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The study of Canonaco et al. reports a significant method development for improved
PMF based source apportionment by aerosol mass spectrometers and crucially aimed
at long time series of measurements badly lacking in literature. Recommendations
and Conclusions are fairly discussed and well balanced which should help future re-
searchers in properly using the method. The paper is very well written, easy to follow
and should be accepted after addressing mostly minorcomments.

We thank the reviewer for this very positive feedback. We are also convinced that this study
will be of help for future long-term source apportionment studies.

Comments
Line 28. Past tense is more appropriate for the efforts in the past.

‘leads” replaced by ‘“led”

Line 39. ...and slightly higher mean concentrations...

“and” has been added in front of “slightly higher mean concentrations...”

Line 86. agricultural waste/residue burning.

“‘waste/residue” has been added in front of “burning”

Line 125. Average of the average (two-level averaging) reduces the weight of outliers
and should generally be avoided, because it makes two-level averaged data not strictly
compatible with one-level averaged tracers. Please elaborate on tracer data in relation
to that. It is compounding of the fact that arithmetic averaging should not be applied to
atmospheric variables in general (see later comment)

The data was re-averaged to 30 minutes due to its rather noisy nature and we were
therefore more concerned to extract a stable signal for the PMF analysis. The external
tracers are compatible with the ACSM data, as they had a much higher time resolution
(one-minute averages) and were then post-averaged to the ACSM time stamp. The
sentence describing the average has been updated accordingly. "The data was re-
averaged to 30 min to obtain higher signal to noise ratios for ME-2 analysis”.

Line 144. biomass burning impact

‘influence” has been replaced by “impact”

Line 183. The resultant uncertainty of individual uncertainties can be calculated by the
square root of squared sum, i.e. three individual uncertainties of 10%, result in 17%.
So the resultant uncertainty will always be higher, not "might be slightly outside the
defined a-range”.

What is described in the text is not the uncertainty but the allowed variation in % for a single
m/z during the PMF iteration. The text never reports the expression “uncertainty”, so we
believe that there is no action we should do here.

Line 202. Section 0 typo here and later several times. Then Line 305.
Line 212. missing dot

All typos corrected.



Line 326. Criterion of highest possible correlation coefficient and maximal data cover-
age are working against each other, so must be a compromise. What was it? It isnot
clear why 0.6 or 0.8 is best and what data coverage does it correspond to?

The correlation coefficient (Rprearson) Of 0.8 resulted from a previous seasonal resampling
analysis and at first we tried to apply this as a threshold. The problem was that this led to a
large amount (10 % and more) of non-modeled time points (Nnon-modeled). Hence, we
performed a sensitivity analysis on Rpearson by Systematically lowering it until the amount of
Nnon-modeled Was negligible. This was achieved for Rpearson = 0.6. The main text reports this
already around line 326. So we don'’t think there is need for further action here.

Line 333. If COA is well established it should peak every single day just like traffic
factor during rush hour. If COA was not resolved, maybe its not very real. | was always
concerned about this factor being a combination of true COA and being a waste basket
for increasingly processed aerosol during midday when photochemical activity is at its
highest. That is why tracer m/z as in BBOA case would yield much more credible
approach.

Evidence for cooking contributions does not only come from the regular presence of the
lunch peak during the weekdays, as it was also seen in the previous seasonal analysis of this
dataset (Canonaco et al., SoFi, an IGOR-based interface for the efficient use of the
generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to
aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649-3661, 2013, 2013 and
Canonaco et al., Seasonal differences in oxygenated organic aerosol composition:
implications for emissions sources and factor analysis, Atmos. Chem. Phys., 15, 6993—-7002,
2015), but also from the fact that the cooking factor has the characteristic fingerprint of
cooking, i.e., the series m/z 41, 43, 55, 57, 69, 71, etc. with a ratio above one for m/z 55 and
57, contrary to traffic (e.g., Liu et al., Primary and secondary organic aerosol from heated
cooking oil emissions, Atmos. Chem. Phys., 18, 11363—11374, 2018). Moreover, this
fingerprint has shown to be more pronounced with higher contributions close to restaurants
(Elser et al., High contributions of vehicular emissions to ammonia in three European cities
derived from mobile measurements, Atmospheric Environment, 175,210-220, 2018).

Line 375. Given the fact that aerosol properties are lognormally distributed due to
fundamental principles, using arithmetic averages is not appropriate. The study is
very much grounded in mathematics and statistics where proper usage of terms
is not only expected but mandatory. | understand that historically inappropriate
usage is continuing forever. When noted the issue is ignored while when
demanded is considered harsh.

The reviewer is right, aerosol properties are lognormally distributed. However, the source
apportionment was conducted with no size-separation, i.e., non-refractory aerosol particles
with an aerodynamic particle diameter with less than 1 micron (NR-PM1) were simply
averaged together, based on the working principle of the ACSM. This truncates the
relationship between the reported ACSM mass and the lognormal aerosol mass distribution.
Moreover, when performing bootstrap and a value analysis for the PMF replicates, given their
random resampling nature, the replicates will be normally distributed. Hence, using average
and variance to describe the combination of accepted PMF runs is legitimate and we don’t
think it’s necessary to take some action in this respect.

Line 392. If COA spikes are barbecue related do they all occur during weekend as
barbecues are rare during weekdays.

These spikes occur more frequently during the weekends, but they also occur during the
week. Barbecuing for dinner during warm days happens rather often in Switzerland.

Line 429. ...as the problematic data yields eBCxb concentrations near zero
anyway... Line 461. likely indicating significant impact of biomass burning.

Both lines updated as recommended

Line 492. ...last third of the study period...

“campaign” has been replaced by “measurement”.



Line 502. Here is an example of mixing together lognormal and normal (sigma
and mean) distributions.

The reviewer mentions a possible mixing due to the expression of sigma and avg.
in the error equation and its final lognormal fit. The distribution of the replicates
per time point follows a normal distribution and hence the use of sigma and avg.
is legitimate.

The PMF error reported in this study was based on the following distribution:

where ¢ is the standard deviation and avg is the mean value of all replicates of a time-
point i.

This resulting distribution, which is a constructed distribution using the statistics of the
distribution of the replicates, turns out to be lognormally distributed and consequently a
lognormal fit had to be used to best describe its shape. The types of distributions are not
inadvertently mixed and therefore we don’t see the necessity for further action in this
respect.

Line 535. to achieve complete apportionment.

Updated as recommended

Figure 2. b) typed twice instead of c)

Corrected

Figure 3....clogging of ACSM inlet
orifice.

Updated as recommended

Figure 5. ...truncated at m/z 1257

No, the mass spectrum for the source apportionment was only up to 125.

Figure 6....of important m/z tracers.

Updated as recommended

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2020-204, 2020.
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General Comments: The manuscript by Canonaco et al. developed a new method for
long-term source apportionment with time-dependent factor profiles, which is a nec-
essary piece of work for long-term field campaigns data. The seasonal variations of
OA factors in urban background station were investigated. Overall, the paper is well
written. | recommend acceptance for publication on AMT after minor revisions.

We thank the reviewer for this very positive feedback. We are also convinced that this study
will be of help for future long-term source apportionment studies.

Specific Comments:

1, line 125: Why has the authors re-averaged the data into half-an-hour resolution
instead of using the original one? If the reason is the amount of data, then why not just
averaging the data into two-hour(or three-hour) resolution? Please elaborate.

Averaging the data to 30 minutes represents a trade-off between a better signal to noise ratio
and the presence of a sufficiently resolved diurnal cycle (here one-hour resolution), crucial for
the source validation step.

2, line 391: What is the difference between the mass spectra of COA in May 2011-
September 2011 (likely due to local barbecuing events) and the general mass spectra
of COAin this study? Has other studies discussed the characterization of mass spectra
of different cooking styles? Please compare it.

The ratio of m/z 55 to 57 as well as m/z 43 and 44 vary in the range of a few
percentages, but there are no systematic or seasonal changes. Hence, for this study
not much can be concluded for the temporal variability of the COA fingerprint. The
largest seasonal change reported in this study is mainly for OOA, SV-OOA in
particular.

3, LV-OOA was only identified before 1/11/2011 in Fig. 3, but why did the f44 in LV-
OOA appear throughout the sampling time in Fig.2? In addition, there is no (c) in Fig.
2.

f44 in Figure 2 is for both, i.e., LV-OOA and OOA. Hence, during the warm seasons 44
in Figure 2 is for the LV-OOA factor, whereas in winter it is for OOA only. In Fig. 2 the y
axis reads now: “f44 in LV-OOA/OOA”.

c) has been corrected in Fig. 2

4, “Spring 11/Fall 11” in table2 should be “Spring 2011/Fall 2011”.

Corrected

Please also note the supplement to this comment:
https://amt.copernicus.org/preprints/amt-2020-204/amt-2020-204-RC1-

supplement.pdf

The supplement contained the exact same review as already reported here.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2020-204, 2020.
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Abstract. A new methodology for performing long-term source apportionment (SA)
using positive matrix factorization (PMF) is presented. The method is implemented
within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF
solver. The technique is applied to a one-year aerosol chemical speciation monitor
(ACSM) dataset from downtown Zurich, Switzerland.

The measured organic aerosol mass spectra were analyzed by PMF using a small (14
days) and rolling PMF window to account for the temporal evolution of the sources. The
rotational ambiguity is explored and the uncertainty of the PMF solutions were
estimated. Factor/tracer correlations for averaged seasonal results from the rolling
window analysis are higher than those retrieved from conventional PMF analyses of
individual seasons, highlighting the improved performance of the rolling window
algorithm for long-term data.

In this study four to five-factors were tested for every PMF window. Factor profiles for
primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning
(BBOA) were constrained. Secondary organic aerosol was represented by either the
combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA,
respectively), or by a single OOA when this separation was not robust. This scheme led
to roughly 40’000 PMF runs. Full visual inspection of all these PMF runs is unrealistic
and is replaced by predefined user-selected criteria, which allow factor sorting and PMF
run acceptance/rejection. The selected criteria for traffic (HOA) and biomass burning
(BBOA) were the correlation with equivalent black carbon (eBCy) and the explained
variation of m/z 60, respectively. COA was assessed by the prominence of a lunchtime
concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated
based on the fraction of m/z 43 and m/z 44 in their respective factor profiles. Seasonal
pre-tests revealed a non-continuous separation of OOA into SV-OOA and LV-OOA, in
particular during the warm seasons. Therefore, a differentiation between four-factor
solutions (HOA, COA, BBOA and OOA) and five-factor solutions (HOA, COA, BBOA,
SV-OO0A and LV-OOA) was also conducted based on the criterion for SV-OOA.

HOA and COA contribute between 0.4-0.7 ug-m= (7.8-9.0 %) and 0.7-1.2 ug-m= (12.2-
15.7 %) on average throughout the year, respectively. BBOA shows a strong yearly
cycle with the lowest mean concentrations in summer (0.6 ug-m3, 12.0 %), and slightly
higher mean concentrations during spring and fall (1.0 and 1.5 ug-m, or 15.6 and 18.6
%, respectively), and highest mean concentrations during winter (1.9 ug-m-3, 25.0 %). In
summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4
ug-m=3(26.5 %) and 2.2 ug'm-= (40.3 %), respectively. For the remaining seasons the
seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3-1.1 ug-m- (3.4-
15.9 %), 0.6-2.2 ug-m= (7.7-33.7 %) and 0.9-3.1 ug'm= (13.7-39.9 %), respectively. The
relative PMF errors modelled for this study for HOA, COA, BBOA, LV-OO0A, SV-O0OA
and OOA are on average + 34 %, + 27 %, +30, +11 %, +25 % and +12 %, respectively.



1 Introduction

Atmospheric aerosols are at the center of scientific and political air quality discussions
due to their highly uncertain direct and indirect climate effects (IPCC, 2013) and
negative impact on human health (e.g., Peng et al. (2005)). Regulatory policies
addressing these effects require characterization and understanding of aerosol
physicochemical properties, sources and formation processes. During the past years,
the study of submicron particulate matter (PM+) has gained interest (Hallquist et al.,
2009), in particular the organic fraction comprising 20-90% of the total submicron
aerosol mass (Jimenez et al., 2009). Atmospheric aerosols are typically classified as
primary or secondary aerosols, where primary aerosols are directly emitted into the
atmosphere and secondary aerosols are formed by reaction of precursor gases.
Aerodyne aerosol mass spectrometers (AMS) and aerosol chemical speciation monitors
(ACSM) have become important and widely used instruments for the on-line chemical
characterization of non-refractory submicron aerosol (NR-PM;) (Canagaratna et al.,
2007; Ng et al., 2011b; Fréhlich et al., 2013). The resulting aerosol data can be utilized
to study seasonal trends of PM sources to support emission reduction strategies. This
is highly relevant for very polluted areas like China and India but also for Europe, where
particulate matter concentrations substantially decreased during the last two decades,
but still frequently exceed legal thresholds (Barmpadimos et al., 2011; Barmpadimos et
al., 2012; European Environment Agency, 2019).

Source apportionment of organic aerosol (OA) measured with an AMS and / or ACSM
is typically performed using the positive matrix factorization algorithm (PMF, Paatero
and Tapper (1994)). PMF solutions describe the complex, time-dependent organic
aerosol composition as a linear combination of static factor profiles (for AMS/ACSM
data, mass spectra) and their time-dependent contributions. Factors can represent a
primary organic aerosol emission (POA) or secondary organic aerosol (SOA).

Many organic source apportionment studies with AMS (see review by Zhang et al.
(2011)) and ACSM data (e.g., (Aurela et al., 2015; Budisulistiorini et al., 2013;
Canonaco et al., 2013; Fréhlich et al., 2015; Li et al., 2017; Minguillon et al., 2015;
Reyes-Villegas et al., 2016; Ripoll et al., 2015; Schlag et al., 2016; Sun et al., 2013;
Sun et al., 2018; Tiitta et al., 2014; Wang et al., 2017; Zhang et al., 2019; Zhu et al.,
2018)) have successfully employed the PMF algorithm. PMF results suffer from
rotational ambiguity (Paatero et al., 2002), i.e., several PMF results exist with a similar
goodness of fit. An approximate method for the quantification of the rotational
uncertainty, i.e., the amount of rotational ambiguity (Paatero et al., 2014), can be
obtained using the global fpeak tool, which allows exploration of a single one-
dimensional transect through the multidimensional solution space and is discussed for
AMS data in Ulbrich et al. (2009). This approach only leads to a rough estimate of the
rotational uncertainty, as it allows investigation of only a single transect whose selection
is uncontrollable, while other rotations remain entirely inaccessible. An improved
method for both uncertainty estimation and factor resolution was demonstrated by
Canonaco et al. (2013), where intelligent exploration of rotations was implemented
introducing a priori information in form of factor profiles in the multilinear engine (ME-2,
Paatero (1999)). Moreover, Ulbrich et al. (2009) also estimated the statistical
uncertainty via the resampling bootstrap technique (Efron, 1979). This method
generates a set of new input matrices for analysis from random resampling of the
original input data. This resampling perturbs the input data by including replicates of
some points while excluding others, with the main assumption that the overall
properties of the analyzed data (fingerprints of the factors, contributions of the factors)
are not systematically changed, i.e., changes are purely statistical. If a sufficient
number of resamples has been carried out, the variation within the identified factors
across all bootstrap runs is regarded to represent their statistical uncertainty.

A crucial limitation of the traditional PMF approach is that the time-dependent variability
of the composition of the organic aerosol sources cannot be properly modelled using
static profiles in a year-long PMF model. Both POA and SOA may have time-dependent
composition. For example, vehicles utilize different fuel blends in winter and summer for
traffic (Agrola, 2017), while biomass burning may be dominated by different burning
types and / or materials in different seasons e.g., domestic heating in winter, agricultural
waste/residue burning in spring/autumn, wildfires in summer. SOA sources may
likewise be affected by seasonal changes in either precursor emissions (e.g.,
monoterpene emissions increase exponentially with temperature) or physicochemical
processes (e.g., gas/particle partitioning, oxidant concentrations) (Hallquist et al., 2009).



Amongst others, Canonaco et al. (2015), Daellenbach et al. (2017) and Sun et al.
(2018) showed that ACSM SOA mass spectra possess distinct seasonal trends which
need to be considered during the PMF analysis. For Zurich, Stefenelli et al. (2019) and
Qi et al. (2019) were able to demonstrate this seasonal variability of SOA
characteristics by molecular analysis, with terpene related SOA being dominant in
summer and aged wood burning organic aerosol being dominant in winter.

Technically, modeling seasonally-dependent mass spectra from a given source family,
e.g., traffic, biomass burning, or SOA, can be achieved in two ways. PMF can be
applied to a multi-season data set, with time-dependent source composition modelling
of a single factor per source or source class, similar to typical representations of SOA in
short-term field campaigns by two factors with different degrees of oxygenation (Zhang
et al., 2011). However, multi-factor representations of seasonal changes are likely to
significantly increase the complexity of the PMF solution, primarily due to a rapid
increase in the number of factors and thus leading to difficulties in interpretation.
Another possibility is to perform PMF over a small, moving time frame such that the
factor profiles evolve with time, while maintaining a single factor per source family. This
is likely the best choice for long-term data, due to both the relative simplicity of the
solution and important savings in computational and evaluation time. The latter is also
more compatible with a continuously growing dataset, e.g. for online source
apportionment studies, where the entire dataset doesn’t have to be completely
reanalyzed when new data is included in contrast to classical batch analyses. Parworth
et al. (2015) have already shown the effectiveness of such an approach, i.e., employing
a small and moving PMF window for analyzing remote long-term ACSM data with only a
few unconstrained aerosol sources / components. However, a rotational and statistical
uncertainty exploration was not conducted.

This study presents the analysis of ACSM data measured in Zurich between February
2011 and February 2012. The dataset includes several sources that were difficult to
separate using unconstrained PMF, which are constrained using known POA sources in
ME-2 for a small and rolling time window. This strategy allows to adequately account for
time-dependent variation of the POA and SOA factor profiles. The applied constraining
technique allows for a more comprehensive and quantitative assessment of the
rotational uncertainty than the global fpeak tool could achieve. The statistical
uncertainties of PMF solutions are estimated using a bootstrap resampling technique. In
this study, the size of the rolling window, tightness of constraints, and several other
parameters as e.g. number of PMF repeats per rolling window, are discussed and
validated.

2 Instruments and methods

2.1 Instrumentation and sampling site

An ACSM (Aerodyne Research, Inc., Billerica, MA, USA) was deployed at the Kaserne
station, an urban background station in the city center of Zurich (Switzerland) between
February 2011 and February 2012 (Lanz et al., 2007; Lanz et al., 2008; Canonaco et
al., 2013). The ACSM is an instrument based on Aerodyne aerosol mass spectrometer
(AMS) technology, but optimized for long-term measurements with minimal
maintenance requirements. The ACSM measures the real-time composition of non-
refractory submicron particulate matter, customarily referred to as NR-PM1. The
instrument is described in detail in Ng et al. (2011b), (see also Jayne et al. (2000),
Jimenez et al. (2003), Allan et al. (2003), Allan et al. (2004), and Canagaratna et al.
(2007) for a more detailed description of the AMS technique). Technical problems on
the ACSM inlet system during the last third of the campaign resulted in a total of 2-3
weeks of missing data.

The ACSM in Zurich was operated with a scan rate of 1 s/amu between m/z 10 and
140, and produced averaged scans every 15 min. The data was re-averaged to 30 min
to obtain higher signal to noise ratios for ME-2 analysis. To obtain quantitative mass
concentrations for ACSM data, a collection efficiency parameter (CE) needs to be
applied to account for the incomplete detection of aerosol species due to particle
bounce at the instrument vaporizer (Middlebrook et al., 2012). The effects of the nitrate
mass fraction and particle acidity on CE have been parameterized for ambient data



(Middlebrook et al., 2012). As discussed previously (Canonaco et al., 2013; Canonaco
et al., 2015) CE = 1 for the current study is assumed because of otherwise systematic
overestimation compared to the PM1o measurements by a tapered oscillating
microbalance (TEOM, FDMS 8500, Thermo Scientific) calibrated by gravimetric
measurements of off-line PM filters.

The meteorological data (temperature, relative humidity, solar radiation, precipitation,
wind speed and wind direction) and trace gases (CO, NOy, O3, total hydrocarbons) were
measured by the Swiss National Air Pollution Monitoring Network, NABEL (Empa,
2010). Equivalent black carbon (eBC) was measured with an Aethalometer AE 31
(Magee Scientific Inc., Berkeley, CA, USA). The data were corrected for loading effects
and multiple scattering using the method of Weingartner et al. (2003). Mass absorption
cross sections as determined by Herich et al. (2011) were used to convert
babs(A=880nm) to eBC. The measured absorption coefficients at wavelengths 470 and
880 nm using the alpha-values based on Zotter et al. (2017) were used to estimate the
contributions to eBC from traffic (eBCy) and biomass burning (eBCus).

Seasonal PMF runs performed on the ACSM data in earlier studies (Canonaco et al.,
2013; Canonaco et al., 2015) showed three primary OA factors and one to two
secondary OA factors contributing throughout the measurement year. Among the
primary OA factors a traffic-related hydrocarbon-like organic aerosol (HOA) factor was
found, which correlated with NOx and eBCy, as well as a biomass burning organic
aerosol (BBOA) factor, which correlated with eBCyp as also shown in other studies
(Lanz et al., 2007; Lanz et al., 2008; Ulbrich et al., 2009; Zhang et al., 2011; Canonaco
et al., 2013). Given that in summer the daily values of m/z 60 were always higher than
the threshold for biomass burning impact identified in Cubison et al. (2011), BBOA was
also modelled during the warm seasons. The third primary OA factor was assigned to
cooking-related organic aerosol (COA), and exhibited enhanced concentrations during
mealtimes, similar to previous studies (Allan et al., 2010; He et al., 2010; Slowik et al.,
2010; Sun et al., 2011; Mohr et al., 2012; Crippa et al., 2013; Elser et al., 2016). For
warm days during the first winter and in spring, summer and fall the variability of the
bulk OOA (oxygenated organic aerosol) was captured by two distinct factors, i.e., SV-
OOA (semi-volatile oxygenated organic aerosol) and LV-OOA (low-volatility oxygenated
organic aerosol). For the remaining colder period only one OOA factor accounted for
the variation of the bulk OOA.

2.2 Methods

2.2.1 The multilinear engine (ME-2)
ME-2 (Paatero, 1999) is a powerful engine for solving the positive matrix factorization
algorithm (PMF, (Paatero and Tapper, 1994)). Model configuration and post-analysis
are performed by Source Finder (SoFi Pro 6.8, Datalystica Ltd., Villigen, Switzerland)
within Igor Pro software environment (Wavemetrics, Inc., Portland, OR, USA) as
described in Canonaco et al. (2013). In its bilinear mode, PMF describes the measured
data matrix X as a product of two matrices, G and F and the residual matrix E. In
element notation the equation is:
Xij = Yhor Gik " frj + €y

(1)
In the measured matrix X the columns j are the m/z’s and each row j represents a single
mass spectrum. p is defined as the number of factors of the selected model solution,
i.e., the number of columns of G and the number of rows of F. Each column of the
matrix G represents the time series of a factor, whereas each row of F represents the
factor profile (i.e., mass spectrum); both are indexed by k. In an unconstrained PMF run
in ME-2, the model is initialized with random entries in G and F (“seed”) and the
quantity Q is minimized with respect to all model variables by means of the conjugate
gradient algorithm (Paatero, 1999):

€jj
Q=3 I Ch?

(2)
where e;; are the elements of the residual matrix E and o;; represents the measurement
uncertainty for the input point x;;.

To compare Q-values from various PMF runs with a different size and / or number of
factors, Q is normally scaled by the remaining degrees of freedom (Qexp, Which depends



on the size of the input data and the number of chosen factors):
Qexp =m-n—p(m+n)
(3)

PMF is subject to rotational ambiguity, in which different combinations of G and F yield
similar Q-values. Some of these combinations may contain mixed factors and / or
environmentally unreasonable descriptions of the data. Previous work has shown that
constraining expected factor profiles using the a-value approach for AMS/ACSM data is
an efficient method for isolating the set of environmentally interpretable PMF runs (Lanz
et al., 2008; Canonaco et al., 2013; Crippa et al., 2014). The a-value determines the
extent to which the m/z in the mass spectral profile, also referred to as anchor (fy;), is
allowed to vary during the model iteration according to:
fui' = fejtafi

(4)
The index j stands for the actual variable (m/z) of the k" factor, and the a-value is its
scalar product. For example, an a-value of 0.1 allows for a variability of £ 10% during
the iterative process. This implies that some variables might increase and some might
decrease within this limit. Note that after renormalizing the solution, the extent to which
the constrained values changed might be slightly outside the defined a-value range. For
example, consider a case where the a-value is set to 0.1 for all variables of a factor
profile. The values of all variables but one could decrease by 10% while the value of
this single variable might increase by 10% during the iteration. After renormalizing the
factor profile outside ME-2 by, e.g., the sum of the profile, the intensity of this single
variable will exceed the boundaries set with the a-values during the PMF iteration.
Moreover, note that the a-value approach defines only the boundaries of a solution and
does not imply any weighting within these boundaries.

2.2.2 PMF input preparation step

The organic data and error matrices (Allan et al., 2003) are computed using the ACSM
local tool version 1.5.3.2 (Aerodyne Research, Inc., Billerica, MA, USA) in Igor Pro.
Weak (signal to noise ratio between 2 and 0.2) and bad variables (signal to noise below
0.2) were downweighted according to the recommendations in Paatero and Hopke
(2003). The m/z 16, 17, 18 and 28 variables that are replicates of the variability of m/z
44 were removed for the PMF calculation and recalculated a posteriori as a function of
the m/z 44 contribution attributed to each factor profile (Elser et al., 2016). This
approach is preferable to downweighting (Ulbrich et al., 2009), as it maintains a direct
mathematical relationship between m/z 44 and its dependent variables, which can
otherwise be distorted by dynamic weighting of outliers in the PMF robust mode.

2.3 New rolling method using ME-2

The new method consists in performing PMF runs on a small and moving window that
is translated across the entire dataset. At each step, many individual PMF runs are
performed, and the resulting runs are accepted or rejected according to predefined
criteria. The window is then moved to the next position, with the distance between
window positions being significantly smaller than the window size itself. The set of all
accepted PMF runs determines the final source apportionment solution and is also used
to assess model uncertainties.

The novelty of this method compared to Parworth et al. (2015) lies in the application of
ME-2 for enhanced control over the matrix rotations, and in the automated application
of user-defined criteria to determine the set of accepted PMF runs. Moving properties of
the window (window-runs) are discussed in Section 2.3.1, whereas the main settings of
PMF within a window (PMF runs) are described in Section 2.3.2.

2.3.1 The rolling strategy

PMF analysis is conducted on a subset of data defined by a small window that is moved
in 1-day increments across the entire dataset and as such allows capturing seasonal
variations of the factor profiles. Note that rolling windows containing less than 10 % of
real-data are automatically skipped by the rolling algorithm. This avoids performing
PMF runs over large gaps due to, e.g., calibrations or instrument failures. The window
size (Swin) is a free parameter that requires optimization. The rolling window PMF
analysis of Parworth et al. (2015) utilized a 2-week window, arguing that this length is
representative of the average lifecycle of aerosols in the atmosphere. Even for (low



time-resolution) ACSM data, two weeks have been shown to provide enough temporal
variability to distinguish sources with similar factor profiles such as HOA and COA
(Fréhlich et al., 2015) In the present study, likewise a 14-day window is selected, after
additionally assessing the performance of 3, 7, 21, and 28-day windows.

The model performance in response to swin is assessed by monitoring the value of
Q/Qexp (Which decreases as the mathematical goodness of fit improves) and the
number of non-modelled time-points (Nnon-modelied) @s a percentage of the total number of
measurements. Nnon-modelied IS defined as any ACSM time-point for which the user-
defined criteria (see Sections 2.3.3 and 2.3.4) are not met for any PMF runs that include
this measurement (note that for most points this will include PMF runs from multiple
overlapping windows). Figure 1a shows Q/Qexp and Nnon-modelled @s a function of swin. The
Q/Qexp values are minimized for a 7-day window and are approximately 15 % higher for
the 3- and 14-day windows, and 45 % higher for the 21- and 28-day windows. Nnon-
modelled ShOWS @ minimum for 14 days with a slight increase for larger windows and a
steep increase for smaller Syin.

A 14-day window has been chosen for the current dataset, as this avoids significant
increases in Q/Qex, Without inducing unacceptably high Nnon-modelled- MOreover, because
the 1-day step of the rolling window is smaller than the 14-day width, each time-point is
included in 14 different window-runs (except for those within the first or last 14 days of
the dataset). As discussed later, these repeats aid the uncertainty analysis.

2.3.2 Window settings

The rolling strategy described above defines a new window after every window shift.
Within this new window, a PMF run, referred to as repeat in the text, is generated via
ME-2, which initializes new seeds, a-values, and bootstrap resampling of the PMF
input. The seed initializes all model entries in G and F, and unconstrained information
therein is randomly initialized. Additionally, a priori information on the factors from the
seasonal pre-tests is used to confine the solution space and thus to decrease the
rotational ambiguity of the solution.

In the current study, constraints are applied only to profiles of the POA factors, namely
traffic (HOA), cooking (COA) and biomass burning (BBOA). The HOA and COA profiles
are taken from Crippa et al. (2013), while BBOA is the averaged mass spectrum
reported by Ng et al. (2011a). These anchor profiles were also successfully used for the
seasonal analysis of the Zurich-Kaserne data (Canonaco et al., 2013; Canonaco et al.,
2015).

Every constrained factor profile applied in a PMF run requires a sensitivity analysis of
the a-value to identify the range of reasonable solutions (Canonaco et al., 2013; Crippa
et al., 2014; Elser et al., 2016). Typically, variation of the a-value of one or more
constrained factor profile(s) allows exploration of a region in the solution space that
includes environmentally reasonable solutions. In the present analysis, the goal is to
consider all PMF runs (not just the best one) that are mathematically and
environmentally reasonable. Recent studies have systematically investigated the entire
solution space allowed by the a-values, e.g. by conducting PMF runs covering every
combination of a-values over the range 0 to 1 with a step of 0.1 (Elser et al., 2016;
Bozzetti et al., 2017; Daellenbach et al., 2017). However, this approach is not
computationally practical for moving window analysis. For instance, given that three
factors are constrained in this present study, the above a-value exploration strategy
would require 112 = 1331 PMF runs for a-value exploration per window-run. Also, each
combination of a-values would require a minimum of 100 PMF runs for bootstrap
analysis (Norris et al., 2014). Furthermore, the seasonal pre-tests indicated that both
four- and five-factor solutions should be assessed (corresponding to one or two OOA
factors). In total, this would require 1331 x 100 x 2 ~ 2.66 x 10° PMF runs per window.
Moreover, the daily shift of the rolling window will initialize the window-runs 351 times
(one year minus the swin), resulting in 1331 x 100 x 2 x 351 ~ 9.35 x 107 PMF runs for a
systematic analysis. This will require several months of computation even on modern
PCs with multi-core processors. To overcome these computational issues, two
strategies were considered for reducing the number of runs required for a-value
exploration. In both cases, a systematic exploration of the a-value space is replaced by
randomly generated a-values between zero and an upper limit (amax). For the first
strategy, the amax limit was fixed at one, and the number of repeats (xpur) was adjusted
until the same criteria described above for syin optimization were satisfactory. However,
this approach was rejected, as executing the full set of PMF runs required
computational times on the order of months (see supplement A) and therefore was



impractical on regular PCs.

The second strategy, which is used here, exploits the a priori information of the
sources. If some factor profiles are known to be present and their source profiles are
known to some extent, there is no need to explore regions in the solution space, for
which these factor profiles may drastically depart from their realistic anchors.
Therefore, amax undergoes a systematic scan from zero upwards, with model
performance assessed by Q/Qexp and Nnon-modelied, @S described above for the syin
estimation. The current strategy counts as local-minimum algorithm, as the full
parameter space (Swin, @max, Xemr) is not fully investigated. Moreover, pre-tests based on
literature data, i.e. a 14-day PMF window for syin (Parworth et al., 2015) and an upper a-
value of 0.3 amax (Crippa et al., 2014) represented the starting condition for the
parameter optimization discussed in Figure 1.

Figure 1b shows an almost flat Q/Qexp While that of the Nnon-modelled behaves as a
quadratic function with a minimum at a = 0.4. For a-values below 0.4 the constrained
fingerprints cannot optimally adapt to the current input. Given only 50 random a-value
explorations out of 1331 (see above) of the entire a-value space for every PMF window,
outcomes for higher amax may be purely stochastic and lead to a high degree of mixing
and consequently rejection of the PMF runs (high Nnon-modetied)- @ = 0.4 represents the
optimum amax and is set as free parameter for the a-value exploration.

The random resampling of the PMF input uses the bootstrap approach for every repeat.
A window comprising 14 days with at most 48 (number of scans per day) x 14 (days)=
672 time-points will create resamples containing again 672 new time-points, where
some time-points may occur multiple times and others may be absent. As above,
Q/Qexp and the percentage of Nnon-modelled @re monitored as a function of the xpme. Figure
1c reveals a constant Q/Qexp Whereas the number of Nnon-modelled decreases and
stabilizes from 50 repeats onwards. We conclude that 50 repeats per window are
sufficiently high for the bootstrap strategy. Note that the final number of PMF runs per
time-point may be higher than xpur due to the overlapping PMF runs resulting from the
rolling strategy. The total number of PMF runs for this study equals 50 (xpmr) X 351
(number of days) x 2 (four- and five-factors) = 35’100 runs and required approximately
three days on a modern multicore PC.

2.3.3 The post-PMF analysis

Manual inspection of all generated PMF runs is impractical, and is replaced by an
automated procedure based on pre-defined user criteria that (1) identifies and sorts
unconstrained factors and (2) determines whether each PMF run should be accepted or
discarded. Examples of user-defined criteria could include the factor correlation to an
external tracer in terms of either the overall time series or diurnal pattern, or
characteristic temporal features, e.g., a prominent lunch peak for a cooking factor.
Modelled PMF factors for which no factor criteria are satisfied, i.e. very poor score
values due to factor mixing / swapping or sampling of a transient sources not accounted
for, typically yield Nnon-modelied-

In addition to determining whether an individual PMF run should be accepted or
rejected, the criteria are used to determine the identity of unconstrained factors. While
the positions of constrained factors within the F and G matrices are pre-defined for
constrained factors, the same is not true of unconstrained factors, and these must be
correctly identified prior to further data analysis. Consequently, all possible
combinations for sorting unconstrained factor positions are evaluated (factor
identification) and their scores combined together. As criteria with various score ranges
are potentially possible, e.g., correlation coefficient, lunch peak ratio, the explained
variation (EV, see Eq. 5) of m/z 60 and variable fractions, these score values must be
corrected before being added up. z-score transformation as a linear correction is
applied, where at the end the score distribution of each criterion possesses a mean
value of zero and a standard deviation of one. Finally, the z-score transformed
combination with the highest values is chosen to represent the PMF result for a specific
PMF run. This is essential in the case of the two unconstrained factors SV-OOA and
LV-OOA in this study. Note that this requires criteria to be defined for a minimum of all
factors but one (i.e., p -1 factors).

Considering the large amount of PMF runs by the rolling window algorithm, the main
advantage of this criteria-based inspection is that the complexities of a factor profile and
time series are reduced to single values (“scores”). Based on the score plots, potentially
promising PMF runs can be further investigated and validated. This significantly
improves the efficiency of PMF analysis by discarding PMF runs where the score for



any criterion falls below the user-defined threshold (“bad PMF runs”). In contrast to
conventional analyses, where a single PMF run often represents an optimal description
of the dataset, the entire set of PMF runs classified as environmentally reasonable is
used for the analysis and presentation. This provides a more comprehensive and robust
representation of the dataset and supports uncertainty assessment.

To determine whether an individual PMF run is accepted or rejected, acceptance
thresholds are defined for each of the selected criteria. These thresholds are free
parameters and must be defined for each criterion separately. Either a threshold is
inferred from previous studies or from significance tests or similar statistical analyses
(see discussion for the HOA and COA thresholds in Section 2.3.4 for such an example).
The computational time required for criteria application subsequent averaging is
typically on the order of minutes to hours with a modern multicore PC, depending on the
amount of accepted PMF runs. Thereafter, the results can be inspected in real-time
allowing the user to efficiently investigate the set of PMF runs and if needed, test
various criteria.

2.3.4 Chosen criteria in this study

In this study one criterion per factor was defined, although it is possible to apply multiple
criteria to the same factor, as each criterion is assessed individually on an accept/reject
basis.

Figure 2 shows the criterion scores calculated for each PMF run, with each plot
representing an individual factor. The gray points show the score values for all PMF
runs, the blue points denote PMF runs where criterion thresholds are satisfied, and the
green points represent PMF runs where criterion thresholds for all criteria are
simultaneously fulfilled. These green points are then used to compute the final PMF
solution. The criteria and their corresponding thresholds applied for each criterion (blue
points in Figure 2) are also reported in Table 2 (15t value).

In the current study, the thresholds for the criteria of HOA and COA were determined
based on statistical analyses with the help of the results from conventional (no rolling
technique) seasonal PMF from previous studies (Canonaco et al., 2013; Canonaco et
al., 2015). The contribution of HOA and its tracer eBCy were bootstrapped together and
the correlation coefficient (Rrearson) Was evaluated each time, leading to a distribution for
Rpearson. Similarly, the time series of COA was bootstrapped and the lunch peak
enhancement in COA evaluated each time (COA11+12+13ns/ COA g+10+14+15nrs), leading to a
distribution for the lunch peak concentration. Finally, the 10™ percentile value was
chosen as threshold score value. These seasonal thresholds are also visible as steps in
the score plots (blue points in Figure 2 a) and b), respectively) and are also reported in
Table 2 (2" value in brackets). For spring 2011, summer 2011 and winter 2012
however, the resulting thresholds for HOA either caused too many missing time-points
(Rpearson = 0.8) or had rather non-significant correlation coefficients (Rpearson = 0.2, with a
p value of 0.4, n = 24 as for the other seasons). Hence, these thresholds were
systematically lowered for spring 2011 and increased for winter 2012 to achieve the
highest possible correlation coefficient with maximal data coverage, i.e. same nNnon-
modelled When considering all PMF runs for these periods in these criteria.

NOx is a typical tracer for HOA in urban areas. However, due to incomplete NOy
measurement coverage in this campaign (especially during spring and fall), eBCy is
used as a traffic tracer and the Rpearson COrrelation coefficient is computed between the
diurnal cycle of eBCy and the HOA factor.

As is frequently the case, no chemical tracers for COA were available in this study.
Previous measurements in Zurich (Canonaco et al., 2013; Canonaco et al., 2015) have
demonstrated a strong diurnal pattern for COA, with an increased concentration during
lunchtime. As a proxy for COA, the lunch-time COA enhancement is monitored (Table
2).

The wood burning contribution to black carbon (eBCwy) as determined by the eBC
source apportionment (eBC-SA) method of Sandradewi et al. (2008) was considered as
a possible criterion for BBOA but then rejected. The eBC-SA analysis applies to air
masses highly influenced by biomass burning and has been validated for winter data
only. Uncertainties in eBCy during warm seasons, when the biomass burning
contribution is small, have been shown to be quite high (Harrison et al., 2013).
Therefore, it was decided to use another metric for BBOA, exploiting the key spectral
feature at m/z 60. For BBOA the explained variation (EV) (Paatero, 2010) for m/z 60 is
monitored as follows:
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This threshold is chosen following the recommendation in Paatero (2010), where a
variable modelled by its mean explains already ~25% of the variation. If the measured
variability of a variable is explained by a specific factor, that factor must capture more
than the mean value of the variable, and hence Paatero (2010) recommended 30-35 %
as a minimum EV. However, using 30 or 35 % as threshold resulted in several weeks of
non-modeled time-points in particular for spring and fall 2011. a-value of 25 % resulted
in a reasonable compromise between EV and the amount of non-modeled time-points.
Note that this approach requires the assumption that m/z 60 should be predominantly
explained by BBOA, which is likely true when the fraction of OA signal occurring at m/z
60 (60) is relatively high. However, for measurements where 60 is low, m/z 60 is more
likely to have also contributions from other sources. A rough guideline for utilizing this
criterion is a threshold for biomass burning influence of 60 = 0.003 as identified by
Cubison et al. (2011). In the current dataset, ~85 % of all measured time-points
exceeded this threshold. Every measured day was observed to comprise at least some
time-points (in winter, spring and fall almost all points whereas in summer mostly
evening points) above this threshold, suggesting that the criterion is valid throughout
the dataset.
Ng et al. (2010) described higher f43 and lower f44 for the mass spectrum of SV-OO0A,
and vice versa for LV-OOA. Therefore, f43 and f44 are used as proxies for SV-OOA
and LV-OOA or OOA, respectively. For LV-OOA (Figure 2 d, Table 2) all score values
are allowed here, whereas for SV-OOA (Figure 2e, Table 2) the PMF runs meeting the
thresholds for the five-factor solutions are selected. This threshold corresponds to the
point where Nnon-modelied IS Minimal with respect to this criterion, i.e. considering all PMF
runs in this criterion leads to the same Nnon-modetied, at highest possible 43 for SV-OOA.
The criterion of SV-OOA is further used to differentiate between four- and five-factor
solutions on the window-runs. For the PMF windows where no five-factor solution with
SV-OO0A is selected, the set of four-factor solutions in the corresponding PMF window
is automatically selected (green points at zero in Figure 2e). Finally, the averaging
procedure also controls and prevents that four- and five-factor solutions are
simultaneously considered for the averaging of single time-points by privileging five-
factor solutions, i.e. any time-point containing accepted PMF runs with both 4- and 5-
factor solutions retains only the 5-factor solution.

3 Results

3.1 Brief statistical analysis of the rolling result

The amount of Nnon-modelied resulting from the criteria and thresholds reported in Table 2
yields 99.31 % data coverage, corresponding to a total of only 3 non-modelled days.
Overall, the selected criteria resulted in 1’970 accepted PMF runs (~5.6 % out of the
35100 PMF runs). The Q/Qex has an average value of 4.4, a median of 4.8, and the
first and third quartiles are 3.7 and 5.5, respectively. These values are reasonable,
given that many previously conducted AMS studies reported values between 1 and 10
(Zhang et al., 2011). On average, each data point has 43 replicates (median = 24, first
and third quartiles 9 and 60, respectively), which are used to assess the statistical
uncertainty of the PMF solution as discussed in Section 3.5.

3.2 Factor time series

3.2.1 Overview

Figure 3a shows the time series of each factor for the entire dataset as a mean,
averaged over all accepted PMF runs. The data from Figure 3a is re-averaged to
monthly and seasonal means and shown in Figure 3b and 3c, respectively. For Figure
3c, seasons are defined as follows: winter is December - February, spring is March -
May, summer is June - August, and fall is September - November.

In winter, spring and fall the concentrations of primary organic aerosols (HOA, COA and
BBOA) are approximately 40 % compared to the 60 % of the (secondary) oxygenated



organic aerosols (SV-OOA, LV-OOA or OOA). In summer the primary fraction
decreases to reach minimum values of 30 % compared to 70 % of OOA. The relative
fractions of HOA and COA are rather constant, contributing on average between 0.4-0.7
ug-m=(7.8-9.0 %) and 0.7-1.2 ug-m3 (12.2-15.7 %), respectively throughout the year.
BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6
ug-m3, 12.0 %), slightly higher mean concentrations during spring and fall (1.0 and 1.5
ug-m3, or 15.6 and 18.6 %, respectively) and highest mean concentrations during
winter (1.9 ug-m3, 25.0 %). Only during summer, the bulk OOA is completely separated
into SV-OOA and LV-OOA, with mean concentrations of 1.4 ug-m= (26.5 %) and 2.2
ug-m= (40.3 %), respectively.

For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA
comprise 0.3-1.1 ug'm= (3.4-15.9 %), 0.6-2.2 ug-m=3 (7.7-33.7 %) and 0.9-3.1 ug-m3
(13.7-39.9 %), respectively.

The time series of the primary OA factors HOA, COA and to some extent BBOA are
rather spiky (Figure 3a), underlining a strong influence of local sources. The COA
spikes that are present from May 2011 through the end of September 2011 are likely
due to local barbecuing events during the evening, as also observed in an earlier study
at this site (Lanz et al., 2007). The highest COA concentrations are observed in early
July 2011, where the NR-PM; mass concentrations reached 70 ug-m3, and correspond
to three consecutive evenings/nights of a yearly Latin American dance and grill festival
(Caliente). During this festival, the courtyard containing the measurement site was filled
with food and grill stands, explaining the dominant contribution of COA. Throughout the
summer and spring and less frequently in autumn/winter SV-OOA was modelled in
addition to LV-OOA. This warm period was characterized by high daily temperatures
and induced on the one hand variability in the condensed OOA allowing for separation
of SV-OO0A and LV-OOA and on the other hand increased emissions of biogenic SV-
OOA precursors (Canonaco et al., 2015).

3.2.2 Daily cycles

Figure 4 summarizes the weekday (left) and weekend (right) daily cycles for the
modelled factors. The daily cycle of HOA follows the averaged daily cycles of the
estimated traffic of eBC (eBCy) and of NOy. The same is true for the daily cycle of
BBOA following that of the biomass burning of eBC (eBCyy). HOA, eBCy and NOy
exhibit a clear rush-hour peak on weekdays and none on the weekend. During the
weekdays, a small lunch peak is visible for COA underlying the meal activity during the
working days and the presence of many restaurants in this area. There are no evident
differences between the weekday and weekend daily cycles of LV-OOA, SV-OOA and
OOA. LV-O0A and OOA show rather flat daily cycles, similar to their inorganic aerosol
tracers SO4% and NH4*, respectively. This is in line with their most-likely regional
background, as already suggested earlier (Canonaco et al., 2015). Only the
concentration of SV-OOA tends to decrease during the afternoon, suggesting its volatile
nature, similarly to its inorganic aerosol tracer NO3~. The weekly cycle for HOA, COA,
BBOA and the OOAs including their tracers eBCy, NOx, eBCub, SO4%, NO3~ and NH4*,
respectively are reported in Supplement B. Apart from OOA, the weekly cycle for HOA,
BBOA, SV-OO0A and LV-OOA are in good agreement with their tracers.

3.2.3 Comparison with external data

The analysis and further validation of the PMF runs using the criteria-based selection
are performed on the PMF results of the rolling windows and therefore, correlations are
performed over 14 days in this study. The performance of the rolling strategy can then
be verified by the factor / tracer correlation, e.g., on average over the seasons (Table
3). Moreover, the same factor to tracer correlations are also evaluated for the seasonal
pre-tests (PMF runs over the seasons with no rolling strategy) and are reported in
brackets in Table 3.

NOy data is available only in winter and fall 2011. Both NO, and eBCy are correlated
with HOA over the full year and within individual seasons. The correlation values with
NOx, are lower compared to those found in Canonaco et al. (2013). However, in
Canonaco et al. (2013) the data covered mostly the two winters including some parts of
spring and fall. For the latter two seasons NOy data was not properly validated and was
consequently removed from further analysis (no NOy data is available for spring and
summer). Moreover, in Canonaco et al. (2013) the model validation was strongly based
on the first winter period, and when performing the correlation between HOA and NOx



data for that period only, the correlations were similar also in the current study (not
shown in the table).

BBOA shows substantial correlation to eBC.y in fall and winter, as also found in
Canonaco et al. (2013), while the correlation is low in spring and very low in summer.
These low correlations are expected, since the determination of eBCws is highly
uncertain when the eBC.v/eBCraic ratio is low. Wood burning source apportionment of
eBC data, as already stressed above, is not suited under warm conditions with low
biomass burning contributions. However, the correlation is good over the full year, as
the problematic data yields eBC., concentrations near zero anyway, and the correlation
is thus driven by the data with high signal to noise ratios.

High correlations between LV-OOA and SO4? are seen over the year as well as for
spring and fall, whereas they are lower in summer, as shown in Table 3, in contrast to
Lanz et al. (2007) (Rpearson = 0.5 between LV-OOA and SO4% during a summer AMS
campaign). The correlation between SV-OOA and NOs is higher for winter 2011 and
summer but lower in spring and fall. This is understandable, as the spring and fall
represent the transition between modelling SV-OOA and LV-OOA (summer) compared
to one OOA only (winter). The correlation between SV-OOA and LV-OOA for winter
2012 is not shown due to the low number of time-points for which both OOAs were
modelled. OOA correlates well with NH4* throughout the year in accordance to summer
and winter data reported previously (Lanz et al., 2007; Lanz et al., 2008; Canonaco et
al., 2013). In contrast to the OOAs, few differences are observed for BBOA, HOA, or
COA between the two winters. This supports the conclusion that the different OOA
behavior in these two winters reflects actual meteorological and chemical differences
rather than mixing and / or splitting between the POA and SOA factors.

Importantly, the rolling results show generally higher correlations with the external
tracers than do the conventional seasonal PMF runs (values in brackets in Table 3).
This demonstrates that the rolling approach generally outperforms the conventional
seasonal PMF analysis.

3.3 Time-dependent factor profiles

The mean factor profiles of the six modelled sources/components over the entire year
are presented in Figure 5. Error bars show one standard deviation of profile variability
across the entire measurement year. Note that this variability comprises both the time-
dependent variation of the factor profiles and the PMF error (see Section 3.5. for more
details on the discussion of the errors in this study).

A better understanding of the temporal variation of the factor profiles is gained when
inspecting them over time. Figure 6 shows the fractional contributions of m/z 41, 43, 44,
55, 57 and 60 to each factor profile as a function of time. Each variable is normalized by
its mean contribution. In general, the variation of the fractions for the primary OA factors
(HOA, COA and BBOA) seems small compared to the variability of the oxygenated
factors (LV-OOA, SV-OOA and OOA). The primary OA factors show low profile
variability with almost no seasonal pattern. Note that minimum and maximum values of
these variables for the primary OA factors (less pronounced for HOA and COA) reach
~0.6 and 1.4, respectively, i.e., the boundaries given by amax. The 75" percentiles of the
a-values for HOA, COA and BBOA touches amax less than 0.9 % of the time and the 90t
percentile hits amax 34 %, 24 % and 73 % of the time (see Supplement D Figure S5).
This suggests that the factor profiles are not limited by the constraining technique, but
rather by the employed scheme of criteria. Allowing for higher amax and loosening the
criteria threshold would most likely increase the variability in these ions but would also
lead to mixed and environmentally unreasonable solutions.

This is different for the oxygenated factors. LV-OOA, SV-OOA and OOA for example
contain high m/z 60 for the colder season, likely indicating significant impact of biomass
burning (Canonaco et al., 2015; Heringa et al., 2011, Qi et al., 2019). In addition, m/z 57
shows a strong seasonal pattern, i.e., high in winter and low during summer for SV-
OOA and LV-OOA. Strong peaks are also observed for m/z 43 in LV-OOA during
summer. This is due to less oxygenated bulk LV-OOA compared to the winter in Zurich,
when LV-OOA or OOA represent more oxygenated aerosol with higher m/z 44 and
lower m/z 43, as already noted in Canonaco et al. (2015). SV-OOA also contains a very
strong increase in m/z 55 during the Caliente episode. Most likely one COA factor alone
is insufficient to capture all the variability of m/z 55. As a consequence, PMF uses an



additional factor for modelling the variability of m/z 55, here SV-OOA which may contain
some characteristics of cooking SOA, as the latter has been shown to have non-
negligible contribution at m/z 55 as well (Klein et al., 2016). Further evidence comes
from Figure 6e (and also Supplement C Figure S4), where m/z 55 and m/z 43 peak
around Caliente in SV-OOA and LV-OOA, respectively. Moreover, m/z 44 drops in LV-
OOA. This implies that SV-OOA has some characteristics of cooking while LV-OOA
becomes more SV-OOA-like during Caliente. The period of influence of these peaks
lasts until 8-10 days before and after Caliente, most likely as it is incorporated during
the window-runs 14 days before and after Caliente.

The time-dependent mass spectral matrix of the factors can be found in the
Supplement, section C, although a detailed analysis is beyond the scope of the current
study. When employing this type of analysis, future studies should investigate in more
detail changes of the variables in the factor profiles. This information might provide new
insights on seasonal or source-specific markers, essential for source apportionment
analyses.

3.4 Residual analysis

Figure 7a and b show the scaled residuals as functions of m/z and time, respectively.
The scaled residuals do not reveal any systematic over- or underestimation. The data
scatters around zero with the interquartile range almost always between +/- 3
throughout the entire year evidencing the good quality of the PMF solution on average
(+/- 3 is the reasonable range for scaled residuals defined in Paatero and Hopke
(2003)). The highest residuals occur during the Caliente festival (beginning of July), as
shown by the dark red spike (interquartile range) in the time series plot (Figure 7b),
when the PMF solution is strongly influenced by extremely local and short-term cooking
and biomass burning sources that are not fully captured by the retrieved COA and
BBOA factors.

This results in a change of the factor profiles of COA and BBOA and SV-OOA (as
already stressed in Section 3.3). However, the COA, BBOA and SV-OOA profiles
roughly 8-10 days before and after Caliente are again consistent with those retrieved
during the rest of the season, i.e. the unique fingerprint during the Caliente episode
does not strongly influence the solution of the PMF-windows around Caliente. A few
other episodes in spring (May) and at the end of the summer (September) reach also
higher scaled residuals. In the current dataset, these likely indicate PMF runs that have
not fully captured profile responses to rapid meteorological changes (colder to warmer
season and vice versa). This happens on a shorter time scale than the chosen PMF
window and as a consequence cannot be fully captured by the 14-day PMF windows,
causing PMF solutions with mixed factor profiles and higher scaled residuals. Note that
during the last third of the measurement the scaled residual distribution tends to be
broader. This is due to technical problems on the ACSM inlet system mainly related to
the filter valve clogging, causing noisier signals and consequently noisier PMF results
for the valve switching system employed at that time. This condition is not accounted for
by the ACSM error model and increases the scaled residuals.

3.5 Uncertainty of the PMF solution

Within this study, each PMF run combines a random selection of a-values for the three
constrained POA factors with random (time-based) resampling of the input matrix. PMF
runs satisfying the acceptance criteria are retained for the final result leading to several
repeats for each time-point i. The variability among these repeats at each i/ can be used
to infer the rotational and statistical uncertainty. These two types of uncertainties are
discussed below and are collectively referred to as PMF error within this study.
Additional contributions to the overall uncertainty of this analysis that are not assessed
here include anchor profile selection, as well as the error related to the criteria
construction, such as the type of criterion (correlation, diurnal, profile characteristics,
etc.), tracer selection, and its related threshold selection. The proposed relative PMF
error in percentage in this study is given by the following formula:

100
PMFrror = S Ln=0 (ﬁ)i
(6)



where ¢ is the standard deviation and avg is the mean value of all replicates of a time-
point i. The probability density function (pdf) of PMF,,.,.,,- for each time-point i( ) is
L

g

avg
reported in Figure 8. The relative PMF errors are given by the center of the lognormal fit
(xo) as visualized in Figure 8 and are for HOA, COA, BBOA, LV-OOA, SV-OOA and
OOA + 34 %, + 27 %, £30, £11 %, +25 % and +12 %, respectively.
The data reported in Figure 8 was first log-transformed, as the untransformed
distribution was skewed to the right, mostly due to time-points with low signal to noise
ratio that would have had a stronger impact on the final error calculation using an
untransformed, i.e., linear representation.

4 Recommendations and current limitations

The techniques described in this study are relevant for long-term source apportionment
(SA) studies, in particular for ACSM data. The stability of the primary profiles (HOA,
COA and BBOA) suggests that they are rather independent from the season, and that
employing primary OA factors coming from other SA studies (here profiles from an AMS
SA in Paris conducted years earlier) using, e.g., the a-value constraints, works even for
long-term SA. However, this outcome is not completely independent as it results from
the defined amax as well as the applied scheme of criteria with their corresponding
criteria thresholds. Increasing these thresholds would most likely increase the variation
in the POA factor profiles but would also favor more mixing between these factors.
Significant seasonal changes in factor profiles were found for SV-OOA and LV-OOA.
Hence, the rolling mechanism is essential, when accurately apportioning the
oxygenated organic aerosol fraction. The use of a 14-day window, as already proposed
by two former studies (Frohlich et al., 2015; Parworth et al., 2015), was shown to be
appropriate for this long-term SA analysis and represents a promising starting point for
future long-term SA studies, although detailed evaluation for datasets with other
sources and temporal characteristics is needed.

In general, selection of the rolling window size (swin) should consider both the fraction of
non-modelled time-points (see Figure 1) and interactions between suin and solution
acceptance criteria. The latter point is illustrated by the use of the relative intensity of
the COA lunchtime peak in this study. This peak was observed to be almost absent
during the weekend. As a consequence, avoiding systematic biases in the fraction of
non-modelled time-points requires the swin to be larger than 7 days to guarantee the
presence of weekdays in every window-run. Employing a reliable tracer even during the
weekends for the cooking source would have allowed for a better exploration of Swin
below 7 days, as similar Q/Qex values resulted for 3, 7 and 4 days windows, as shown
in Figure 1.

The importance of defining the proper number of factors is strongly emphasized when
analyzing transient events, e.g. the Caliente episode. This becomes even more
important when performing automated source apportionment schemes, where the
ability of factors to dynamically change and adapt to the current window-run is limited,
as it is the case for the current rolling mechanism presented in this study. During
Caliente the variability of m/z 55 required two cooking factors to achieve complete
apportionment. With only one cooking factor allowed, other unconstrained factors
(especially SV-OOA) took on some cooking characteristics. This resulted in mixed SV-
OOA and LV-OOA factors, as m/z 55 and m/z 43 were clearly peaking around Caliente
for SV-OOA and LV-OOA, respectively. Relevant transient events that should still be
part of the SA result would most likely require further attention with additional and
separate PMF runs, where the user can better control the required number of factors
and swin. Such problems are clearly evident from diagnostics such as increased
residuals (Figure 7b) and sudden changes in factor profiles (Figure S3 and S4),
facilitating their appropriate identification and treatment. A 14-day window is likely too
large for transient events representing a small fraction of suin, where the latter strongly
influences the contributions of the data for suin days around the event.

Crippa et al (2014) already demonstrated for 25 AMS datasets that an amax of 0.3 for the
constrained information was often required for those SA studies. For the present
algorithm and dataset, an amax of 0.4 was shown to be ideal. Smaller amax did not allow
the constrained profiles to sufficiently adapt to the data, whereas higher values were
subject to mixing of the profiles. a-value limits strongly depend on how well the
fingerprint matches the PMF input. Fingerprints applied obtained by SA analyses of
other locations or during other meteorological conditions might require a higher a-value



limit compared to those extracted from, e.g., a pre-analysis conducted on a subset of
the PMF input.

The other remaining free parameters (xpmr and in particular the choice of the criteria
and their corresponding thresholds) must be assessed by the user for any new SA
study, as they may strongly depend on site/source characteristics and tracer availability.
Moreover, investigation of various tracers as criteria-candidates for one source is also
very desirable, as it allows to quantify errors when discussing factor-tracer
interchangeability.

Unlike batch-style PMF (i.e., a single PMF run encompassing the entire dataset), here
corrections or scaling factors affecting entire rows or columns of the input data matrix
should be applied prior to SA analysis. For example, the collection efficiency (CE)
parameter applied for ACSM data analysis is applied to all measured m/z’'s of a mass
spectrum and does not alter the relative contributions obtained by a single PMF result.
However, it does affect the overall source apportionment returned by the rolling window
strategy presented within this study. This comes from the fact that the final source
apportionment result is the aggregate of a set of accepted solutions whose criteria for
acceptance may include goodness of correlation with an external tracer, and such
correlations are affected by CE. Therefore, applying CE post-PMF will require the user
to re-evaluate the score plots and to reassess the criteria thresholds.

It is likely that the PMF errors reported above can be further reduced by further
refinements to the rolling window algorithm. One major limitation is the application of
season-specific criteria thresholds. In the future, criteria thresholds with a higher
temporal resolution are certainly desirable. Another major limitation is the continuous
presence of the primary OA factors during the entire analysis. Similarly to the
(de)activation of SV-OOA within this study, in the future one or more factors should be
(de)activated during the evolution of the rolling approach to better cope with the
complex and dynamic real atmospheric conditions.

5 Conclusion

A rolling-window PMF algorithm was applied to NR-PM organic data measured with an
ACSM between February 2011 and February 2012 in downtown Zurich, Switzerland.
The rolling approach allows for a source apportionment of time-dependent factor
profiles and has several advantages, e.g., very fast PMF runs of rather small PMF runs
(few seconds for 14 days windows) compared to conventional batch analysis (several
minutes, as PMF run is always the entire dataset) or one factor per source compared to
several factors in batch analysis to cope with time-varying factor profiles. Moreover, the
rolling technique is particularly helpful for the analysis of automated and / or continuous
analysis of both long-term and continuously growing datasets, where batch analysis is
at best inefficient and probably not feasible. Factor/tracer correlations were shown to be
higher for the averaged seasonal analysis (from the rolling window) than for the
seasonal pre-tests (PMF runs with no rolling). This highlights the improved performance
of the rolling PMF runs compared to conventional batch PMF analysis for long-term
data.

PMF runs were conducted where the a-values of the constrained factor profiles were
randomly changed within the boundaries 0 to amax in conjunction with the bootstrap
resampling strategy. The resulting PMF runs were selected and studied using the
criteria scheme based on information on the sampling site from previous SA studies.
This method has shown its usefulness when evaluating and studying hundreds of
thousands of PMF runs. The criteria used here consisted of features in the diurnal
patterns of HOA and COA, the amount of explained variation of m/z 60 attributed to
BBOA, and representation of OOA by one or two factors depending on the difference
between SV-OOA and LV-OOA in f43 values.

The separation between the primary OA factors (HOA, COA and BBOA) and
oxygenated organic aerosol (SV-OOA, LV-OOA and OOA) was rather robust
throughout the year. HOA and COA were rather constant, whereas BBOA showed a
very strong seasonality with the highest contribution in winter and lowest in summer.
The model separated OOA into SV-OOA and LV-OOA mainly during the warm season
(spring and summer), including a warm episode during the first winter. Strongest
changes of the factor profiles where visible for the oxygenated species SV-OOA and
LV-OOA, whereas the primary species HOA, COA and BBOA showed smaller
variations. Hence, the rolling mechanism is certainly essential when properly
apportioning the oxygenated organic aerosol fraction.



The model was still able to separate a semi-volatile fraction for the colder seasons
based on the variation in m/z 43 and 44, where very little variation was present in
nitrate, often used as a tracer of SV-OOA.

The rotational and statistical uncertainties were assessed via random a-values
exploration and bootstrap resampling. The relative PMF errors (expressed by the
standard deviation divided by the average concentration of all replicates per time-point)
are on average + 34 %, + 27 %, +30, +11 %, 25 % and +12 % for HOA, COA, BBOA,
LV-OO0A, SV-OO0A and OOA, respectively.

Finally, the free parameters tested and validated in this study, i.e., the 14-day window
length, 0.4 as upper limit for the a-value of the constrained primary OA factor profiles,
together with the scheme of criteria and the xpwr per window-run, depend on the
sources and meteorological conditions of Zurich downtown. When applying this new
rolling strategy on datasets dissimilar to Zurich, some or all of these parameters might
be subject to investigation to achieve a complete and quantitative source apportionment
analysis.
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Figure 1: The mathematical metric Q/Qexp (left axis, red points) and the percent of non-modelled time-points
(nnon-modelled) (right axis, blue points) over the entire dataset are reported as a function of window size (swin),
maximum a-value (amax), and number of PMF repeats per window (xPMF). In each plot, two of these three
parameters are fixed at their optimum values and the third is varied: (a) swin, (b) amax, (¢) xPMF. Optimum
values are swin = 14 days, amax = (0.4, and xPMF = 50. For all runs, criteria are defined as described in Section
2.3.3.

Table 1: Overview of the rolling mechanism and the repeats of the PMF analysis.
Rolling mechanism

> a 14-day time window is defined
> window is shifted by one day over the entire dataset
PMF analysis

> for each window a four- and five- (HOA, COA, BBOA and one up to two OOAs) factor
PMF run is performed, where HOA, COA and BBOA are constrained within the a-
value approach.

> PMF runs are initialized 50 times from random starting points for the
unconstrained information in G and F (seeds). The a-values for the constrained
factor profiles are randomly and independently varied from a =0 to a = 0.4 with a
resolution of Bla = 0.1 (a-value exploration). In each run the PMF input is resampled
within the bootstrap method.
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Figure 2: PMF runs sorted based on the scores (gray points), PMF runs fulfilling the criterion thresholds (blue
points) and PMF runs fulfilling criterion thresholds in all criteria (green points). The five criteria are a) diurnal
correlation between HOA and eBCtr (seasonal thresholds from statistical analysis), b) relative lunch peak for
COA (seasonal thresholds from statistical analysis), c) explained variation of m/z 60 for BBOA, d) f44 in LV-
OOA profile and e) f43 in SV-OOA profile, respectively. Note that e) contains three episodes with zero points,
which represent four-factor solutions automatically selected by the algorithm, where no five-factor solution was
manually selected (and the SV-OOA criterion is thus irrelevant).

Table 2: Criteria scheme employed in this study. The first value represents the applied threshold for the final
PMF solution and the values in brackets for HOA and COA stand for the threshold value coming from the
seasonal resampling analysis. f44 for LV-OOA is used for factor sorting rather than as an acceptance/rejection

threshold.
criteria thresholds
factor criteria types winter spring | summer fall winter
2011 2011 2011 2011 2012
daily cycle correlation
HOA (Rpearson) between HOA and 0.6 (0.6) | 0.7(0.8) | 0.5(0.2) | 0.6 (0.6) | 0.5(0.2)
eBCtraffic
rel. lunch peak (11+12+13
COA 1.2(12) | 11(11) | 1.1(11) | 1.2(12) | 1.1 (11
hrs) to (9+10+14+15 hrs) (1.2) (1.1) (1.1) (1.2) (.1
ai - f
BBOA Z’(‘)p ained variation of m/z 0.25 0.25 0.25 0.25 0.25
LV-00A | 44 in profile N/A
SV-00A | f43 in profile 0.08
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Figure 3: a) 30 minutes average concentrations b) relative contributions c) pie charts for the calendar seasons of
the sources between February 2011 and February 2012. Gaps in the data represent interruptions due to
maintenance and / or technical problems of the ACSM during the last third of the campaign, mostly due to
clogging of ACSM inlet orifice. The lower values in the pie charts are the seasonal mean contributions in
pg'm-3. Note that the OOA factors are represented either as LV-OOA and SV-OOA (5-factor solution) or OOA
alone (4-factor solution).
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Figure 4: The weekday (left) and weekend (right) diurnal cycles for the entire period (February 2011
— February 2012). The thick lines represent the medians and the shaded areas span the interquartile
ranges. Typical external tracers are also shown for comparison, i.e., eBC« and NOx for HOA, eBCw
for BBOA, SO4* for LV-O0A, NOs™ for SV-OOA and NH4* for OOA.

Table 3: Correlation coefficients (Rpearson”) With a significance level of p >= 0.01 between the factor
contribution and expected tracers over the year and the meteorological seasons as defined above. The
first value describes the correlation for the rolling result, whereas the value in brackets is for the
seasonal PMF result (no rolling).

factor year winter spring summer fall 2011 winter
2011 2011 2011 2012
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Figure 8: Probability density functions for the PMF....r of the six factors as a

logarithmic representation on the x-axis.
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