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Abstract. A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) 

is presented. The method is implemented within the SoFi Pro software package and uses the multilinear engine (ME-2) as a 

PMF solver. The technique is applied to a one-year aerosol chemical speciation monitor (ACSM) dataset from downtown 

Zurich, Switzerland. 

The measured organic aerosol mass spectra were analyzed by PMF using a small (14 days) and rolling PMF window to account 20 

for the temporal evolution of the sources. The rotational ambiguity is explored and the uncertainty of the PMF solutions were 

estimated. Factor/tracer correlations for averaged seasonal results from the rolling window analysis are higher than those 

retrieved from conventional PMF analyses of individual seasons, highlighting the improved performance of the rolling window 

algorithm for long-term data. 

In this study four to five-factors were tested for every PMF window. Factor profiles for primary organic aerosol from traffic 25 

(HOA), cooking (COA) and biomass burning (BBOA) were constrained. Secondary organic aerosol was represented by either 

the combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA, respectively), or by a single OOA 

when this separation was not robust. This scheme leads to roughly 40’000 PMF runs. Full visual inspection of all these PMF 

runs is unrealistic and is replaced by predefined user-selected criteria, which allow factor sorting and PMF run 

acceptance/rejection. The selected criteria for traffic (HOA) and biomass burning (BBOA) were the correlation with equivalent 30 

black carbon (eBCtr) and the explained variation of m/z 60, respectively. COA was assessed by the prominence of a lunchtime 

concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated based on the fraction of m/z 43 and m/z 

44 in their respective factor profiles. Seasonal pre-tests revealed a non-continuous separation of OOA into SV-OOA and LV-
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OOA, in particular during the warm seasons. Therefore, a differentiation between four-factor solutions (HOA, COA, BBOA 

and OOA) and five-factor solutions (HOA, COA, BBOA, SV-OOA and LV-OOA) was also conducted based on the criterion 35 

for SV-OOA. 

HOA and COA contribute between 0.4-0.7 g∙m-3 (7.8-9.0 %) and 0.7-1.2 g∙m-3 (12.2-15.7 %) on average throughout the 

year, respectively. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6 g∙m-3, 12.0 %), 

slightly higher mean concentrations during spring and fall (1.0 and 1.5 g∙m-3, or 15.6 and 18.6 %, respectively), and highest 

mean concentrations during winter (1.9 g∙m-3, 25.0 %). In summer, OOA is separated into SV-OOA and LV-OOA, with 40 

mean concentrations of 1.4 g∙m-3 (26.5 %) and 2.2 g∙m-3 (40.3 %), respectively. For the remaining seasons the seasonal 

concentrations of SV-OOA, LV-OOA and OOA range from 0.3-1.1 g∙m-3 (3.4-15.9 %), 0.6-2.2 g∙m-3 (7.7-33.7 %) and 0.9-

3.1 g∙m-3 (13.7-39.9 %), respectively. The relative PMF errors modelled for this study for HOA, COA, BBOA, LV-OOA, 

SV-OOA and OOA are on average  34 %,  27 %, 30, 11 %, 25 % and 12 %, respectively. 

1 Introduction 45 

Atmospheric aerosols are at the center of scientific and political air quality discussions due to their highly uncertain direct and 

indirect climate effects (IPCC, 2013) and negative impact on human health (e.g., Peng et al. (2005)). Regulatory policies 

addressing these effects require characterization and understanding of aerosol physicochemical properties, sources and 

formation processes. During the past years, the study of submicron particulate matter (PM1) has gained interest (Hallquist et 

al., 2009), in particular the organic fraction comprising 20-90% of the total submicron aerosol mass (Jimenez et al., 2009). 50 

Atmospheric aerosols are typically classified as primary or secondary aerosols, where primary aerosols are directly emitted 

into the atmosphere and secondary aerosols are formed by reaction of precursor gases. Aerodyne aerosol mass spectrometers 

(AMS) and aerosol chemical speciation monitors (ACSM) have become important and widely used instruments for the on-line 

chemical characterization of non-refractory submicron aerosol (NR-PM1) (Canagaratna et al., 2007; Ng et al., 2011b; Fröhlich 

et al., 2013). The resulting aerosol data can be utilized to study seasonal trends of PM1 sources to support emission reduction 55 

strategies. This is highly relevant for very polluted areas like China and India but also for Europe, where particulate matter 

concentrations substantially decreased during the last two decades, but still frequently exceed legal thresholds (Barmpadimos 

et al., 2011; Barmpadimos et al., 2012; European Environment Agency, 2019). 

Source apportionment of organic aerosol (OA) measured with an AMS and / or ACSM is typically performed using the positive 

matrix factorization algorithm (PMF, Paatero and Tapper (1994)). PMF solutions describe the complex, time-dependent 60 

organic aerosol composition as a linear combination of static factor profiles (for AMS/ACSM data, mass spectra) and their 

time-dependent contributions. Factors can represent a primary organic aerosol emission (POA) or secondary organic aerosol 

(SOA).  

https://doi.org/10.5194/amt-2020-204
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.



3 
 

Many organic source apportionment studies with AMS (see review by Zhang et al. (2011)) and ACSM data (e.g., (Aurela et 

al., 2015; Budisulistiorini et al., 2013; Canonaco et al., 2013; Fröhlich et al., 2015; Li et al., 2017; Minguillon et al., 2015; 65 

Reyes-Villegas et al., 2016; Ripoll et al., 2015; Schlag et al., 2016; Sun et al., 2013; Sun et al., 2018; Tiitta et al., 2014; Wang 

et al., 2017; Zhang et al., 2019; Zhu et al., 2018)) have successfully employed the PMF algorithm. PMF results suffer from 

rotational ambiguity (Paatero et al., 2002), i.e., several PMF results exist with a similar goodness of fit. An approximate method 

for the quantification of the rotational uncertainty, i.e., the amount of rotational ambiguity (Paatero et al., 2014), can be 

obtained using the global fpeak tool, which allows exploration of a single one-dimensional transect through the 70 

multidimensional solution space and is discussed for AMS data in Ulbrich et al. (2009). This approach only leads to a rough 

estimate of the rotational uncertainty, as it allows investigation of only a single transect whose selection is uncontrollable, 

while other rotations remain entirely inaccessible. An improved method for both uncertainty estimation and factor resolution 

was demonstrated by Canonaco et al. (2013), where intelligent exploration of rotations was implemented introducing a priori 

information in form of factor profiles in the multilinear engine (ME-2, Paatero (1999)). Moreover, Ulbrich et al. (2009) also 75 

estimated the statistical uncertainty via the resampling bootstrap technique (Efron, 1979). This method generates a set of new 

input matrices for analysis from random resampling of the original input data. This resampling perturbs the input data by 

including replicates of some points while excluding others, with the main assumption that the overall properties of the analyzed 

data (fingerprints of the factors, contributions of the factors) are not systematically changed, i.e., changes are purely statistical. 

If a sufficient number of resamples has been carried out, the variation within the identified factors across all bootstrap runs is 80 

regarded to represent their statistical uncertainty. 

A crucial limitation of the traditional PMF approach is that the time-dependent variability of the composition of the organic 

aerosol sources cannot be properly modelled using static profiles in a year-long PMF model. Both POA and SOA may have 

time-dependent composition. For example, vehicles utilize different fuel blends in winter and summer for traffic (Agrola, 

2017), while biomass burning may be dominated by different burning types and / or materials in different seasons e.g., domestic 85 

heating in winter, agricultural burning in spring/autumn, wildfires in summer. SOA sources may likewise be affected by 

seasonal changes in either precursor emissions (e.g., monoterpene emissions increase exponentially with temperature) or 

physicochemical processes (e.g., gas/particle partitioning, oxidant concentrations) (Hallquist et al., 2009). Amongst others, 

Canonaco et al. (2015), Daellenbach et al. (2017) and Sun et al. (2018) showed that ACSM SOA mass spectra possess distinct 

seasonal trends which need to be considered during the PMF analysis. For Zurich, Stefenelli et al. (2019) and Qi et al. (2019) 90 

were able to demonstrate this seasonal variability of SOA characteristics by molecular analysis, with terpene related SOA 

being dominant in summer and aged wood burning organic aerosol being dominant in winter. 

Technically, modeling seasonally-dependent mass spectra from a given source family, e.g., traffic, biomass burning, or SOA, 

can be achieved in two ways. PMF can be applied to a multi-season data set, with time-dependent source composition 

modelling of a single factor per source or source class, similar to typical representations of SOA in short-term field campaigns 95 

by two factors with different degrees of oxygenation (Zhang et al., 2011). However, multi-factor representations of seasonal 

changes are likely to significantly increase the complexity of the PMF solution, primarily due to a rapid increase in the number 
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of factors and thus leading to difficulties in interpretation. Another possibility is to perform PMF over a small, moving time 

frame such that the factor profiles evolve with time, while maintaining a single factor per source family. This is likely the best 

choice for long-term data, due to both the relative simplicity of the solution and important savings in computational and 100 

evaluation time. The latter is also more compatible with a continuously growing dataset, e.g. for online source apportionment 

studies, where the entire dataset doesn’t have to be completely reanalyzed when new data is included in contrast to classical 

batch analyses. Parworth et al. (2015) have already shown the effectiveness of such an approach, i.e., employing a small and 

moving PMF window for analyzing remote long-term ACSM data with only a few unconstrained aerosol sources / components. 

However, a rotational and statistical uncertainty exploration was not conducted. 105 

This study presents the analysis of ACSM data measured in Zurich between February 2011 and February 2012. The dataset 

includes several sources that were difficult to separate using unconstrained PMF, which are constrained using known POA 

sources in ME-2 for a small and rolling time window. This strategy allows to adequately account for time-dependent variation 

of the POA and SOA factor profiles. The applied constraining technique allows for a more comprehensive and quantitative 

assessment of the rotational uncertainty than the global fpeak tool could achieve. The statistical uncertainties of PMF solutions 110 

are estimated using a bootstrap resampling technique. In this study, the size of the rolling window, tightness of constraints, 

and several other parameters as e.g. number of PMF repeats per rolling window, are discussed and validated. 

 

2 Instruments and methods 

2.1 Instrumentation and sampling site 115 

An ACSM (Aerodyne Research, Inc., Billerica, MA, USA) was deployed at the Kaserne station, an urban background station 

in the city center of Zurich (Switzerland) between February 2011 and February 2012 (Lanz et al., 2007; Lanz et al., 2008; 

Canonaco et al., 2013). The ACSM is an instrument based on Aerodyne aerosol mass spectrometer (AMS) technology, but 

optimized for long-term measurements with minimal maintenance requirements. The ACSM measures the real-time 

composition of non-refractory submicron particulate matter, customarily referred to as NR-PM1. The instrument is described 120 

in detail in Ng et al. (2011b), (see also Jayne et al. (2000), Jimenez et al. (2003), Allan et al. (2003), Allan et al. (2004), and 

Canagaratna et al. (2007) for a more detailed description of the AMS technique). Technical problems on the ACSM inlet 

system during the last third of the campaign resulted in a total of 2-3 weeks of missing data. 

The ACSM in Zurich was operated with a scan rate of 1 s/amu between m/z 10 and 140, and produced averaged scans every 

15 min. The data was re-averaged to 30 min for ME-2 analysis. To obtain quantitative mass concentrations for ACSM data, a 125 

collection efficiency parameter (CE) needs to be applied to account for the incomplete detection of aerosol species due to 

particle bounce at the instrument vaporizer (Middlebrook et al., 2012). The effects of the nitrate mass fraction and particle 

acidity on CE have been parameterized for ambient data (Middlebrook et al., 2012). As discussed previously (Canonaco et al., 

2013; Canonaco et al., 2015) CE = 1 for the current study is assumed because of otherwise systematic overestimation compared 
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to the PM10 measurements by a tapered oscillating microbalance (TEOM, FDMS 8500, Thermo Scientific) calibrated by 130 

gravimetric measurements of off-line PM10 filters.  

The meteorological data (temperature, relative humidity, solar radiation, precipitation, wind speed and wind direction) and 

trace gases (CO, NOx, O3, total hydrocarbons) were measured by the Swiss National Air Pollution Monitoring Network, 

NABEL (Empa, 2010). Equivalent black carbon (eBC) was measured with an Aethalometer AE 31 (Magee Scientific Inc., 

Berkeley, CA, USA). The data were corrected for loading effects and multiple scattering using the method of Weingartner et 135 

al. (2003). Mass absorption cross sections as determined by Herich et al. (2011) were used to convert babs(λ=880nm) to eBC. 

The measured absorption coefficients at wavelengths 470 and 880 nm using the alpha-values based on Zotter et al. (2017) were 

used to estimate the contributions to eBC from traffic (eBCtr) and biomass burning (eBCwb). 

Seasonal PMF runs performed on the ACSM data in earlier studies (Canonaco et al., 2013; Canonaco et al., 2015) showed 

three primary OA factors and one to two secondary OA factors contributing throughout the measurement year. Among the 140 

primary OA factors a traffic-related hydrocarbon-like organic aerosol (HOA) factor was found, which correlated with NOx 

and eBCtr, as well as a biomass burning organic aerosol (BBOA) factor, which correlated with eBCwb as also shown in other 

studies (Lanz et al., 2007; Lanz et al., 2008; Ulbrich et al., 2009; Zhang et al., 2011; Canonaco et al., 2013). Given that in 

summer the daily values of m/z 60 were always higher than the threshold for biomass burning influence identified in Cubison 

et al. (2011), BBOA was also modelled during the warm seasons. The third primary OA factor was assigned to cooking-related 145 

organic aerosol (COA), and exhibited enhanced concentrations during mealtimes, similar to previous studies (Allan et al., 

2010; He et al., 2010; Slowik et al., 2010; Sun et al., 2011; Mohr et al., 2012; Crippa et al., 2013; Elser et al., 2016). For warm 

days during the first winter and in spring, summer and fall the variability of the bulk OOA (oxygenated organic aerosol) was 

captured by two distinct factors, i.e., SV-OOA (semi-volatile oxygenated organic aerosol) and LV-OOA (low-volatility 

oxygenated organic aerosol). For the remaining colder period only one OOA factor accounted for the variation of the bulk 150 

OOA. 

2.2 Methods 

2.2.1 The multilinear engine (ME-2) 

ME-2 (Paatero, 1999) is a powerful engine for solving the positive matrix factorization algorithm (PMF, (Paatero and Tapper, 

1994)). Model configuration and post-analysis are performed by Source Finder (SoFi Pro 6.8, Datalystica Ltd., Villigen, 155 

Switzerland) within Igor Pro software environment (Wavemetrics, Inc., Portland, OR, USA) as described in Canonaco et al. 

(2013). In its bilinear mode, PMF describes the measured data matrix X as a product of two matrices, G and F and the residual 

matrix E. In element notation the equation is:  

𝑥௜௝ = ∑ 𝑔௜௞ ∙ 𝑓௞௝ + 𝑒௜௝
௣
௞ୀଵ            (1) 

In the measured matrix X the columns j are the m/z’s and each row i represents a single mass spectrum. p is defined as the 160 

number of factors of the selected model solution, i.e., the number of columns of G and the number of rows of F. Each column 
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of the matrix G represents the time series of a factor, whereas each row of F represents the factor profile (i.e., mass spectrum); 

both are indexed by k. In an unconstrained PMF run in ME-2, the model is initialized with random entries in G and F (“seed”) 

and the quantity Q is minimized with respect to all model variables by means of the conjugate gradient algorithm (Paatero, 

1999): 165 

𝑄 = ∑ ∑ (
௘೔ೕ

ఙ೔ೕ
)ଶ௠

௝ୀଵ
௡
௜ୀଵ            (2) 

where 𝑒௜௝ are the elements of the residual matrix E and 𝜎௜௝ represents the measurement uncertainty for the input point 𝑥௜௝ .  

To compare Q-values from various PMF runs with a different size and / or number of factors, Q is normally scaled by the 

remaining degrees of freedom (Qexp, which depends on the size of the input data and the number of chosen factors): 

𝑄௘௫௣ = 𝑚 ∙ 𝑛 − 𝑝(𝑚 + 𝑛)           (3) 170 

PMF is subject to rotational ambiguity, in which different combinations of G and F yield similar Q-values. Some of these 

combinations may contain mixed factors and / or environmentally unreasonable descriptions of the data. Previous work has 

shown that constraining expected factor profiles using the a-value approach for AMS/ACSM data is an efficient method for 

isolating the set of environmentally interpretable PMF runs (Lanz et al., 2008; Canonaco et al., 2013; Crippa et al., 2014). The 

a-value determines the extent to which the m/z in the mass spectral profile, also referred to as anchor (𝑓௞௝), is allowed to vary 175 

during the model iteration according to: 

𝑓௞௝′ = 𝑓௞௝ ± 𝑎 ∙ 𝑓௞௝           (4) 

The index j stands for the actual variable (m/z) of the kth factor, and the a-value is its scalar product. For example, an a-value 

of 0.1 allows for a variability of ± 10% during the iterative process. This implies that some variables might increase and some 

might decrease within this limit. Note that after renormalizing the solution, the extent to which the constrained values changed 180 

might be slightly outside the defined a-value range. For example, consider a case where the a-value is set to 0.1 for all variables 

of a factor profile. The values of all variables but one could decrease by 10% while the value of this single variable might 

increase by 10% during the iteration. After renormalizing the factor profile outside ME-2 by, e.g., the sum of the profile, the 

intensity of this single variable will exceed the boundaries set with the a-values during the PMF iteration. Moreover, note that 

the a-value approach defines only the boundaries of a solution and does not imply any weighting within these boundaries. 185 

2.2.2 PMF input preparation step 

The organic data and error matrices (Allan et al., 2003) are computed using the ACSM local tool version 1.5.3.2 (Aerodyne 

Research, Inc., Billerica, MA, USA) in Igor Pro. Weak (signal to noise ratio between 2 and 0.2) and bad variables (signal to 

noise below 0.2) were downweighted according to the recommendations in Paatero and Hopke (2003). The m/z 16, 17, 18 and 

28 variables that are replicates of the variability of m/z 44 were removed for the PMF calculation and recalculated a posteriori 190 

as a function of the m/z 44 contribution attributed to each factor profile (Elser et al., 2016). This approach is preferable to 
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downweighting (Ulbrich et al., 2009), as it maintains a direct mathematical relationship between m/z 44 and its dependent 

variables, which can otherwise be distorted by dynamic weighting of outliers in the PMF robust mode. 

2.3 New rolling method using ME-2 

The new method consists in performing PMF runs on a small and moving window that is translated across the entire dataset. 195 

At each step, many individual PMF runs are performed, and the resulting runs are accepted or rejected according to predefined 

criteria. The window is then moved to the next position, with the distance between window positions being significantly smaller 

than the window size itself. The set of all accepted PMF runs determines the final source apportionment solution and is also 

used to assess model uncertainties.  

The novelty of this method compared to Parworth et al. (2015) lies in the application of ME-2 for enhanced control over the 200 

matrix rotations, and in the automated application of user-defined criteria to determine the set of accepted PMF runs. Moving 

properties of the window (window-runs) are discussed in Section 0, whereas the main settings of PMF within a window (PMF 

runs) are described in Section 0. 

2.3.1 The rolling strategy 

PMF analysis is conducted on a subset of data defined by a small window that is moved in 1-day increments across the entire 205 

dataset and as such allows capturing seasonal variations of the factor profiles. Note that rolling windows containing less than 

10 % of real-data are automatically skipped by the rolling algorithm. This avoids performing PMF runs over large gaps due 

to, e.g., calibrations or instrument failures. The window size (swin) is a free parameter that requires optimization. The rolling 

window PMF analysis of Parworth et al. (2015) utilized a 2-week window, arguing that this length is representative of the 

average lifecycle of aerosols in the atmosphere. Even for (low time-resolution) ACSM data, two weeks have been shown to 210 

provide enough temporal variability to distinguish sources with similar factor profiles such as HOA and COA (Fröhlich et al., 

2015) In the present study, likewise a 14-day window is selected, after additionally assessing the performance of 3, 7, 21, and 

28-day windows. 

The model performance in response to swin is assessed by monitoring the value of Q/Qexp (which decreases as the mathematical 

goodness of fit improves) and the number of non-modelled time-points (nnon-modelled) as a percentage of the total number of 215 

measurements. nnon-modelled is defined as any ACSM time-point for which the user-defined criteria (see Sections 0 and 0) are 

not met for any PMF runs that include this measurement (note that for most points this will include PMF runs from multiple 

overlapping windows). Figure 1a shows Q/Qexp and nnon-modelled as a function of swin. The Q/Qexp values are minimized for a 7-

day window and are approximately 15 % higher for the 3- and 14-day windows, and 45 % higher for the 21- and 28-day 

windows. nnon-modelled shows a minimum for 14 days with a slight increase for larger windows and a steep increase for smaller 220 

swin. 

A 14-day window has been chosen for the current dataset, as this avoids significant increases in Q/Qexp without inducing 

unacceptably high nnon-modelled. Moreover, because the 1-day step of the rolling window is smaller than the 14-day width, each 
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time-point is included in 14 different window-runs (except for those within the first or last 14 days of the dataset). As discussed 

later, these repeats aid the uncertainty analysis. 225 

2.3.2 Window settings 

The rolling strategy described above defines a new window after every window shift. Within this new window, a PMF run, 

referred to as repeat in the text, is generated via ME-2, which initializes new seeds, a-values, and bootstrap resampling of the 

PMF input. The seed initializes all model entries in G and F, and unconstrained information therein is randomly initialized. 

Additionally, a priori information on the factors from the seasonal pre-tests is used to confine the solution space and thus to 230 

decrease the rotational ambiguity of the solution. 

In the current study, constraints are applied only to profiles of the POA factors, namely traffic (HOA), cooking (COA) and 

biomass burning (BBOA). The HOA and COA profiles are taken from Crippa et al. (2013), while BBOA is the averaged mass 

spectrum reported by Ng et al. (2011a). These anchor profiles were also successfully used for the seasonal analysis of the 

Zurich-Kaserne data (Canonaco et al., 2013; Canonaco et al., 2015).  235 

Every constrained factor profile applied in a PMF run requires a sensitivity analysis of the a-value to identify the range of 

reasonable solutions (Canonaco et al., 2013; Crippa et al., 2014; Elser et al., 2016). Typically, variation of the a-value of one 

or more constrained factor profile(s) allows exploration of a region in the solution space that includes environmentally 

reasonable solutions. In the present analysis, the goal is to consider all PMF runs (not just the best one) that are mathematically 

and environmentally reasonable. Recent studies have systematically investigated the entire solution space allowed by the a-240 

values, e.g. by conducting PMF runs covering every combination of a-values over the range 0 to 1 with a step of 0.1 (Elser et 

al., 2016; Bozzetti et al., 2017; Daellenbach et al., 2017). However, this approach is not computationally practical for moving 

window analysis. For instance, given that three factors are constrained in this present study, the above a-value exploration 

strategy would require 113 = 1331 PMF runs for a-value exploration per window-run. Also, each combination of a-values 

would require a minimum of 100 PMF runs for bootstrap analysis (Norris et al., 2014). Furthermore, the seasonal pre-tests 245 

indicated that both four- and five-factor solutions should be assessed (corresponding to one or two OOA factors). In total, this 

would require 1331 x 100 x 2 ~ 2.66 x 105 PMF runs per window. Moreover, the daily shift of the rolling window will initialize 

the window-runs 351 times (one year minus the swin), resulting in 1331 x 100 x 2 x 351 ~ 9.35 x 107 PMF runs for a systematic 

analysis. This will require several months of computation even on modern PCs with multi-core processors. To overcome these 

computational issues, two strategies were considered for reducing the number of runs required for a-value exploration. In both 250 

cases, a systematic exploration of the a-value space is replaced by randomly generated a-values between zero and an upper 

limit (amax). For the first strategy, the amax limit was fixed at one, and the number of repeats (xPMF) was adjusted until the same 

criteria described above for swin optimization were satisfactory. However, this approach was rejected, as executing the full set 

of PMF runs required computational times on the order of months (see supplement A) and therefore was impractical on regular 

PCs. 255 

https://doi.org/10.5194/amt-2020-204
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

The second strategy, which is used here, exploits the a priori information of the sources. If some factor profiles are known to 

be present and their source profiles are known to some extent, there is no need to explore regions in the solution space, for 

which these factor profiles may drastically depart from their realistic anchors. 

Therefore, amax undergoes a systematic scan from zero upwards, with model performance assessed by Q/Qexp and nnon-modelled, 

as described above for the swin estimation. The current strategy counts as local-minimum algorithm, as the full parameter space 260 

(swin, amax, xPMF) is not fully investigated. Moreover, pre-tests based on literature data, i.e. a 14-day PMF window for swin 

(Parworth et al., 2015) and an upper a-value of 0.3 amax (Crippa et al., 2014) represented the starting condition for the parameter 

optimization discussed in Figure 1. 

Figure 1b shows an almost flat Q/Qexp while that of the nnon-modelled behaves as a quadratic function with a minimum at a = 0.4. 

For a-values below 0.4 the constrained fingerprints cannot optimally adapt to the current input. Given only 50 random a-value 265 

explorations out of 1331 (see above) of the entire a-value space for every PMF window, outcomes for higher amax may be 

purely stochastic and lead to a high degree of mixing and consequently rejection of the PMF runs (high nnon-modelled). a = 0.4 

represents the optimum amax and is set as free parameter for the a-value exploration. 

The random resampling of the PMF input uses the bootstrap approach for every repeat. A window comprising 14 days with at 

most 48 (number of scans per day) x 14 (days)= 672 time-points will create resamples containing again 672 new time-points, 270 

where some time-points may occur multiple times and others may be absent. As above, Q/Qexp and the percentage of nnon-modelled 

are monitored as a function of the xPMF. Figure 1c reveals a constant Q/Qexp whereas the number of nnon-modelled decreases and 

stabilizes from 50 repeats onwards. We conclude that 50 repeats per window are sufficiently high for the bootstrap strategy. 

Note that the final number of PMF runs per time-point may be higher than xPMF due to the overlapping PMF runs resulting 

from the rolling strategy. The total number of PMF runs for this study equals 50 (xPMF) x 351 (number of days) x 2 (four- and 275 

five-factors) = 35’100 runs and required approximately three days on a modern multicore PC. 

2.3.3 The post-PMF analysis 

Manual inspection of all generated PMF runs is impractical, and is replaced by an automated procedure based on pre-defined 

user criteria that (1) identifies and sorts unconstrained factors and (2) determines whether each PMF run should be accepted 

or discarded. Examples of user-defined criteria could include the factor correlation to an external tracer in terms of either the 280 

overall time series or diurnal pattern, or characteristic temporal features, e.g., a prominent lunch peak for a cooking factor. 

Modelled PMF factors for which no factor criteria are satisfied, i.e. very poor score values due to factor mixing / swapping or 

sampling of a transient sources not accounted for, typically yield nnon-modelled. 

In addition to determining whether an individual PMF run should be accepted or rejected, the criteria are used to determine 

the identity of unconstrained factors. While the positions of constrained factors within the F and G matrices are pre-defined 285 

for constrained factors, the same is not true of unconstrained factors, and these must be correctly identified prior to further data 

analysis. Consequently, all possible combinations for sorting unconstrained factor positions are evaluated (factor 

identification) and their scores combined together. As criteria with various score ranges are potentially possible, e.g., 
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correlation coefficient, lunch peak ratio, the explained variation (EV, see Eq. 5) of m/z 60 and variable fractions, these score 

values must be corrected before being added up. z-score transformation as a linear correction is applied, where at the end the 290 

score distribution of each criterion possesses a mean value of zero and a standard deviation of one. Finally, the z-score 

transformed combination with the highest values is chosen to represent the PMF result for a specific PMF run. This is essential 

in the case of the two unconstrained factors SV-OOA and LV-OOA in this study. Note that this requires criteria to be defined 

for a minimum of all factors but one (i.e., p -1 factors). 

Considering the large amount of PMF runs by the rolling window algorithm, the main advantage of this criteria-based 295 

inspection is that the complexities of a factor profile and time series are reduced to single values (“scores”). Based on the score 

plots, potentially promising PMF runs can be further investigated and validated. This significantly improves the efficiency of 

PMF analysis by discarding PMF runs where the score for any criterion falls below the user-defined threshold (“bad PMF 

runs”). In contrast to conventional analyses, where a single PMF run often represents an optimal description of the dataset, the 

entire set of PMF runs classified as environmentally reasonable is used for the analysis and presentation. This provides a more 300 

comprehensive and robust representation of the dataset and supports uncertainty assessment. 

To determine whether an individual PMF run is accepted or rejected, acceptance thresholds are defined for each of the selected 

criteria. These thresholds are free parameters and must be defined for each criterion separately. Either a threshold is inferred 

from previous studies or from significance tests or similar statistical analyses (see discussion for the HOA and COA thresholds 

in Section 0 for such an example). 305 

The computational time required for criteria application subsequent averaging is typically on the order of minutes to hours 

with a modern multicore PC, depending on the amount of accepted PMF runs. Thereafter, the results can be inspected in real-

time allowing the user to efficiently investigate the set of PMF runs and if needed, test various criteria. 

2.3.4 Chosen criteria in this study 

In this study one criterion per factor was defined, although it is possible to apply multiple criteria to the same factor, as each 310 

criterion is assessed individually on an accept/reject basis. 

Figure 2 shows the criterion scores calculated for each PMF run, with each plot representing an individual factor. The gray 

points show the score values for all PMF runs, the blue points denote PMF runs where criterion thresholds are satisfied, and 

the green points represent PMF runs where criterion thresholds for all criteria are simultaneously fulfilled. These green points 

are then used to compute the final PMF solution. The criteria and their corresponding thresholds applied for each criterion 315 

(blue points in Figure 2) are also reported in Table 2 (1st value). 

In the current study, the thresholds for the criteria of HOA and COA were determined based on statistical analyses with the 

help of the results from conventional (no rolling technique) seasonal PMF from previous studies (Canonaco et al., 2013; 

Canonaco et al., 2015). The contribution of HOA and its tracer eBCtr were bootstrapped together and the correlation coefficient 

(RPearson) was evaluated each time, leading to a distribution for RPearson. Similarly, the time series of COA was bootstrapped and 320 

the lunch peak enhancement in COA evaluated each time (COA11+12+13hrs/COA 9+10+14+15hrs), leading to a distribution for the 
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lunch peak concentration. Finally, the 10th percentile value was chosen as threshold score value. These seasonal thresholds are 

also visible as steps in the score plots (blue points in Figure 2 a) and b), respectively) and are also reported in Table 2 (2nd 

value in brackets). For spring 2011, summer 2011 and winter 2012 however, the resulting thresholds for HOA either caused 

too many missing time-points (RPearson = 0.8) or had rather non-significant correlation coefficients (RPearson = 0.2, with a p value 325 

of 0.4, n = 24 as for the other seasons). Hence, these thresholds were systematically lowered for spring 2011 and increased for 

winter 2012 to achieve the highest possible correlation coefficient with maximal data coverage, i.e. same nnon-modelled when 

considering all PMF runs for these periods in these criteria. 

NOx is a typical tracer for HOA in urban areas. However, due to incomplete NOx measurement coverage in this campaign 

(especially during spring and fall), eBCtr is used as a traffic tracer and the RPearson correlation coefficient is computed between 330 

the diurnal cycle of eBCtr and the HOA factor.  

As is frequently the case, no chemical tracers for COA were available in this study. Previous measurements in Zurich 

(Canonaco et al., 2013; Canonaco et al., 2015) have demonstrated a strong diurnal pattern for COA, with an increased 

concentration during lunchtime. As a proxy for COA, the lunch-time COA enhancement is monitored (Table 2). 

The wood burning contribution to black carbon (eBCwb) as determined by the eBC source apportionment (eBC-SA) method 335 

of Sandradewi et al. (2008) was considered as a possible criterion for BBOA but then rejected. The eBC-SA analysis applies 

to air masses highly influenced by biomass burning and has been validated for winter data only. Uncertainties in eBCwb during 

warm seasons, when the biomass burning contribution is small, have been shown to be quite high (Harrison et al., 2013). 

Therefore, it was decided to use another metric for BBOA, exploiting the key spectral feature at m/z 60. For BBOA the 

explained variation (EV) (Paatero, 2010) for m/z 60 is monitored as follows: 340 

𝐸𝑉௝,௞ =
∑ (ห௚೔ೖ∙௙ೖೕห/ఙ೔ೕ)೙

೔సభ

∑ ((∑ ห௚೔೓∙௙೓ೕหା௘೔ೕ)
೛
೓సభ

/ఙ೔ೕ)೙
೔సభ

           (5) 

This threshold is chosen following the recommendation in Paatero (2010), where a variable modelled by its mean explains 

already ~25% of the variation. If the measured variability of a variable is explained by a specific factor, that factor must capture 

more than the mean value of the variable, and hence Paatero (2010) recommended 30-35 % as a minimum EV. However, using 

30 or 35 % as threshold resulted in several weeks of non-modeled time-points in particular for spring and fall 2011. a-value of 345 

25 % resulted in a reasonable compromise between EV and the amount of non-modeled time-points. Note that this approach 

requires the assumption that m/z 60 should be predominantly explained by BBOA, which is likely true when the fraction of 

OA signal occurring at m/z 60 (f60) is relatively high. However, for measurements where f60 is low, m/z 60 is more likely to 

have also contributions from other sources. A rough guideline for utilizing this criterion is a threshold for biomass burning 

influence of f60 = 0.003 as identified by Cubison et al. (2011). In the current dataset, ~85 % of all measured time-points 350 

exceeded this threshold. Every measured day was observed to comprise at least some time-points (in winter, spring and fall 

almost all points whereas in summer mostly evening points) above this threshold, suggesting that the criterion is valid 

throughout the dataset. 
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Ng et al. (2010) described higher f43 and lower f44 for the mass spectrum of SV-OOA, and vice versa for LV-OOA. Therefore, 

f43 and f44 are used as proxies for SV-OOA and LV-OOA or OOA, respectively. For LV-OOA (Figure 2 d, Table 2) all score 355 

values are allowed here, whereas for SV-OOA (Figure 2e, Table 2) the PMF runs meeting the thresholds for the five-factor 

solutions are selected. This threshold corresponds to the point where nnon-modelled is minimal with respect to this criterion, i.e. 

considering all PMF runs in this criterion leads to the same nnon-modelled, at highest possible f43 for SV-OOA. 

The criterion of SV-OOA is further used to differentiate between four- and five-factor solutions on the window-runs. For the 

PMF windows where no five-factor solution with SV-OOA is selected, the set of four-factor solutions in the corresponding 360 

PMF window is automatically selected (green points at zero in Figure 2e). Finally, the averaging procedure also controls and 

prevents that four- and five-factor solutions are simultaneously considered for the averaging of single time-points by 

privileging five-factor solutions, i.e. any time-point containing accepted PMF runs with both 4- and 5-factor solutions retains 

only the 5-factor solution. 

3 Results 365 

3.1 Brief statistical analysis of the rolling result 

The amount of nnon-modelled resulting from the criteria and thresholds reported in Table 2 yields 99.31 % data coverage, 

corresponding to a total of only 3 non-modelled days. Overall, the selected criteria resulted in 1’970 accepted PMF runs (~5.6 

% out of the 35’100 PMF runs). The Q/Qexp has an average value of 4.4, a median of 4.8, and the first and third quartiles are 

3.7 and 5.5, respectively. These values are reasonable, given that many previously conducted AMS studies reported values 370 

between 1 and 10 (Zhang et al., 2011). On average, each data point has 43 replicates (median = 24, first and third quartiles 9 

and 60, respectively), which are used to assess the statistical uncertainty of the PMF solution as discussed in Section 0. 

3.2 Factor time series 

3.2.1 Overview 

Figure 3a shows the time series of each factor for the entire dataset as a mean, averaged over all accepted PMF runs. The data 375 

from Figure 3a is re-averaged to monthly and seasonal means and shown in Figure 3b and 3c, respectively. For Figure 3c, 

seasons are defined as follows: winter is December - February, spring is March - May, summer is June - August, and fall is 

September - November. 

In winter, spring and fall the concentrations of primary organic aerosols (HOA, COA and BBOA) are approximately 40 % 

compared to the 60 % of the (secondary) oxygenated organic aerosols (SV-OOA, LV-OOA or OOA). In summer the primary 380 

fraction decreases to reach minimum values of 30 % compared to 70 % of OOA. The relative fractions of HOA and COA are 

rather constant, contributing on average between 0.4-0.7 g∙m-3 (7.8-9.0 %) and 0.7-1.2 g∙m-3 (12.2-15.7 %), respectively 

throughout the year. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6 g∙m-3, 12.0 %), 
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slightly higher mean concentrations during spring and fall (1.0 and 1.5 g∙m-3, or 15.6 and 18.6 %, respectively) and highest 

mean concentrations during winter (1.9 g∙m-3, 25.0 %). Only during summer, the bulk OOA is completely separated into SV-385 

OOA and LV-OOA, with mean concentrations of 1.4 g∙m-3 (26.5 %) and 2.2 g∙m-3 (40.3 %), respectively. 

 

For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA comprise 0.3-1.1 g∙m-3 (3.4-15.9 %), 

0.6-2.2 g∙m-3 (7.7-33.7 %) and 0.9-3.1 g∙m-3 (13.7-39.9 %), respectively.  

The time series of the primary OA factors HOA, COA and to some extent BBOA are rather spiky (Figure 3a), underlining a 390 

strong influence of local sources. The COA spikes that are present from May 2011 through the end of September 2011 are 

likely due to local barbecuing events during the evening, as also observed in an earlier study at this site (Lanz et al., 2007). 

The highest COA concentrations are observed in early July 2011, where the NR-PM1 mass concentrations reached 70 g·m-3, 

and correspond to three consecutive evenings/nights of a yearly Latin American dance and grill festival (Caliente). During this 

festival, the courtyard containing the measurement site was filled with food and grill stands, explaining the dominant 395 

contribution of COA. Throughout the summer and spring and less frequently in autumn/winter SV-OOA was modelled in 

addition to LV-OOA. This warm period was characterized by high daily temperatures and induced on the one hand variability 

in the condensed OOA allowing for separation of SV-OOA and LV-OOA and on the other hand increased emissions of 

biogenic SV-OOA precursors (Canonaco et al., 2015). 

3.2.2 Daily cycles 400 

Figure 4 summarizes the weekday (left) and weekend (right) daily cycles for the modelled factors. The daily cycle of HOA 

follows the averaged daily cycles of the estimated traffic of eBC (eBCtr) and of NOx. The same is true for the daily cycle of 

BBOA following that of the biomass burning of eBC (eBCwb). HOA, eBCtr and NOx exhibit a clear rush-hour peak on weekdays 

and none on the weekend. During the weekdays, a small lunch peak is visible for COA underlying the meal activity during the 

working days and the presence of many restaurants in this area. There are no evident differences between the weekday and 405 

weekend daily cycles of LV-OOA, SV-OOA and OOA. LV-OOA and OOA show rather flat daily cycles, similar to their 

inorganic aerosol tracers SO4
2- and NH4

+, respectively. This is in line with their most-likely regional background, as already 

suggested earlier (Canonaco et al., 2015). Only the concentration of SV-OOA tends to decrease during the afternoon, 

suggesting its volatile nature, similarly to its inorganic aerosol tracer NO3
-. The weekly cycle for HOA, COA, BBOA and the 

OOAs including their tracers eBCtr, NOX, eBCwb, SO4
2-, NO3

- and NH4
+, respectively are reported in Supplement B. Apart 410 

from OOA, the weekly cycle for HOA, BBOA, SV-OOA and LV-OOA are in good agreement with their tracers. 

3.2.3 Comparison with external data 

The analysis and further validation of the PMF runs using the criteria-based selection are performed on the PMF results of the 

rolling windows and therefore, correlations are performed over 14 days in this study. The performance of the rolling strategy 
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can then be verified by the factor / tracer correlation, e.g., on average over the seasons (Table 3). Moreover, the same factor to 415 

tracer correlations are also evaluated for the seasonal pre-tests (PMF runs over the seasons with no rolling strategy) and are 

reported in brackets in Table 3. 

NOx data is available only in winter and fall 2011. Both NOx and eBCtr are correlated with HOA over the full year and within 

individual seasons. The correlation values with NOx, are lower compared to those found in Canonaco et al. (2013). However, 

in Canonaco et al. (2013) the data covered mostly the two winters including some parts of spring and fall. For the latter two 420 

seasons NOx data was not properly validated and was consequently removed from further analysis (no NOx data is available 

for spring and summer). Moreover, in Canonaco et al. (2013) the model validation was strongly based on the first winter 

period, and when performing the correlation between HOA and NOx data for that period only, the correlations were similar 

also in the current study (not shown in the table). 

BBOA shows substantial correlation to eBCwb in fall and winter, as also found in Canonaco et al. (2013), while the correlation 425 

is low in spring and very low in summer. These low correlations are expected, since the determination of eBCwb is highly 

uncertain when the eBCwb/eBCtraffic ratio is low. Wood burning source apportionment of eBC data, as already stressed above, 

is not suited under warm conditions with low biomass burning contributions. However, the correlation is good over the full 

year, as the problematic data anyways yields eBCwb concentrations near zero, and the correlation is thus driven by the data 

with high signal to noise ratios. 430 

High correlations between LV-OOA and SO4
2- are seen over the year as well as for spring and fall, whereas they are lower in 

summer, as shown in Table 3, in contrast to Lanz et al. (2007) (RPearson = 0.5 between LV-OOA and SO4
2- during a summer 

AMS campaign). The correlation between SV-OOA and NO3
- is higher for winter 2011 and summer but lower in spring and 

fall. This is understandable, as the spring and fall represent the transition between modelling SV-OOA and LV-OOA (summer) 

compared to one OOA only (winter). The correlation between SV-OOA and LV-OOA for winter 2012 is not shown due to the 435 

low number of time-points for which both OOAs were modelled. OOA correlates well with NH4
+ throughout the year in 

accordance to summer and winter data reported previously (Lanz et al., 2007; Lanz et al., 2008; Canonaco et al., 2013). In 

contrast to the OOAs, few differences are observed for BBOA, HOA, or COA between the two winters. This supports the 

conclusion that the different OOA behavior in these two winters reflects actual meteorological and chemical differences rather 

than mixing and / or splitting between the POA and SOA factors. 440 

Importantly, the rolling results show generally higher correlations with the external tracers than do the conventional seasonal 

PMF runs (values in brackets in Table 3). This demonstrates that the rolling approach generally outperforms the conventional 

seasonal PMF analysis. 

3.3 Time-dependent factor profiles 

The mean factor profiles of the six modelled sources/components over the entire year are presented in Figure 5. Error bars 445 

show one standard deviation of profile variability across the entire measurement year. Note that this variability comprises both 
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the time-dependent variation of the factor profiles and the PMF error (see Section 0. for more details on the discussion of the 

errors in this study). 

A better understanding of the temporal variation of the factor profiles is gained when inspecting them over time. Figure 6 

shows the fractional contributions of m/z 41, 43, 44, 55, 57 and 60 to each factor profile as a function of time. Each variable is 450 

normalized by its mean contribution. In general, the variation of the fractions for the primary OA factors (HOA, COA and 

BBOA) seems small compared to the variability of the oxygenated factors (LV-OOA, SV-OOA and OOA). The primary OA 

factors show low profile variability with almost no seasonal pattern. Note that minimum and maximum values of these 

variables for the primary OA factors (less pronounced for HOA and COA) reach ~0.6 and 1.4, respectively, i.e., the boundaries 

given by amax. The 75th percentiles of the a-values for HOA, COA and BBOA touches amax less than 0.9 % of the time and the 455 

90th percentile hits amax 34 %, 24 % and 73 % of the time (see Supplement D Figure S5). This suggests that the factor profiles 

are not limited by the constraining technique, but rather by the employed scheme of criteria. Allowing for higher amax and 

loosening the criteria threshold would most likely increase the variability in these ions but would also lead to mixed and 

environmentally unreasonable solutions. 

This is different for the oxygenated factors. LV-OOA, SV-OOA and OOA for example contain high m/z 60 for the colder 460 

season, likely indicating biomass burning influences (Canonaco et al., 2015; Heringa et al., 2011, Qi et al., 2019). In addition, 

m/z 57 shows a strong seasonal pattern, i.e., high in winter and low during summer for SV-OOA and LV-OOA. Strong peaks 

are also observed for m/z 43 in LV-OOA during summer. This is due to less oxygenated bulk LV-OOA compared to the winter 

in Zurich, when LV-OOA or OOA represent more oxygenated aerosol with higher m/z 44 and lower m/z 43, as already noted 

in Canonaco et al. (2015). SV-OOA also contains a very strong increase in m/z 55 during the Caliente episode. Most likely 465 

one COA factor alone is insufficient to capture all the variability of m/z 55. As a consequence, PMF uses an additional factor 

for modelling the variability of m/z 55, here SV-OOA which may contain some characteristics of cooking SOA, as the latter 

has been shown to have non-negligible contribution at m/z 55 as well (Klein et al., 2016). Further evidence comes from Figure 

6e (and also Supplement C Figure S4), where m/z 55 and m/z 43 peak around Caliente in SV-OOA and LV-OOA, respectively. 

Moreover, m/z 44 drops in LV-OOA. This implies that SV-OOA has some characteristics of cooking while LV-OOA becomes 470 

more SV-OOA-like during Caliente. The period of influence of these peaks lasts until 8-10 days before and after Caliente, 

most likely as it is incorporated during the window-runs 14 days before and after Caliente.  

The time-dependent mass spectral matrix of the factors can be found in the Supplement, section C, although a detailed analysis 

is beyond the scope of the current study. When employing this type of analysis, future studies should investigate in more detail 

changes of the variables in the factor profiles. This information might provide new insights on seasonal or source-specific 475 

markers, essential for source apportionment analyses. 

3.4 Residual analysis 

Figure 7a and b show the scaled residuals as functions of m/z and time, respectively. The scaled residuals do not reveal any 

systematic over- or underestimation. The data scatters around zero with the interquartile range almost always between +/- 3 
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throughout the entire year evidencing the good quality of the PMF solution on average (+/- 3 is the reasonable range for scaled 480 

residuals defined in Paatero and Hopke (2003)). The highest residuals occur during the Caliente festival (beginning of July), 

as shown by the dark red spike (interquartile range) in the time series plot (Figure 7b), when the PMF solution is strongly 

influenced by extremely local and short-term cooking and biomass burning sources that are not fully captured by the retrieved 

COA and BBOA factors. 

This results in a change of the factor profiles of COA and BBOA and SV-OOA (as already stressed in Section 0). However, 485 

the COA, BBOA and SV-OOA profiles roughly 8-10 days before and after Caliente are again consistent with those retrieved 

during the rest of the season, i.e. the unique fingerprint during the Caliente episode does not strongly influence the solution of 

the PMF-windows around Caliente. A few other episodes in spring (May) and at the end of the summer (September) reach 

also higher scaled residuals. In the current dataset, these likely indicate PMF runs that have not fully captured profile responses 

to rapid meteorological changes (colder to warmer season and vice versa). This happens on a shorter time scale than the chosen 490 

PMF window and as a consequence cannot be fully captured by the 14-day PMF windows, causing PMF solutions with mixed 

factor profiles and higher scaled residuals. Note that during the last third of the campaign the scaled residual distribution tends 

to be broader. This is due to technical problems on the ACSM inlet system mainly related to the filter valve clogging, causing 

noisier signals and consequently noisier PMF results for the valve switching system employed at that time. This condition is 

not accounted for by the ACSM error model and increases the scaled residuals. 495 

3.5 Uncertainty of the PMF solution 

Within this study, each PMF run combines a random selection of a-values for the three constrained POA factors with random 

(time-based) resampling of the input matrix. PMF runs satisfying the acceptance criteria are retained for the final result leading 

to several repeats for each time-point i. The variability among these repeats at each i can be used to infer the rotational and 

statistical uncertainty. These two types of uncertainties are discussed below and are collectively referred to as PMF error within 500 

this study. Additional contributions to the overall uncertainty of this analysis that are not assessed here include anchor profile 

selection, as well as the error related to the criteria construction, such as the type of criterion (correlation, diurnal, profile 

characteristics, etc.), tracer selection, and its related threshold selection. The proposed relative PMF error in percentage in this 

study is given by the following formula: 

𝑃𝑀𝐹௘௥௥௢௥ =
ଵ଴଴

ଶ∙௡
∙ ∑ ቀ

ఙ

௔௩௚
ቁ

௜

௡
௜ୀ଴           (6) 505 

where 𝜎 is the standard deviation and avg is the mean value of all replicates of a time-point i. The probability density function 

(pdf) of 𝑃𝑀𝐹௘௥௥௢௥  for each time-point i ቀ
ఙ

௔௩௚
ቁ

௜
 is reported in Figure 8. The relative PMF errors are given by the center of the 

lognormal fit (x0) as visualized in Figure 8 and are for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA  34 %,  27 %, 

30, 11 %, 25 % and 12 %, respectively. 
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The data reported in Figure 8 was first log-transformed, as the untransformed distribution was skewed to the right, mostly due 510 

to time-points with low signal to noise ratio that would have had a stronger impact on the final error calculation using an 

untransformed, i.e., linear representation. 

4 Recommendations and current limitations 

The techniques described in this study are relevant for long-term source apportionment (SA) studies, in particular for ACSM 

data. The stability of the primary profiles (HOA, COA and BBOA) suggests that they are rather independent from the season, 515 

and that employing primary OA factors coming from other SA studies (here profiles from an AMS SA in Paris conducted 

years earlier) using, e.g., the a-value constraints, works even for long-term SA. However, this outcome is not completely 

independent as it results from the defined amax as well as the applied scheme of criteria with their corresponding criteria 

thresholds. Increasing these thresholds would most likely increase the variation in the POA factor profiles but would also favor 

more mixing between these factors. Significant seasonal changes in factor profiles were found for SV-OOA and LV-OOA. 520 

Hence, the rolling mechanism is essential, when accurately apportioning the oxygenated organic aerosol fraction. The use of 

a 14-day window, as already proposed by two former studies (Fröhlich et al., 2015; Parworth et al., 2015), was shown to be 

appropriate for this long-term SA analysis and represents a promising starting point for future long-term SA studies, although 

detailed evaluation for datasets with other sources and temporal characteristics is needed. 

In general, selection of the rolling window size (swin) should consider both the fraction of non-modelled time-points (see Figure 525 

1) and interactions between swin and solution acceptance criteria. The latter point is illustrated by the use of the relative intensity 

of the COA lunchtime peak in this study. This peak was observed to be almost absent during the weekend. As a consequence, 

avoiding systematic biases in the fraction of non-modelled time-points requires the swin to be larger than 7 days to guarantee 

the presence of weekdays in every window-run. Employing a reliable tracer even during the weekends for the cooking source 

would have allowed for a better exploration of swin below 7 days, as similar Q/Qexp values resulted for 3, 7 and 4 days windows, 530 

as shown in Figure 1. 

The importance of defining the proper number of factors is strongly emphasized when analyzing transient events, e.g. the 

Caliente episode. This becomes even more important when performing automated source apportionment schemes, where the 

ability of factors to dynamically change and adapt to the current window-run is limited, as it is the case for the current rolling 

mechanism presented in this study. During Caliente the variability of m/z 55 required two cooking factors to be fully described. 535 

With only one cooking factor allowed, other unconstrained factors (especially SV-OOA) took on some cooking characteristics. 

This resulted in mixed SV-OOA and LV-OOA factors, as m/z 55 and m/z 43 were clearly peaking around Caliente for SV-

OOA and LV-OOA, respectively. Relevant transient events that should still be part of the SA result would most likely require 

further attention with additional and separate PMF runs, where the user can better control the required number of factors and 

swin. Such problems are clearly evident from diagnostics such as increased residuals (Figure 7b) and sudden changes in factor 540 

profiles (Figure S3 and S4), facilitating their appropriate identification and treatment. A 14-day window is likely too large for 
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transient events representing a small fraction of swin, where the latter strongly influences the contributions of the data for swin 

days around the event.  

Crippa et al (2014) already demonstrated for 25 AMS datasets that an amax of 0.3 for the constrained information was often 

required for those SA studies. For the present algorithm and dataset, an amax of 0.4 was shown to be ideal. Smaller amax did not 545 

allow the constrained profiles to sufficiently adapt to the data, whereas higher values were subject to mixing of the profiles. a-

value limits strongly depend on how well the fingerprint matches the PMF input. Fingerprints applied obtained by SA analyses 

of other locations or during other meteorological conditions might require a higher a-value limit compared to those extracted 

from, e.g., a pre-analysis conducted on a subset of the PMF input. 

The other remaining free parameters (xPMF and in particular the choice of the criteria and their corresponding thresholds) must 550 

be assessed by the user for any new SA study, as they may strongly depend on site/source characteristics and tracer availability. 

Moreover, investigation of various tracers as criteria-candidates for one source is also very desirable, as it allows to quantify 

errors when discussing factor-tracer interchangeability.  

Unlike batch-style PMF (i.e., a single PMF run encompassing the entire dataset), here corrections or scaling factors affecting 

entire rows or columns of the input data matrix should be applied prior to SA analysis. For example, the collection efficiency 555 

(CE) parameter applied for ACSM data analysis is applied to all measured m/z’s of a mass spectrum and does not alter the 

relative contributions obtained by a single PMF result. However, it does affect the overall source apportionment returned by 

the rolling window strategy presented within this study. This comes from the fact that the final source apportionment result is 

the aggregate of a set of accepted solutions whose criteria for acceptance may include goodness of correlation with an external 

tracer, and such correlations are affected by CE. Therefore, applying CE post-PMF will require the user to re-evaluate the 560 

score plots and to reassess the criteria thresholds. 

It is likely that the PMF errors reported above can be further reduced by further refinements to the rolling window algorithm. 

One major limitation is the application of season-specific criteria thresholds. In the future, criteria thresholds with a higher 

temporal resolution are certainly desirable. Another major limitation is the continuous presence of the primary OA factors 

during the entire analysis. Similarly to the (de)activation of SV-OOA within this study, in the future one or more factors should 565 

be (de)activated during the evolution of the rolling approach to better cope with the complex and dynamic real atmospheric 

conditions. 

5 Conclusion 

A rolling-window PMF algorithm was applied to NR-PM1 organic data measured with an ACSM between February 2011 and 

February 2012 in downtown Zurich, Switzerland. The rolling approach allows for a source apportionment of time-dependent 570 

factor profiles and has several advantages, e.g., very fast PMF runs of rather small PMF runs (few seconds for 14 days 

windows) compared to conventional batch analysis (several minutes, as PMF run is always the entire dataset) or one factor per 

source compared to several factors in batch analysis to cope with time-varying factor profiles. Moreover, the rolling technique 
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is particularly helpful for the analysis of automated and / or continuous analysis of both long-term and continuously growing 

datasets, where batch analysis is at best inefficient and probably not feasible. Factor/tracer correlations were shown to be 575 

higher for the averaged seasonal analysis (from the rolling window) than for the seasonal pre-tests (PMF runs with no rolling). 

This highlights the improved performance of the rolling PMF runs compared to conventional batch PMF analysis for long-

term data. 

PMF runs were conducted where the a-values of the constrained factor profiles were randomly changed within the boundaries 

0 to amax in conjunction with the bootstrap resampling strategy. The resulting PMF runs were selected and studied using the 580 

criteria scheme based on information on the sampling site from previous SA studies. This method has shown its usefulness 

when evaluating and studying hundreds of thousands of PMF runs. The criteria used here consisted of features in the diurnal 

patterns of HOA and COA, the amount of explained variation of m/z 60 attributed to BBOA, and representation of OOA by 

one or two factors depending on the difference between SV-OOA and LV-OOA in f43 values. 

The separation between the primary OA factors (HOA, COA and BBOA) and oxygenated organic aerosol (SV-OOA, LV-585 

OOA and OOA) was rather robust throughout the year. HOA and COA were rather constant, whereas BBOA showed a very 

strong seasonality with the highest contribution in winter and lowest in summer. The model separated OOA into SV-OOA and 

LV-OOA mainly during the warm season (spring and summer), including a warm episode during the first winter. Strongest 

changes of the factor profiles where visible for the oxygenated species SV-OOA and LV-OOA, whereas the primary species 

HOA, COA and BBOA showed smaller variations. Hence, the rolling mechanism is certainly essential when properly 590 

apportioning the oxygenated organic aerosol fraction. 

The model was still able to separate a semi-volatile fraction for the colder seasons based on the variation in m/z 43 and 44, 

where very little variation was present in nitrate, often used as a tracer of SV-OOA. 

The rotational and statistical uncertainties were assessed via random a-values exploration and bootstrap resampling. The 

relative PMF errors (expressed by the standard deviation divided by the average concentration of all replicates per time-point) 595 

are on average  34 %,  27 %, 30, 11 %, 25 % and 12 % for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA, 

respectively. 

Finally, the free parameters tested and validated in this study, i.e., the 14-day window length, 0.4 as upper limit for the a-value 

of the constrained primary OA factor profiles, together with the scheme of criteria and the xPMF per window-run, depend on 

the sources and meteorological conditions of Zurich downtown. When applying this new rolling strategy on datasets dissimilar 600 

to Zurich, some or all of these parameters might be subject to investigation to achieve a complete and quantitative source 

apportionment analysis. 
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a)                b)              c) 

                   845 

Figure 1: The mathematical metric Q/Qexp (left axis, red points) and the percent of non-modelled time-points (nnon-modelled) 
(right axis, blue points) over the entire dataset are reported as a function of window size (swin), maximum a-value (amax), and 
number of PMF repeats per window (xPMF). In each plot, two of these three parameters are fixed at their optimum values and the 
third is varied: (a) swin, (b) amax, (c) xPMF. Optimum values are swin = 14 days, amax = 0.4, and xPMF = 50. For all runs, criteria 
are defined as described in Section 0. 850 

 

 

 

Table 1: Overview of the rolling mechanism and the repeats of the PMF analysis. 
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Rolling mechanism 

 a 14-day time window is defined 
 window is shifted by one day over the entire dataset 

PMF analysis 

 for each window a four- and five- (HOA, COA, BBOA and one up to two OOAs) factor 
PMF run is performed, where HOA, COA and BBOA are constrained within the a-value 
approach. 

 PMF runs are initialized 50 times from random starting points for the unconstrained 
information in G and F (seeds). The a-values for the constrained factor profiles are 
randomly and independently varied from a = 0 to a = 0.4 with a resolution of a = 0.1 (a-
value exploration). In each run the PMF input is resampled within the bootstrap method. 

 855 
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b)             d) 860 
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     e) 

 

Figure 2: PMF runs sorted based on the scores (gray points), PMF runs fulfilling the criterion thresholds (blue points) and PMF 
runs fulfilling criterion thresholds in all criteria (green points). The five criteria are a) diurnal correlation between HOA and eBCtr 865 
(seasonal thresholds from statistical analysis), b) relative lunch peak for COA (seasonal thresholds from statistical analysis), c) 
explained variation of m/z 60 for BBOA, d) f44 in LV-OOA profile and e) f43 in SV-OOA profile, respectively. Note that e) contains 
three episodes with zero points, which represent four-factor solutions automatically selected by the algorithm, where no five-factor 
solution was manually selected (and the SV-OOA criterion is thus irrelevant). 
 870 

 

 

Table 2: Criteria scheme employed in this study. The first value represents the applied threshold for the final PMF solution and the 
values in brackets for HOA and COA stand for the threshold value coming from the seasonal resampling analysis. f44 for LV-OOA 
is used for factor sorting rather than as an acceptance/rejection threshold. 875 

factor criteria types criteria thresholds 
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winter 

2011 

spring 

11 

summer 

2011 

fall 

11 

winter 

2012 

HOA 
daily cycle correlation (RPearson) 

between HOA and eBCtraffic 
0.6 (0.6) 0.7 (0.8) 0.5 (0.2) 0.6 (0.6) 0.5 (0.2) 

COA 
rel. lunch peak (11+12+13 hrs) 

to (9+10+14+15 hrs) 
1.2 (1.2) 1.1 (1.1) 1.1 (1.1) 1.2 (1.2) 1.1 (1.1) 

BBOA explained variation of m/z 60 0.25 0.25 0.25 0.25 0.25 

LV-OOA  44 in profile N/A 

SV-OOA f43 in profile 0.08 

 

 

 

 

a) 880 
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 b)            c)  

 

Figure 3: a) 30 minutes average concentrations b) relative contributions c) pie charts for the calendar seasons of the sources between 885 
February 2011 and February 2012. Gaps in the data represent interruptions due to maintenance and / or technical problems of the 
ACSM during the last third of the campaign, mostly due to clogging issues on the ACSM inlet. The lower values in the pie charts 
are the seasonal mean contributions in g∙m-3. Note that the OOA factors are represented either as LV-OOA and SV-OOA (5-factor 
solution) or OOA alone (4-factor solution). 
 890 
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Figure 4: The weekday (left) and weekend (right) diurnal cycles for the entire period (February 2011 – February 2012). 
The thick lines represent the medians and the shaded areas span the interquartile ranges. Typical external tracers are 895 
also shown for comparison, i.e., eBCtr and NOx for HOA, eBCwb for BBOA, SO4

2- for LV-OOA, NO3
- for SV-OOA and 

NH4
+ for OOA. 

 

 

 900 

Table 3: Correlation coefficients (RPearson
2) with a significance level of p >= 0.01 between the factor contribution and 

expected tracers over the year and the meteorological seasons as defined above. The first value describes the correlation 
for the rolling result, whereas the value in brackets is for the seasonal PMF result (no rolling). 

factor year winter 

2011 

spring 

2011 

summer 

2011 

fall 2011 winter 

2012 

HOA / NOx 0.29 0.18 (0.21) - - 0.33 (0.24) 0.17 (0.18) 

HOA / eBCtr 0.36 0.45 (0.44) 0.28 (0.28) 0.22 (0.08) 0.38 (0.31) 0.42 (0.27) 

COA - - - - - - 

BBOA / eBCwb 0.32 0.36 (0.23) 0.22 (0.07) 0.06 (0.01) 0.35 (0.22) 0.43 (0.41) 

LV-OOA / SO4
2- 0.48 0.37 (0.41) 0.60 (0.50) 0.30 (0.26) 0.54 (0.30) - 
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SV-OOA / NO3
- 0.05 0.24 (0.06) 0.03 (0.01) 0.31 (0.29) 0.15 (0.04) - 

OOA / NH4
+ 0.60 0.71 0.58 - 0.39 0.70 (0.59) 

 

 905 

 

 
Figure 5: The mass spectra of the six factors. The spectra have been truncated at m/z 100 to facilitate the comparison 
of the key m/z in the lower range. Error bars represent one standard deviation of the profile variability across the entire 
year. 910 
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a)             b) 

           

c)            d) 915 

           

e)            f) 
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Figure 6: Daily averaged fractions of important AMS/ACSM variables. Each variable is normalized by its mean to 
better stress its temporal variation. 920 
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  925 

b) 

  
Figure 7: a) scaled residuals over m/z’s, b) scaled residuals over time and c) total histogram of scaled residuals. 
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a)        b)            c) 

   

d)        e)            f) 

   935 
  

Figure 8: Probability density functions for the PMFerror of the six factors as a logarithmic representation on the x-axis. 
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