 2013; Canonaco et al., 
2015).  
Every constrained factor profile applied in a PMF run requires a sensitivity analysis of 
the a-value to identify the range of reasonable solutions (Canonaco et al., 2013; Crippa 
et al., 2014; Elser et al., 2016). Typically, variation of the a-value of one or more 
constrained factor profile(s) allows exploration of a region in the solution space that 
includes environmentally reasonable solutions. In the present analysis, the goal is to 
consider all PMF runs (not just the best one) that are mathematically and 
environmentally reasonable. Recent studies have systematically investigated the entire 
solution space allowed by the a-values, e.g. by conducting PMF runs covering every 
combination of a-values over the range 0 to 1 with a step of 0.1 (Elser et al., 2016; 
Bozzetti et al., 2017; Daellenbach et al., 2017). However, this approach is not 
computationally practical for moving window analysis. For instance, given that three 
factors are constrained in this present study, the above a-value exploration strategy 
would require 113 = 1331 PMF runs for a-value exploration per window-run. Also, each 
combination of a-values would require a minimum of 100 PMF runs for bootstrap 
analysis (Norris et al., 2014). Furthermore, the seasonal pre-tests indicated that both 
four- and five-factor solutions should be assessed (corresponding to one or two OOA 
factors). In total, this would require 1331 x 100 x 2 ~ 2.66 x 105 PMF runs per window. 
Moreover, the daily shift of the rolling window will initialize the window-runs 351 times 
(one year minus the swin), resulting in 1331 x 100 x 2 x 351 ~ 9.35 x 107 PMF runs for a 
systematic analysis. This will require several months of computation even on modern 
PCs with multi-core processors. To overcome these computational issues, two 
strategies were considered for reducing the number of runs required for a-value 
exploration. In both cases, a systematic exploration of the a-value space is replaced by 
randomly generated a-values between zero and an upper limit (amax). For the first 
strategy, the amax limit was fixed at one, and the number of repeats (xPMF) was adjusted 
until the same criteria described above for swin optimization were satisfactory. However, 
this approach was rejected, as executing the full set of PMF runs required 
computational times on the order of months (see supplement A) and therefore was 



impractical on regular PCs. 
The second strategy, which is used here, exploits the a priori information of the 
sources. If some factor profiles are known to be present and their source profiles are 
known to some extent, there is no need to explore regions in the solution space, for 
which these factor profiles may drastically depart from their realistic anchors. 
Therefore, amax undergoes a systematic scan from zero upwards, with model 
performance assessed by Q/Qexp and nnon-modelled, as described above for the swin 
estimation. The current strategy counts as local-minimum algorithm, as the full 
parameter space (swin, amax, xPMF) is not fully investigated. Moreover, pre-tests based on 
literature data, i.e. a 14-day PMF window for swin (Parworth et al., 2015) and an upper a-
value of 0.3 amax (Crippa et al., 2014) represented the starting condition for the 
parameter optimization discussed in Figure 1. 
Figure 1b shows an almost flat Q/Qexp while that of the nnon-modelled behaves as a 
quadratic function with a minimum at a = 0.4. For a-values below 0.4 the constrained 
fingerprints cannot optimally adapt to the current input. Given only 50 random a-value 
explorations out of 1331 (see above) of the entire a-value space for every PMF window, 
outcomes for higher amax may be purely stochastic and lead to a high degree of mixing 
and consequently rejection of the PMF runs (high nnon-modelled). a = 0.4 represents the 
optimum amax and is set as free parameter for the a-value exploration. 
The random resampling of the PMF input uses the bootstrap approach for every repeat. 
A window comprising 14 days with at most 48 (number of scans per day) x 14 (days)= 
672 time-points will create resamples containing again 672 new time-points, where 
some time-points may occur multiple times and others may be absent. As above, 
Q/Qexp and the percentage of nnon-modelled are monitored as a function of the xPMF. Figure 
1c reveals a constant Q/Qexp whereas the number of nnon-modelled decreases and 
stabilizes from 50 repeats onwards. We conclude that 50 repeats per window are 
sufficiently high for the bootstrap strategy. Note that the final number of PMF runs per 
time-point may be higher than xPMF due to the overlapping PMF runs resulting from the 
rolling strategy. The total number of PMF runs for this study equals 50 (xPMF) x 351 
(number of days) x 2 (four- and five-factors) = 35’100 runs and required approximately 
three days on a modern multicore PC. 

2.3.3 The post-PMF analysis 
Manual inspection of all generated PMF runs is impractical, and is replaced by an 
automated procedure based on pre-defined user criteria that (1) identifies and sorts 
unconstrained factors and (2) determines whether each PMF run should be accepted or 
discarded. Examples of user-defined criteria could include the factor correlation to an 
external tracer in terms of either the overall time series or diurnal pattern, or 
characteristic temporal features, e.g., a prominent lunch peak for a cooking factor. 
Modelled PMF factors for which no factor criteria are satisfied, i.e. very poor score 
values due to factor mixing / swapping or sampling of a transient sources not accounted 
for, typically yield nnon-modelled. 
In addition to determining whether an individual PMF run should be accepted or 
rejected, the criteria are used to determine the identity of unconstrained factors. While 
the positions of constrained factors within the F and G matrices are pre-defined for 
constrained factors, the same is not true of unconstrained factors, and these must be 
correctly identified prior to further data analysis. Consequently, all possible 
combinations for sorting unconstrained factor positions are evaluated (factor 
identification) and their scores combined together. As criteria with various score ranges 
are potentially possible, e.g., correlation coefficient, lunch peak ratio, the explained 
variation (EV, see Eq. 5) of m/z 60 and variable fractions, these score values must be 
corrected before being added up. z-score transformation as a linear correction is 
applied, where at the end the score distribution of each criterion possesses a mean 
value of zero and a standard deviation of one. Finally, the z-score transformed 
combination with the highest values is chosen to represent the PMF result for a specific 
PMF run. This is essential in the case of the two unconstrained factors SV-OOA and 
LV-OOA in this study. Note that this requires criteria to be defined for a minimum of all 
factors but one (i.e., p -1 factors). 
Considering the large amount of PMF runs by the rolling window algorithm, the main 
advantage of this criteria-based inspection is that the complexities of a factor profile and 
time series are reduced to single values (“scores”). Based on the score plots, potentially 
promising PMF runs can be further investigated and validated. This significantly 
improves the efficiency of PMF analysis by discarding PMF runs where the score for 



any criterion falls below the user-defined threshold (“bad PMF runs”). In contrast to 
conventional analyses, where a single PMF run often represents an optimal description 
of the dataset, the entire set of PMF runs classified as environmentally reasonable is 
used for the analysis and presentation. This provides a more comprehensive and robust 
representation of the dataset and supports uncertainty assessment. 
To determine whether an individual PMF run is accepted or rejected, acceptance 
thresholds are defined for each of the selected criteria. These thresholds are free 
parameters and must be defined for each criterion separately. Either a threshold is 
inferred from previous studies or from significance tests or similar statistical analyses 
(see discussion for the HOA and COA thresholds in Section 2.3.4 for such an example). 
The computational time required for criteria application subsequent averaging is 
typically on the order of minutes to hours with a modern multicore PC, depending on the 
amount of accepted PMF runs. Thereafter, the results can be inspected in real-time 
allowing the user to efficiently investigate the set of PMF runs and if needed, test 
various criteria. 

2.3.4 Chosen criteria in this study 
In this study one criterion per factor was defined, although it is possible to apply multiple 
criteria to the same factor, as each criterion is assessed individually on an accept/reject 
basis. 
Figure 2 shows the criterion scores calculated for each PMF run, with each plot 
representing an individual factor. The gray points show the score values for all PMF 
runs, the blue points denote PMF runs where criterion thresholds are satisfied, and the 
green points represent PMF runs where criterion thresholds for all criteria are 
simultaneously fulfilled. These green points are then used to compute the final PMF 
solution. The criteria and their corresponding thresholds applied for each criterion (blue 
points in Figure 2) are also reported in Table 2 (1st value). 
In the current study, the thresholds for the criteria of HOA and COA were determined 
based on statistical analyses with the help of the results from conventional (no rolling 
technique) seasonal PMF from previous studies (Canonaco et al., 2013; Canonaco et 
al., 2015). The contribution of HOA and its tracer eBCtr were bootstrapped together and 
the correlation coefficient (RPearson) was evaluated each time, leading to a distribution for 
RPearson. Similarly, the time series of COA was bootstrapped and the lunch peak 
enhancement in COA evaluated each time (COA11+12+13hrs/COA 9+10+14+15hrs), leading to a 
distribution for the lunch peak concentration. Finally, the 10th percentile value was 
chosen as threshold score value. These seasonal thresholds are also visible as steps in 
the score plots (blue points in Figure 2 a) and b), respectively) and are also reported in 
Table 2 (2nd value in brackets). For spring 2011, summer 2011 and winter 2012 
however, the resulting thresholds for HOA either caused too many missing time-points 
(RPearson = 0.8) or had rather non-significant correlation coefficients (RPearson = 0.2, with a 
p value of 0.4, n = 24 as for the other seasons). Hence, these thresholds were 
systematically lowered for spring 2011 and increased for winter 2012 to achieve the 
highest possible correlation coefficient with maximal data coverage, i.e. same nnon-

modelled when considering all PMF runs for these periods in these criteria. 
NOx is a typical tracer for HOA in urban areas. However, due to incomplete NOx 
measurement coverage in this campaign (especially during spring and fall), eBCtr is 
used as a traffic tracer and the RPearson correlation coefficient is computed between the 
diurnal cycle of eBCtr and the HOA factor.  
As is frequently the case, no chemical tracers for COA were available in this study. 
Previous measurements in Zurich (Canonaco et al., 2013; Canonaco et al., 2015) have 
demonstrated a strong diurnal pattern for COA, with an increased concentration during 
lunchtime. As a proxy for COA, the lunch-time COA enhancement is monitored (Table 
2). 
The wood burning contribution to black carbon (eBCwb) as determined by the eBC 
source apportionment (eBC-SA) method of Sandradewi et al. (2008) was considered as 
a possible criterion for BBOA but then rejected. The eBC-SA analysis applies to air 
masses highly influenced by biomass burning and has been validated for winter data 
only. Uncertainties in eBCwb during warm seasons, when the biomass burning 
contribution is small, have been shown to be quite high (Harrison et al., 2013). 
Therefore, it was decided to use another metric for BBOA, exploiting the key spectral 
feature at m/z 60. For BBOA the explained variation (EV) (Paatero, 2010) for m/z 60 is 
monitored as follows: 
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   (5) 
This threshold is chosen following the recommendation in Paatero (2010), where a 
variable modelled by its mean explains already ~25% of the variation. If the measured 
variability of a variable is explained by a specific factor, that factor must capture more 
than the mean value of the variable, and hence Paatero (2010) recommended 30-35 % 
as a minimum EV. However, using 30 or 35 % as threshold resulted in several weeks of 
non-modeled time-points in particular for spring and fall 2011. a-value of 25 % resulted 
in a reasonable compromise between EV and the amount of non-modeled time-points. 
Note that this approach requires the assumption that m/z 60 should be predominantly 
explained by BBOA, which is likely true when the fraction of OA signal occurring at m/z 
60 (f60) is relatively high. However, for measurements where f60 is low, m/z 60 is more 
likely to have also contributions from other sources. A rough guideline for utilizing this 
criterion is a threshold for biomass burning influence of f60 = 0.003 as identified by 
Cubison et al. (2011). In the current dataset, ~85 % of all measured time-points 
exceeded this threshold. Every measured day was observed to comprise at least some 
time-points (in winter, spring and fall almost all points whereas in summer mostly 
evening points) above this threshold, suggesting that the criterion is valid throughout 
the dataset. 
Ng et al. (2010) described higher f43 and lower f44 for the mass spectrum of SV-OOA, 
and vice versa for LV-OOA. Therefore, f43 and f44 are used as proxies for SV-OOA 
and LV-OOA or OOA, respectively. For LV-OOA (Figure 2 d, Table 2) all score values 
are allowed here, whereas for SV-OOA (Figure 2e, Table 2) the PMF runs meeting the 
thresholds for the five-factor solutions are selected. This threshold corresponds to the 
point where nnon-modelled is minimal with respect to this criterion, i.e. considering all PMF 
runs in this criterion leads to the same nnon-modelled, at highest possible f43 for SV-OOA. 
The criterion of SV-OOA is further used to differentiate between four- and five-factor 
solutions on the window-runs. For the PMF windows where no five-factor solution with 
SV-OOA is selected, the set of four-factor solutions in the corresponding PMF window 
is automatically selected (green points at zero in Figure 2e). Finally, the averaging 
procedure also controls and prevents that four- and five-factor solutions are 
simultaneously considered for the averaging of single time-points by privileging five-
factor solutions, i.e. any time-point containing accepted PMF runs with both 4- and 5-
factor solutions retains only the 5-factor solution. 

3 Results 

3.1 Brief statistical analysis of the rolling result 

The amount of nnon-modelled resulting from the criteria and thresholds reported in Table 2 
yields 99.31 % data coverage, corresponding to a total of only 3 non-modelled days. 
Overall, the selected criteria resulted in 1’970 accepted PMF runs (~5.6 % out of the 
35’100 PMF runs). The Q/Qexp has an average value of 4.4, a median of 4.8, and the 
first and third quartiles are 3.7 and 5.5, respectively. These values are reasonable, 
given that many previously conducted AMS studies reported values between 1 and 10 
(Zhang et al., 2011). On average, each data point has 43 replicates (median = 24, first 
and third quartiles 9 and 60, respectively), which are used to assess the statistical 
uncertainty of the PMF solution as discussed in Section 3.5. 

3.2 Factor time series 

3.2.1 Overview 
Figure 3a shows the time series of each factor for the entire dataset as a mean, 
averaged over all accepted PMF runs. The data from Figure 3a is re-averaged to 
monthly and seasonal means and shown in Figure 3b and 3c, respectively. For Figure 
3c, seasons are defined as follows: winter is December - February, spring is March - 
May, summer is June - August, and fall is September - November. 
In winter, spring and fall the concentrations of primary organic aerosols (HOA, COA and 
BBOA) are approximately 40 % compared to the 60 % of the (secondary) oxygenated 



organic aerosols (SV-OOA, LV-OOA or OOA). In summer the primary fraction 
decreases to reach minimum values of 30 % compared to 70 % of OOA. The relative 
fractions of HOA and COA are rather constant, contributing on average between 0.4-0.7 
g∙m-3 (7.8-9.0 %) and 0.7-1.2 g∙m-3 (12.2-15.7 %), respectively throughout the year. 
BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6 
g∙m-3, 12.0 %), slightly higher mean concentrations during spring and fall (1.0 and 1.5 
g∙m-3, or 15.6 and 18.6 %, respectively) and highest mean concentrations during 
winter (1.9 g∙m-3, 25.0 %). Only during summer, the bulk OOA is completely separated 
into SV-OOA and LV-OOA, with mean concentrations of 1.4 g∙m-3 (26.5 %) and 2.2 
g∙m-3 (40.3 %), respectively. 
 
For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA 
comprise 0.3-1.1 g∙m-3 (3.4-15.9 %), 0.6-2.2 g∙m-3 (7.7-33.7 %) and 0.9-3.1 g∙m-3 
(13.7-39.9 %), respectively.  
The time series of the primary OA factors HOA, COA and to some extent BBOA are 
rather spiky (Figure 3a), underlining a strong influence of local sources. The COA 
spikes that are present from May 2011 through the end of September 2011 are likely 
due to local barbecuing events during the evening, as also observed in an earlier study 
at this site (Lanz et al., 2007). The highest COA concentrations are observed in early 
July 2011, where the NR-PM1 mass concentrations reached 70 gꞏm-3, and correspond 
to three consecutive evenings/nights of a yearly Latin American dance and grill festival 
(Caliente). During this festival, the courtyard containing the measurement site was filled 
with food and grill stands, explaining the dominant contribution of COA. Throughout the 
summer and spring and less frequently in autumn/winter SV-OOA was modelled in 
addition to LV-OOA. This warm period was characterized by high daily temperatures 
and induced on the one hand variability in the condensed OOA allowing for separation 
of SV-OOA and LV-OOA and on the other hand increased emissions of biogenic SV-
OOA precursors (Canonaco et al., 2015). 

3.2.2 Daily cycles 
Figure 4 summarizes the weekday (left) and weekend (right) daily cycles for the 
modelled factors. The daily cycle of HOA follows the averaged daily cycles of the 
estimated traffic of eBC (eBCtr) and of NOx. The same is true for the daily cycle of 
BBOA following that of the biomass burning of eBC (eBCwb). HOA, eBCtr and NOx 
exhibit a clear rush-hour peak on weekdays and none on the weekend. During the 
weekdays, a small lunch peak is visible for COA underlying the meal activity during the 
working days and the presence of many restaurants in this area. There are no evident 
differences between the weekday and weekend daily cycles of LV-OOA, SV-OOA and 
OOA. LV-OOA and OOA show rather flat daily cycles, similar to their inorganic aerosol 
tracers SO4

2- and NH4
+, respectively. This is in line with their most-likely regional 

background, as already suggested earlier (Canonaco et al., 2015). Only the 
concentration of SV-OOA tends to decrease during the afternoon, suggesting its volatile 
nature, similarly to its inorganic aerosol tracer NO3

-. The weekly cycle for HOA, COA, 
BBOA and the OOAs including their tracers eBCtr, NOX, eBCwb, SO4

2-, NO3
- and NH4

+, 
respectively are reported in Supplement B. Apart from OOA, the weekly cycle for HOA, 
BBOA, SV-OOA and LV-OOA are in good agreement with their tracers. 

3.2.3 Comparison with external data 
The analysis and further validation of the PMF runs using the criteria-based selection 
are performed on the PMF results of the rolling windows and therefore, correlations are 
performed over 14 days in this study. The performance of the rolling strategy can then 
be verified by the factor / tracer correlation, e.g., on average over the seasons (Table 
3). Moreover, the same factor to tracer correlations are also evaluated for the seasonal 
pre-tests (PMF runs over the seasons with no rolling strategy) and are reported in 
brackets in Table 3. 
NOx data is available only in winter and fall 2011. Both NOx and eBCtr are correlated 
with HOA over the full year and within individual seasons. The correlation values with 
NOx, are lower compared to those found in Canonaco et al. (2013). However, in 
Canonaco et al. (2013) the data covered mostly the two winters including some parts of 
spring and fall. For the latter two seasons NOx data was not properly validated and was 
consequently removed from further analysis (no NOx data is available for spring and 
summer). Moreover, in Canonaco et al. (2013) the model validation was strongly based 
on the first winter period, and when performing the correlation between HOA and NOx 



data for that period only, the correlations were similar also in the current study (not 
shown in the table). 
BBOA shows substantial correlation to eBCwb in fall and winter, as also found in 
Canonaco et al. (2013), while the correlation is low in spring and very low in summer. 
These low correlations are expected, since the determination of eBCwb is highly 
uncertain when the eBCwb/eBCtraffic ratio is low. Wood burning source apportionment of 
eBC data, as already stressed above, is not suited under warm conditions with low 
biomass burning contributions. However, the correlation is good over the full year, as 
the problematic data yields eBCwb concentrations near zero anyway, and the correlation 
is thus driven by the data with high signal to noise ratios. 
High correlations between LV-OOA and SO4

2- are seen over the year as well as for 
spring and fall, whereas they are lower in summer, as shown in Table 3, in contrast to 
Lanz et al. (2007) (RPearson = 0.5 between LV-OOA and SO4

2- during a summer AMS 
campaign). The correlation between SV-OOA and NO3

- is higher for winter 2011 and 
summer but lower in spring and fall. This is understandable, as the spring and fall 
represent the transition between modelling SV-OOA and LV-OOA (summer) compared 
to one OOA only (winter). The correlation between SV-OOA and LV-OOA for winter 
2012 is not shown due to the low number of time-points for which both OOAs were 
modelled. OOA correlates well with NH4

+ throughout the year in accordance to summer 
and winter data reported previously (Lanz et al., 2007; Lanz et al., 2008; Canonaco et 
al., 2013). In contrast to the OOAs, few differences are observed for BBOA, HOA, or 
COA between the two winters. This supports the conclusion that the different OOA 
behavior in these two winters reflects actual meteorological and chemical differences 
rather than mixing and / or splitting between the POA and SOA factors. 
Importantly, the rolling results show generally higher correlations with the external 
tracers than do the conventional seasonal PMF runs (values in brackets in Table 3). 
This demonstrates that the rolling approach generally outperforms the conventional 
seasonal PMF analysis. 

3.3 Time-dependent factor profiles 

The mean factor profiles of the six modelled sources/components over the entire year 
are presented in Figure 5. Error bars show one standard deviation of profile variability 
across the entire measurement year. Note that this variability comprises both the time-
dependent variation of the factor profiles and the PMF error (see Section 3.5. for more 
details on the discussion of the errors in this study). 
A better understanding of the temporal variation of the factor profiles is gained when 
inspecting them over time. Figure 6 shows the fractional contributions of m/z 41, 43, 44, 
55, 57 and 60 to each factor profile as a function of time. Each variable is normalized by 
its mean contribution. In general, the variation of the fractions for the primary OA factors 
(HOA, COA and BBOA) seems small compared to the variability of the oxygenated 
factors (LV-OOA, SV-OOA and OOA). The primary OA factors show low profile 
variability with almost no seasonal pattern. Note that minimum and maximum values of 
these variables for the primary OA factors (less pronounced for HOA and COA) reach 
~0.6 and 1.4, respectively, i.e., the boundaries given by amax. The 75th percentiles of the 
a-values for HOA, COA and BBOA touches amax less than 0.9 % of the time and the 90th 
percentile hits amax 34 %, 24 % and 73 % of the time (see Supplement D Figure S5). 
This suggests that the factor profiles are not limited by the constraining technique, but 
rather by the employed scheme of criteria. Allowing for higher amax and loosening the 
criteria threshold would most likely increase the variability in these ions but would also 
lead to mixed and environmentally unreasonable solutions. 
This is different for the oxygenated factors. LV-OOA, SV-OOA and OOA for example 
contain high m/z 60 for the colder season, likely indicating significant impact of biomass 
burning (Canonaco et al., 2015; Heringa et al., 2011, Qi et al., 2019). In addition, m/z 57 
shows a strong seasonal pattern, i.e., high in winter and low during summer for SV-
OOA and LV-OOA. Strong peaks are also observed for m/z 43 in LV-OOA during 
summer. This is due to less oxygenated bulk LV-OOA compared to the winter in Zurich, 
when LV-OOA or OOA represent more oxygenated aerosol with higher m/z 44 and 
lower m/z 43, as already noted in Canonaco et al. (2015). SV-OOA also contains a very 
strong increase in m/z 55 during the Caliente episode. Most likely one COA factor alone 
is insufficient to capture all the variability of m/z 55. As a consequence, PMF uses an 



additional factor for modelling the variability of m/z 55, here SV-OOA which may contain 
some characteristics of cooking SOA, as the latter has been shown to have non-
negligible contribution at m/z 55 as well (Klein et al., 2016). Further evidence comes 
from Figure 6e (and also Supplement C Figure S4), where m/z 55 and m/z 43 peak 
around Caliente in SV-OOA and LV-OOA, respectively. Moreover, m/z 44 drops in LV-
OOA. This implies that SV-OOA has some characteristics of cooking while LV-OOA 
becomes more SV-OOA-like during Caliente. The period of influence of these peaks 
lasts until 8-10 days before and after Caliente, most likely as it is incorporated during 
the window-runs 14 days before and after Caliente.  
The time-dependent mass spectral matrix of the factors can be found in the 
Supplement, section C, although a detailed analysis is beyond the scope of the current 
study. When employing this type of analysis, future studies should investigate in more 
detail changes of the variables in the factor profiles. This information might provide new 
insights on seasonal or source-specific markers, essential for source apportionment 
analyses. 

3.4 Residual analysis 

Figure 7a and b show the scaled residuals as functions of m/z and time, respectively. 
The scaled residuals do not reveal any systematic over- or underestimation. The data 
scatters around zero with the interquartile range almost always between +/- 3 
throughout the entire year evidencing the good quality of the PMF solution on average 
(+/- 3 is the reasonable range for scaled residuals defined in Paatero and Hopke 
(2003)). The highest residuals occur during the Caliente festival (beginning of July), as 
shown by the dark red spike (interquartile range) in the time series plot (Figure 7b), 
when the PMF solution is strongly influenced by extremely local and short-term cooking 
and biomass burning sources that are not fully captured by the retrieved COA and 
BBOA factors. 
This results in a change of the factor profiles of COA and BBOA and SV-OOA (as 
already stressed in Section 3.3). However, the COA, BBOA and SV-OOA profiles 
roughly 8-10 days before and after Caliente are again consistent with those retrieved 
during the rest of the season, i.e. the unique fingerprint during the Caliente episode 
does not strongly influence the solution of the PMF-windows around Caliente. A few 
other episodes in spring (May) and at the end of the summer (September) reach also 
higher scaled residuals. In the current dataset, these likely indicate PMF runs that have 
not fully captured profile responses to rapid meteorological changes (colder to warmer 
season and vice versa). This happens on a shorter time scale than the chosen PMF 
window and as a consequence cannot be fully captured by the 14-day PMF windows, 
causing PMF solutions with mixed factor profiles and higher scaled residuals. Note that 
during the last third of the measurement the scaled residual distribution tends to be 
broader. This is due to technical problems on the ACSM inlet system mainly related to 
the filter valve clogging, causing noisier signals and consequently noisier PMF results 
for the valve switching system employed at that time. This condition is not accounted for 
by the ACSM error model and increases the scaled residuals. 

3.5 Uncertainty of the PMF solution 

Within this study, each PMF run combines a random selection of a-values for the three 
constrained POA factors with random (time-based) resampling of the input matrix. PMF 
runs satisfying the acceptance criteria are retained for the final result leading to several 
repeats for each time-point i. The variability among these repeats at each i can be used 
to infer the rotational and statistical uncertainty. These two types of uncertainties are 
discussed below and are collectively referred to as PMF error within this study. 
Additional contributions to the overall uncertainty of this analysis that are not assessed 
here include anchor profile selection, as well as the error related to the criteria 
construction, such as the type of criterion (correlation, diurnal, profile characteristics, 
etc.), tracer selection, and its related threshold selection. The proposed relative PMF 
error in percentage in this study is given by the following formula: 
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where 𝜎 is the standard deviation and avg is the mean value of all replicates of a time-
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reported in Figure 8. The relative PMF errors are given by the center of the lognormal fit 
(x0) as visualized in Figure 8 and are for HOA, COA, BBOA, LV-OOA, SV-OOA and 
OOA  34 %,  27 %, 30, 11 %, 25 % and 12 %, respectively. 
The data reported in Figure 8 was first log-transformed, as the untransformed 
distribution was skewed to the right, mostly due to time-points with low signal to noise 
ratio that would have had a stronger impact on the final error calculation using an 
untransformed, i.e., linear representation. 

4 Recommendations and current limitations 
The techniques described in this study are relevant for long-term source apportionment 
(SA) studies, in particular for ACSM data. The stability of the primary profiles (HOA, 
COA and BBOA) suggests that they are rather independent from the season, and that 
employing primary OA factors coming from other SA studies (here profiles from an AMS 
SA in Paris conducted years earlier) using, e.g., the a-value constraints, works even for 
long-term SA. However, this outcome is not completely independent as it results from 
the defined amax as well as the applied scheme of criteria with their corresponding 
criteria thresholds. Increasing these thresholds would most likely increase the variation 
in the POA factor profiles but would also favor more mixing between these factors. 
Significant seasonal changes in factor profiles were found for SV-OOA and LV-OOA. 
Hence, the rolling mechanism is essential, when accurately apportioning the 
oxygenated organic aerosol fraction. The use of a 14-day window, as already proposed 
by two former studies (Fröhlich et al., 2015; Parworth et al., 2015), was shown to be 
appropriate for this long-term SA analysis and represents a promising starting point for 
future long-term SA studies, although detailed evaluation for datasets with other 
sources and temporal characteristics is needed. 
In general, selection of the rolling window size (swin) should consider both the fraction of 
non-modelled time-points (see Figure 1) and interactions between swin and solution 
acceptance criteria. The latter point is illustrated by the use of the relative intensity of 
the COA lunchtime peak in this study. This peak was observed to be almost absent 
during the weekend. As a consequence, avoiding systematic biases in the fraction of 
non-modelled time-points requires the swin to be larger than 7 days to guarantee the 
presence of weekdays in every window-run. Employing a reliable tracer even during the 
weekends for the cooking source would have allowed for a better exploration of swin 
below 7 days, as similar Q/Qexp values resulted for 3, 7 and 4 days windows, as shown 
in Figure 1. 
The importance of defining the proper number of factors is strongly emphasized when 
analyzing transient events, e.g. the Caliente episode. This becomes even more 
important when performing automated source apportionment schemes, where the 
ability of factors to dynamically change and adapt to the current window-run is limited, 
as it is the case for the current rolling mechanism presented in this study. During 
Caliente the variability of m/z 55 required two cooking factors to achieve complete 
apportionment. With only one cooking factor allowed, other unconstrained factors 
(especially SV-OOA) took on some cooking characteristics. This resulted in mixed SV-
OOA and LV-OOA factors, as m/z 55 and m/z 43 were clearly peaking around Caliente 
for SV-OOA and LV-OOA, respectively. Relevant transient events that should still be 
part of the SA result would most likely require further attention with additional and 
separate PMF runs, where the user can better control the required number of factors 
and swin. Such problems are clearly evident from diagnostics such as increased 
residuals (Figure 7b) and sudden changes in factor profiles (Figure S3 and S4), 
facilitating their appropriate identification and treatment. A 14-day window is likely too 
large for transient events representing a small fraction of swin, where the latter strongly 
influences the contributions of the data for swin days around the event.  
Crippa et al (2014) already demonstrated for 25 AMS datasets that an amax of 0.3 for the 
constrained information was often required for those SA studies. For the present 
algorithm and dataset, an amax of 0.4 was shown to be ideal. Smaller amax did not allow 
the constrained profiles to sufficiently adapt to the data, whereas higher values were 
subject to mixing of the profiles. a-value limits strongly depend on how well the 
fingerprint matches the PMF input. Fingerprints applied obtained by SA analyses of 
other locations or during other meteorological conditions might require a higher a-value 



limit compared to those extracted from, e.g., a pre-analysis conducted on a subset of 
the PMF input. 
The other remaining free parameters (xPMF and in particular the choice of the criteria 
and their corresponding thresholds) must be assessed by the user for any new SA 
study, as they may strongly depend on site/source characteristics and tracer availability. 
Moreover, investigation of various tracers as criteria-candidates for one source is also 
very desirable, as it allows to quantify errors when discussing factor-tracer 
interchangeability.  
Unlike batch-style PMF (i.e., a single PMF run encompassing the entire dataset), here 
corrections or scaling factors affecting entire rows or columns of the input data matrix 
should be applied prior to SA analysis. For example, the collection efficiency (CE) 
parameter applied for ACSM data analysis is applied to all measured m/z’s of a mass 
spectrum and does not alter the relative contributions obtained by a single PMF result. 
However, it does affect the overall source apportionment returned by the rolling window 
strategy presented within this study. This comes from the fact that the final source 
apportionment result is the aggregate of a set of accepted solutions whose criteria for 
acceptance may include goodness of correlation with an external tracer, and such 
correlations are affected by CE. Therefore, applying CE post-PMF will require the user 
to re-evaluate the score plots and to reassess the criteria thresholds. 
It is likely that the PMF errors reported above can be further reduced by further 
refinements to the rolling window algorithm. One major limitation is the application of 
season-specific criteria thresholds. In the future, criteria thresholds with a higher 
temporal resolution are certainly desirable. Another major limitation is the continuous 
presence of the primary OA factors during the entire analysis. Similarly to the 
(de)activation of SV-OOA within this study, in the future one or more factors should be 
(de)activated during the evolution of the rolling approach to better cope with the 
complex and dynamic real atmospheric conditions. 

5 Conclusion 
A rolling-window PMF algorithm was applied to NR-PM1 organic data measured with an 
ACSM between February 2011 and February 2012 in downtown Zurich, Switzerland. 
The rolling approach allows for a source apportionment of time-dependent factor 
profiles and has several advantages, e.g., very fast PMF runs of rather small PMF runs 
(few seconds for 14 days windows) compared to conventional batch analysis (several 
minutes, as PMF run is always the entire dataset) or one factor per source compared to 
several factors in batch analysis to cope with time-varying factor profiles. Moreover, the 
rolling technique is particularly helpful for the analysis of automated and / or continuous 
analysis of both long-term and continuously growing datasets, where batch analysis is 
at best inefficient and probably not feasible. Factor/tracer correlations were shown to be 
higher for the averaged seasonal analysis (from the rolling window) than for the 
seasonal pre-tests (PMF runs with no rolling). This highlights the improved performance 
of the rolling PMF runs compared to conventional batch PMF analysis for long-term 
data. 
PMF runs were conducted where the a-values of the constrained factor profiles were 
randomly changed within the boundaries 0 to amax in conjunction with the bootstrap 
resampling strategy. The resulting PMF runs were selected and studied using the 
criteria scheme based on information on the sampling site from previous SA studies. 
This method has shown its usefulness when evaluating and studying hundreds of 
thousands of PMF runs. The criteria used here consisted of features in the diurnal 
patterns of HOA and COA, the amount of explained variation of m/z 60 attributed to 
BBOA, and representation of OOA by one or two factors depending on the difference 
between SV-OOA and LV-OOA in f43 values. 
The separation between the primary OA factors (HOA, COA and BBOA) and 
oxygenated organic aerosol (SV-OOA, LV-OOA and OOA) was rather robust 
throughout the year. HOA and COA were rather constant, whereas BBOA showed a 
very strong seasonality with the highest contribution in winter and lowest in summer. 
The model separated OOA into SV-OOA and LV-OOA mainly during the warm season 
(spring and summer), including a warm episode during the first winter. Strongest 
changes of the factor profiles where visible for the oxygenated species SV-OOA and 
LV-OOA, whereas the primary species HOA, COA and BBOA showed smaller 
variations. Hence, the rolling mechanism is certainly essential when properly 
apportioning the oxygenated organic aerosol fraction. 



The model was still able to separate a semi-volatile fraction for the colder seasons 
based on the variation in m/z 43 and 44, where very little variation was present in 
nitrate, often used as a tracer of SV-OOA. 
The rotational and statistical uncertainties were assessed via random a-values 
exploration and bootstrap resampling. The relative PMF errors (expressed by the 
standard deviation divided by the average concentration of all replicates per time-point) 
are on average  34 %,  27 %, 30, 11 %, 25 % and 12 % for HOA, COA, BBOA, 
LV-OOA, SV-OOA and OOA, respectively. 
Finally, the free parameters tested and validated in this study, i.e., the 14-day window 
length, 0.4 as upper limit for the a-value of the constrained primary OA factor profiles, 
together with the scheme of criteria and the xPMF per window-run, depend on the 
sources and meteorological conditions of Zurich downtown. When applying this new 
rolling strategy on datasets dissimilar to Zurich, some or all of these parameters might 
be subject to investigation to achieve a complete and quantitative source apportionment 
analysis. 
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Figure 1: The mathematical metric Q/Qexp (left axis, red points) and the percent of non-modelled time-points 
(nnon-modelled) (right axis, blue points) over the entire dataset are reported as a function of window size (swin), 
maximum a-value (amax), and number of PMF repeats per window (xPMF). In each plot, two of these three 
parameters are fixed at their optimum values and the third is varied: (a) swin, (b) amax, (c) xPMF. Optimum 
values are swin = 14 days, amax = 0.4, and xPMF = 50. For all runs, criteria are defined as described in Section 
2.3.3. 

 
 
 
Table 1: Overview of the rolling mechanism and the repeats of the PMF analysis. 

Rolling	mechanism	
 a 14-day time window is defined 
 window is shifted by one day over the entire dataset 
PMF	analysis	
 for each window a four- and five- (HOA, COA, BBOA and one up to two OOAs) factor 

PMF run is performed, where HOA, COA and BBOA are constrained within the a‐
value approach. 

 PMF runs are initialized 50 times from random starting points for the 
unconstrained information in G and F	(seeds). The a‐values for the constrained 
factor profiles are randomly and independently varied from a	=	0 to a = 0.4 with a 
resolution of �a = 0.1 (a‐value exploration). In each run the PMF input is resampled 
within the bootstrap method. 

 
 
 



a)	 	 	 	 	 	 							b)	

      

 
c)	 	 	 	 	 	 						d)	

    

 
	 	 	 		e)	



 
Figure 2: PMF runs sorted based on the scores (gray points), PMF runs fulfilling the criterion thresholds (blue 
points) and PMF runs fulfilling criterion thresholds in all criteria (green points). The five criteria are a) diurnal 
correlation between HOA and eBCtr (seasonal thresholds from statistical analysis), b) relative lunch peak for 
COA (seasonal thresholds from statistical analysis), c) explained variation of m/z 60 for BBOA, d) f44 in LV-
OOA profile and e) f43 in SV-OOA profile, respectively. Note that e) contains three episodes with zero points, 
which represent four-factor solutions automatically selected by the algorithm, where no five-factor solution was 
manually selected (and the SV-OOA criterion is thus irrelevant). 
 
 
 
Table 2: Criteria scheme employed in this study. The first value represents the applied threshold for the final 
PMF solution and the values in brackets for HOA and COA stand for the threshold value coming from the 
seasonal resampling analysis. f44 for LV-OOA is used for factor sorting rather than as an acceptance/rejection 
threshold. 

factor	 criteria	types	
criteria	thresholds	

winter	
2011	

spring	
2011	

summer	
2011	

fall	
2011	

winter	
2012	

HOA 
daily cycle correlation 
(RPearson) between HOA and 
eBCtraffic 

0.6 (0.6) 0.7 (0.8) 0.5 (0.2) 0.6 (0.6) 0.5 (0.2) 

COA 
rel. lunch peak (11+12+13 
hrs) to (9+10+14+15 hrs) 

1.2 (1.2) 1.1 (1.1) 1.1 (1.1) 1.2 (1.2) 1.1 (1.1) 

BBOA 
explained variation of m/z 
60 

0.25 0.25 0.25 0.25 0.25 

LV-OOA  44 in profile N/A 
SV-OOA f43 in profile	 0.08 
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Figure 3: a) 30 minutes average concentrations b) relative contributions c) pie charts for the calendar seasons of 
the sources between February 2011 and February 2012. Gaps in the data represent interruptions due to 
maintenance and / or technical problems of the ACSM during the last third of the campaign, mostly due to 
clogging of ACSM inlet orifice. The lower values in the pie charts are the seasonal mean contributions in 
g∙m-3. Note that the OOA factors are represented either as LV-OOA and SV-OOA (5-factor solution) or OOA 
alone (4-factor solution). 
 
 
 



 

 

Figure 4: The weekday (left) and weekend (right) diurnal cycles for the entire period (February 2011 
– February 2012). The thick lines represent the medians and the shaded areas span the interquartile 
ranges. Typical external tracers are also shown for comparison, i.e., eBCtr and NOx for HOA, eBCwb 
for BBOA, SO4

2- for LV-OOA, NO3
- for SV-OOA and NH4

+ for OOA. 

 
 
 
Table 3: Correlation coefficients (RPearson

2) with a significance level of p >= 0.01 between the factor 
contribution and expected tracers over the year and the meteorological seasons as defined above. The 
first value describes the correlation for the rolling result, whereas the value in brackets is for the 
seasonal PMF result (no rolling). 

factor year winter 
2011 

spring 
2011 

summer 
2011 

fall 2011 winter 
2012 



HOA / NOx 
0.29 0.18 

(0.21) 
- - 

0.33 
(0.24) 

0.17 
(0.18) 

HOA / eBCtr 
0.36 0.45 

(0.44) 
0.28 

(0.28) 
0.22 (0.08) 

0.38 
(0.31) 

0.42 
(0.27) 

COA - - - - - - 

BBOA / eBCwb 
0.32 0.36 

(0.23) 
0.22 

(0.07) 
0.06 (0.01) 

0.35 
(0.22) 

0.43 
(0.41) 

LV-OOA / SO4
2- 

0.48 0.37 
(0.41) 

0.60 
(0.50) 

0.30 (0.26) 
0.54 

(0.30) 
- 

SV-OOA / NO3
- 

0.05 0.24 
(0.06) 

0.03 
(0.01) 

0.31 (0.29) 
0.15 

(0.04) 
- 

OOA / NH4
+ 

0.60 
0.71 0.58 - 0.39 

0.70 
(0.59) 

 
 
 

 
Figure 5: The mass spectra of the six factors. The spectra have been truncated at m/z 100 to facilitate 
the comparison of the key m/z in the lower range. Error bars represent one standard deviation of the 
profile variability across the entire year. 
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Figure 6: Daily averaged fractions of important AMS/ACSM m/z tracers. Each variable is normalized 
by its mean to better stress its temporal variation. 
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Figure 7: a) scaled residuals over m/z’s, b) scaled residuals over time and c) total histogram of scaled 

residuals. 
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Figure 8: Probability density functions for the PMFerror of the six factors as a 
logarithmic representation on the x-axis. 
 
 
 
 


