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Response to the Reviewers

1 Response to Reviewer #1

We would like to thank you for providing us a detailed review of our manuscript. We are glad that we can submit a revision of
our paper. In the following text, we will respond to all comments.

This paper presents an inverse modelling study of airborne Ru-106 detections made in the Czech Republic in the
fall of 2017. An existing inverse modeling algorithm, already successfully applied in earlier studies, is used and the
results are compared (and found compatible) with other studies that considered the Ru-106 detections. Furthermore,
in this study the authors also describe two new detection systems. The motivation for the new detection systems is that
they will provide observations with a higher temporal resolution, which is obtained by reducing the sampling time
(CEGAM system) or by measuring during sampling (AMARA system). Finally, the authors consider different data sets
to perform the inverse modelling. They conclude that inverse modelling using data with shorter sampling times (thus
having a higher temporal resolution) performs equally well or better than inverse modelling using data having sampling
times of a few days up to one week. This paper is relevant and results are compatible with previous studies, although I
think the conclusions related to the added value of the new measurement systems are not well supported by the results.
Furthermore, the chosen case study — although being a very important and interesting case — is likely not well-suited
to fully demonstrate the added value of such systems given the large geotemporal scales of the Ru-106 release (having
source-receptor distances of thousands of kilometers).

Specific comments:

In the abstract, the authors wrote: “Since reasonable temporal resolution of concentration measurements is crucial
for proper source term reconstruction, the standard one week sampling interval could be limiting”. Although it is
sensible that better temporal resolution will lead to better source reconstruction, I’m wondering how important the
limiting effect is. The effect is likely case-dependent, and in particular more pronounced for problems with shorter
geotemporal scales. In that light, the Ru-106 case might not fully demonstrate the added value of short sampling times.
A test with a fictitious source and fictitious measurements would be instructive (one test at scales of a few hunderds
of kilometers, and another test at a few thousands of kilometers). The fictitious experiment could demonstrate and
quantify the limiting effect of long sampling times in a more controlled way.

Authors response: We agree with the reviewer that the Ru-106 case is not a perfect match to study the influence of a fast
measuring system in details. We prefer to avoid a synthetic study since its results would be sensitive to our simulation
setup. The Ru-106 event was the first significant release with a fully operational AMARA system and it is also well
studied in the literature which allows discussion of the obtained results. To provide more solid evidence on the added
value of the fast measurements, we extended the paper by additional simulation using the FLEXPART atmospheric
transport model (see details in other responses below). The new simulation using a completely different simulation tool
resulted in the same conclusion, supporting our previous claim that was based on a single model (HYSPLIT) and thus
could have been obtained by chance.

Changes made in the paper: We employ the FLEXPART model to the same datasets to demonstrate that the results are not
obtained by change but are systematic.

The AMARA and CEGAM measurement system descriptions are not clear to me. Specifically: p 5, line 9: “The
achieved MDAC for Ru-106 is at a level of 1 mBq/m3 per one-hour integration time and 12 hours of sampling.” Does
this mean that an activity concentration measurement is available every hour, and that the filter is renewed every 12
hours? And for the CEGAM system, a measurement is available every 4 hours, and the filter is renewed every 4 hours?
What is the philosophy of having two different systems, and will both systems be used and maintained in the coming
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years? p 5, line 8: the reference to Fig 2 is slightly confusing since no 4-hour averaging is applied for the AMARA
system?

Authors response: There are two time intervals affecting the final MDAC - the duration of measurement and the duration of
the sampling. Spectra in the AMARA system are measured (sampling duration) every 5 minutes and therefore arbitrary
sums (measurement duration) could be computed afterwards. On the other hand, CEGAM system is limited by the time
step of carousel mechanism therefore the sampling duration is equal to measurement duration.

Changes made in the paper: We have extended section 2 in order to better describe the measurement/sampling logistics. The
difference between both systems and their intended use is also briefly discussed.

p 6, line 5: “Unfortunately, the CEGAM system was not yet operational during the Ru-106 incident but we have
simulated its output by integrating the AMARA results in a 4 hours window.” Some additional information would be
helpful here. If CEGAM pseudo-observations are used based on the AMARA observations, then they would contain the
same information? I assume the simulated output is not used for the inversion, but it would be good to confirm this in
the text.

Authors response: Indeed, the use of simulated output would be pointless since it would contained the same information. All
data used for inversion are based on AMARA system, the CEGAM system was set to operational regime later. We agree
that the sentence was not clear and we state clearly this fact in the current version of the manuscript.

Changes made in the paper: We reformulated the sentence to avoid misunderstanding.

Section 2.3: Dataset description: I think it would be good to add a figure or table that summarizes the different
datasets (range of observed activity concentrations, number of observations, number of (non-)detections. After consult-
ing the Supplementary Information, I am a bit worried that the differences between data set “RAW” and “FAST” are
too small to be significant. Also, why is the integration window set to be between 3 and 13 hours? From Sections 2.2.1
and 2.2.2, I expected that measurements from the AMARA system would be available every hour (and measurements
from the CEGAM system every 4 hours)?

Authors response: Thank you for pointing this out, we agree that graphical representation of measurements would be instruc-
tive. Since the main differences can be observed in the case of the Prague station (equipped with the AMARA system),
we provide a figure that summarizes measurements from this station.

The integration window was set adaptively to maintain the sufficient response to the Ru-106 activity. Difference between
the real-time measurement values and values obtained by the measurement of the whole filter in laboratory was within
approx. 15 %. This error margin is also compatible with our previous findings where we compared the laboratory values
and real-time values of natural Be-7.

Changes made in the paper: We added a figure with visualization of measurements from Prague as well as related description
in the text.

p 9 line 5: it would be instructive to get an estimate of the values used for o2 otn, iN the calculation of the inverse
covariance matrix R.

Authors response: Indeed, we miss out to define the ojengn coefficient in the text which is now corrected. It is defined as
O lengin = MEBUEMENthouts yhere the 6 hours window is motivated by the GFS data resolution. Varying the length of this

window does not affect the results significantly.
Changes made in the paper: We define this coefficient in Sec. 3.2 in the revised manuscript.

Section 4.1: Atmospheric transport modeling: Numerical weather prediction data, which is used to drive the atmo-
spheric transport model Hysplit, was available every 6 hours. This is likely sufficient for the geotemporal scales of
the problem. However, it might not if one wants to explore the added value of measurements with sub-daily sampling
periods.
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Authors response: We agree that the 6-hours resolution of the meteorology may be limiting and may somehow blur the re-
sults. Therefore, we run a new simulation using the FLEXPART model driven by 3-hour meteorological analyses from
the European Centre for Medium-Range Weather Forecasts (ECMWF) and, subsequently, we select 3 hours temporal
resolution of the output grid. We conclude from the estimated source terms that better temporal resolution of measure-
ments improves the temporal specificity of the source term. We demonstrate this in the case of source term estimation
from the most probable location 2, Mayak, in Sec. 4.4.

Changes made in the paper: We extend the paper by FLEXPART simulation with higher temporal resolution. The FLEX-
PART configuration is given in Sec. 4.1.2 while the results for the most probable location, Mayak, are given in Sec.
4.4.

Table 3: Can the authors think of any reason why the release length is significantly different for the four considered
locations when using the data sets “WEEKS” and “CUT”’, but not when using the datasets “RAW” and “FAST”? If
one does not assume a priori that a short release period is better, Table 3 could be interpreted as if data set “FAST”
gives less information regarding the release duration than “WEEKS”, as it is less sensitive to the location. Also, I guess
that the regularization will have a larger impact on the release duration than the choice of the data set. From these
considerations, I am not convinced that the real-time monitoring data results in a better temporal specification of the
release, as stated in Conclusions.

Authors response: The LS-APC algorithm was designed to minimize the number of tuning parameters (they are estimated
from the data) leaving its result sensitive only to the initial conditions. As demonstrated on the ETEX dataset in the
original publication, it is rather insensitive even to the initial conditions. Further confirmation can be found recently
in (Tichy, O., Ulrych, L., Smidl, V., Evangeliou, N., and Stohl, A.: On the tuning of atmospheric inverse methods:
comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport
model FLEXPART, Geosci. Model Dev., 13, 5917-5934, https://doi.org/10.5194/gmd-13-5917-2020, 2020.).

In fact, LS-APC assigns a higher prior probability to shorter releases than to longer ones. The preference is rather weak
and informative data overrule this prior. However, this is probably the reason for different lengths e.g. in the case of
the WEEKS dataset. When the observations could be explained by a shorter release, LS-APC considers it a more likely
solution.

Changes made in the paper: We extended discussion of the results in Sec. 4.2 and also add a reference to the sensitivity study
of the used LS-APC algorithm to Sec. 3.1.

Figure 7 is important for assessing the quality of the inverse modeling results that were obtained using different data
sets, by comparing simulated activity concentrations with the IAEA measurements. However, Figure 7 seems to suggest
that the temporal resolution of the observations do not really matter for this case. Perhaps other metrics might reveal
an improvement from the use of higher temporal resolution, but I doubt that that will be the case for this specific case
study (large geotemporal scales and 6-h meteorological data). In the same Figure 7, data set “RAW” performs slightly
worse than data set “WEEKS”. Do the authors have an explanation for that? From temporal resolution considerations,
I would expect that “FAST” performs equally well or better than “RAW”, and “RAW” equally well or better than
“WEEKS”. Also, from Figure 4 and knowing the true source location, I do not see why the results using the “FAST” data
set would be better than the results from the other data sets. Concerning the table in Figure 9, I wonder whether other
metrics would come to different conclusions (the NMSE, although widely used, is not unbiased, see Poli and Cirillo, 1993
- Poli, A. A., & Cirillo, M. C. (1993). On the use of the normalized mean square error in evaluating dispersion model
performance. Atmospheric Environment. Part A. General Topics, 27(15), 2427-2434.). These considerations make it
hard for me to agree with the statement made on p 17 line 5.

Authors response: We agree that the agreement with the IAEA measurements on former Figure 7 is rather insensitive to the
choice of the temporal resolution. Therefore, we perform an additional simulation using the FLEXPART model with
3-hour temporal resolution and present these results in the updated version of the manuscript. The results from the
FLEXPART runs are summarized in Sec. 4.4 for location 2, Mayak. We believe that the temporal specificity of the FAST
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dataset is better demonstrated there. Although the FLEXPART slightly overpredicted some of the IAEA observation, the
estimation using the FAST dataset provides the best fit.

We are grateful to the reviewer for pointing out deficiencies of the NMSE coefficient. In the current version of the
manuscript, we use four coefficients: the normalized mean square error (NMSE), the normalized mean square error of
the distribution of the normalized ratios (NNR) suggested by Poli and Cirillo, and also other coefficients: the figure of
merit in space (FMS) and the fractional bias (FB). In all cases, the results by the FAST dataset are the closest to the
IAEA result.

Changes made in the paper: First, we extended the manuscript by the FLEXPART simulation with finer temporal resolution
and study the results for location 2, Mayak, in Sec. 4.4. Second, we extended Sec. 4.3 by additional coefficients, NNR,
FMS, and FB.

p 17 line 1: how are the probabilities of the source location calculated? Is it the evidence / marginal likelihood, but
normalized so that its sum over the whole domain equals 1?

Authors response: The marginal log-likelihood is normalized using the maximum of each domain, hence, the maximum of
each normalized domain is equal to 1. This information was missing in the manuscript and we added it to the present
version.

Changes made in the paper: The information on the normalization of the displayed marginal likelihood is added to Sec. 3.3.

In Conclusions, the authors wrote: “It is safe to state that the installation of multiple devices such as AMARA and
CEGAM over a larger region (on European scale) would certainly yield additional improvements in source location
and in source term estimation in the event of a radionuclide atmospheric release.” There is a trade-off between detector
sensitivity and the sampling length (more observations will have a higher minimum detectable concentration). I suggest
to briefly discuss this trade-off also in the conclusions. Also, although I agree that there is potential in using observations
with higher temporal resolution, I don’t think that its added value is clearly demonstrated in this study.

Authors response: The trade-off mentioned by the reviewer is now discussed in section 2, we acknowledged the reviewers’
remark. We also mentioned in conclusion that there is possible limitation of the continental scale scenario, however, we
believe that the effect of real-time monitoring system is still observable.

Changes made in the paper: We extended section 2 significantly and we also discuss some issues regarding the scale of the
experiment in conclusion.

Minor issues:

p 3, line 1: location —> localisation
Authors response: Thank you, we corrected this typo.

p 10, line 13: *. .. and run for the period . ..” —>*. . . and release particles during the period ...”
Authors response: We reformulated this accordingly.

p 12, line 16: “The estimated source terms are displayed for the RAW dataset using blue lines, for the WEEKS dataset
using magenta lines, for the FAST dataset using red lines, and for the CUT dataset using green lines.” —> I suggest to
omit this sentence as this is already mentioned in the caption of Figure 6.

Authors response: Indeed, we removed the color code description from here.
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2 Response to Reviewer #2

We would like to thank you for providing us a detailed review of our manuscript. We are glad that we can submit a revision of
our paper. In the following text, we will respond to all comments.

The authors report a new real-time measurement of radionuclides in airborne particles that yields a better temporal
resolution of low concentration radionuclide measurement. This improved temporal resolution in turn improves the
reliability of the inverse modeling of the Ru-106 event in fall 2017, during a period when the new device was already
employed. The authors conclude that if applied in multiple locations across Europe, the possible location of a radionu-
clide release may be identified and its source term estimated more quickly as the inverse modeling is more reliable.
Previous experiences have shown that the modeling of radionuclide transport and dispersion in the atmosphere is of-
ten complicated by the low temporal resolution of the measurements. However long sampling periods and spectrum
acquisition times are required in order to quantify low activity concentrations hundreds or thousands of kilometers
away from the location of the release. The authors present a procedure that delivers spectra for analysis during air
sampling, thus allowing the retrieval of the temporal evolution during the sampling period. The modeling part of the
study confirms that the improved temporal resolution renders the inverse modeling more accurate. I agree that better
temporal resolutions of radionuclide concentrations at very low concentrations are highly desirable for environmental
radioactivity monitoring and the authors present a new and promising approach in this direction. I thus support the
publication of this study in AMT. However, I recommend the following revisions before publication:

Specific comments:

Abstract: I suggest that the capabilities of the new device are specified more clearly in the abstract, e.g.: p.1 Line 7: . .
. gamma-ray counting of aerosol filters and allow us to determine the moment when Ru-106 arrived at the measurement
site within XXX minutes and activity concentrations as low as XXX can be detected in 4-hour intervals.

Authors response: Thank you for this suggestion, we have modified the abstract accordingly.
Changes made in the paper: We added the sentence to the abstract.

Section 2: Measurement methodology and datasets The descriptions of the new AMARA and CEGAM systems are
very short. A reader of ‘“Atmospheric Measure- ment Techniques’ might be interested in a some details about the tech-
niques which are omitted in the manuscript. I recommend revising Sections 2.2.1 and 2.2.2 such that they at minimum
answer the following questions: 1) What is the efficiency of the HPGe-detector relative to the 3°-Nal 2) How is the detec-
tor cooled (electrically or liquid nitrogen) 3) How stable is the temperature of the Germanium crystal on a hot summer
day or a cold winter day? 4) Do variations in relative humidity affect the detector? 5) Is the energy calibration affected
by variations in ambient conditions (temperature or humidity) ? Is there an automatic recalibration procedure, e.g.
with a reference peak? 6) How was the efficiency calibration performed? 7) Was True Coincidence Summation (TCS)
considered as it is for the standard sampling and measurement procedure? 8) What is the interval between the spectra
in the case of AMARA? Signal Treatment: 1) How accurately can the time of arrival be determined (see my suggestion
“within XXX minutes* for the abstract) 2) How was the AMARA reconstruction (black line in Figure 2B) performed?
What are the corresponding time intervals and uncertainties? Are uncertainties of one interval affected by the deposi-
tion of Ru-106 during previous intervals? Further, it is obvious from figure 2 that the plume continued for longer than
is on display here. Why is the remaining part not shown? Was it also split into 4-hour CEGAM intervals for inverse
modeling runs?

Authors response: We acknowledged that more details on measuring systems presented in the paper are need. We extended
the description of the AMARA/CEGAM systems significantly and with respect to the reviewer comment. All important
parameters are now summarized in Table 1 in the paper. We also added discussion on signal processing.
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The activity uncertainty is indeed affected by the previous deposition, we have included this into a text together with
mentioning also the influence of radon background.

Regarding the displayed data - the end on the time axis corresponds to the filter change. We have included this info in the
figure caption. Consequent samples were taken with a higher frequency and the ruthenium activity decreased, therefore
the real time measurement provided less and less useful information. 4-hours intervals were computed only for the first
sampling interval capturing the arrival of contamination.

Changes made in the paper: Section 2 was extended on Section 2.3 to provide all above mentioned information. Also, the
table with important parameters on AMARA and CEGAM systems was added to the paper. Caption of Fig. 2 was
expanded to provide further information.

Section 5: Conclusions This section almost reads as if the authors have carried out a pure modeling study. In its cur-
rent form it does little justice to the technical progress that they achieved and which justifies publication in a technical
journal. I suggest that the authors provide a brief summary of the new measurement device and its advantages in this
section.

Authors response: Indeed, we did not intend to focus mostly on modeling in conclusion, which we, however, did. Thank you,
we extended significantly the first paragraph to give more attention to the introduced modeling systems.

Changes made in the paper: The first paragraph of the conclusion is extended significantly.

Minor issues:

p- 1, Line 24: ‘“several hundred TBq”: This needs one or more references where the source term is estimated.

Authors response: Although these findings are referenced later, we agree that they should be referenced also here and we
added relevant references.

p. 2, Line 9: I suggest rewriting this sentence along the lines of: ““Since medical sources and RTG would neither
explain the occurrence of Ru-106 nor the large source of several hundred TBq, fresh nuclear fuel is the most likely
candidate. «

Authors response: The sentence was rewritten accordingly.

P4. Figure 2 (A): The y-scale is missing. The reader needs to know how many keVs are displayed.
Authors response: Agree. The ROI width was specified in the figure caption.

P.5 Line 7: (Hyza and Rulik, 2017) should be Hyza and Rulik (2017)
Authors response: Corrected.

P.5 Line 9: it should be mentioned that the MDAC worsens for one particular interval if some Ru-106 was already
deposited in a preceding interval

Authors response: Agree. The brief discussion of possible influences on MDAC are mentioned in newly extended section 2.
p.6 Line 27: I propose ‘“location of the release’ instead of ‘location of the source of the release”

Authors response: Thank you, we agree.
p.9 Line 11: (Tichy et al., 2016) should be Tichy et al. (2016)

Authors response: Corrected.



p-10 Line 28: I suggest “During the period in question” instead of “In the assumed period”
Authors response: We agree with this suggestion.

p-12 Line 10: I suggest “A release at location 4 in southern Romania would contradict ground-based observations to
the east of the location was thus also rejected (see Masson et al., 2019).”

5 Authors response: We reformulated this accordingly.
p-12 Line 16: The colour code is already described in the caption of Figure 6 and can be omitted here.

Authors response: We removed the color code description from here.
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Real-time measurement of radionuclide concentrations and its
impact on inverse modeling of 1°Ru release in the fall of 2017
Ondfej Tichy', Miroslav Hy7a?, Nikolaos Evangeliou®, and Vaclay Smidl'
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Correspondence: Ondiej Tichy (otichy @utia.cas.cz)

Abstract. Low concentrations of °°Ru were detected across Europe at the turn of September and October 2017. The origin
of 196Ry has still not been confirmed; however, current studies agree that the release occurred probably near Mayak in the
southern Urals. The source reconstructions are mostly based on an analysis of concentration measurements coupled with an
atmospheric transport model. Since reasonable temporal resolution of concentration measurements is crucial for proper source
term reconstruction, the standard one-week sampling interval could be limiting. In this paper, we present an investigation of
the usability of the newly developed AMARA and CEGAM real-time monitoring systems, which are based on the gamma-ray
counting of aerosol filters and allow to determine the moment when °SRu arrived at the monitoring site within approx. one
hour and activity concentrations as low as several mBq/m?® can be detected in 4-hour intervals. These high-resolution data
were used for inverse modeling of the °°Ru release. We perform backward runs of the Hysplit atmospheric transport model
driven with meteorological data from the global forecast system (GFS) and we construct a source-receptor sensitivity (SRS)
matrix for each grid cell of our domain. Then, we use our least-squares with adaptive prior covariance (LS-APC) method to
estimate possible locations of the release and the source term of the release. On Czech monitoring data, the use of concentration
measurements from the standard regime and from the real-time regime is compared and better source reconstruction for the
real-time data is demonstrated in the sense of the location of the source and also the temporal resolution of the source. The
estimated release location, Mayak, and the total estimated source term, 237 4+ 107 TBq, are in agreement with previous studies.
Finally, the results based on the Czech monitoring data are validated with the IAEA reported dataset with a much better spatial
resolution, and the agreement between the IAEA dataset and our reconstruction is demonstrated. In addition, we validated our
findings also using the FLEXPART model coupled with meteorological analyses from the European Centre for Medium-Range
Weather Forecasts (ECMWEF).

1 Introduction

At the turn of September and October 2017, low concentrations of '°°Ru of unknown origin were detected in the atmosphere
in the Czech Republic. Immediate communication with other European laboratories involved in the RO5 (Ring of 5) network
(Masson et al., 2011) confirmed that this was a Europe-wide occurrence. Although the concentration was low (tens of mBq/m?)

and was of no health risk, the unknown origin of 106 Ry raised concerns. Therefore, very shortly after the first detections, efforts
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were made to estimate the source location based on the ROS5 data. Initial analyses pointed to a possible source located to the
east of the Czech Republic. As the dataset grew, this estimate was refined to the Urals region as the most probable location
(Kovalets and Romanenko, 2017). The released '°5Ru activity was estimated to be several hundred TBq (Saunier et al., 2019;
Western et al., 2020).

Since '°Ru is a fission product produced in a nuclear reactor, the question arose about the nature of the source. A nuclear
reactor accident was rejected because, in this case, other radionuclides would have been detected besides 106Ry, similarly as
during the Chernobyl NPP accident (UNSCEAR, 2000). For example, during post-Chernobyl monitoring, the detected °°Ru
was by 2 or 3 orders of magnitude higher and was accompanied by a complex mix of radionuclides, including 31, 132Te,
137 g, 134Cg, 101 . and '93Ru (CHZ, 1987).

Other working hypotheses included the melting of a radioisotope thermoelectric generator (RTG) or of a medical source,
since '%SRu is used in medicine for the treatment of ophthalmic tumors (Takiar et al., 2015). In several samples where the
106Ru activity was relatively high, we also detected '°3Ru isotope, but at much lower concentrations. The activity ratio of
106Ru/1%3Ru was approx. 4000 (after the Chernobyl accident, the ratio was approximately 0.12), which suggests that the
ruthenium was extracted from relatively fresh nuclear fuel (approximately 2 years). Since medical sources and RTG would
neither explain the occurrence of Ru-106 nor the large source of several hundred TBq, fresh nuclear fuel is the most likely
candidate.

In the end, an industrial source was identified as the most probable explanation — most likely a fuel reprocessing plant. This
conclusion is supported by historical evidence since we have observed several such events in the past — Tomsk (Tcherkezian
et al., 1995), Savannah River (Carlton and Denham, 1997) and La Hague (ACRO, 2002). Based on these reports, it can be
concluded that a selective release of '°°Ru is possible during certain stages of fuel reprocessing or vitrification of fuel in
the form of highly volatile RuO4 which can escape into the environment even when aerosol filters are employed. RuO,4 then
condenses in the colder air and can be further transported over long distances attached to atmospheric aerosol. There are two
known plants in the southern Urals region which come into consideration — Mayak and Dimitrovgrad. Both are located within
the region estimated by atmospheric transport modeling (ATM). Moreover, measurements performed by Roshydromet confirm
a positive detection of '°°Ru in aerosols and in the fallout in the Chelyabinsk region (Shershakov et al., 2019).

Multiple investigations using different data sets and methodologies have now been performed with the same conclusion,
indicating the Mayak plant as the probable source location (Masson et al., 2019; Saunier et al., 2019; Maffezzoli et al., 2019;
De Meutter et al., 2019; Le Brazidec et al., 2020). Masson et al. (2019) presented a comprehensive event analysis, including a
detailed radioruthenium forensic investigation, and speculated on the possibility of 1°Ru release during the production of the
144Ce source for the SOX-Borexino at the Gran Sasso National Laboratory (also suggested by Bossew et al. (2019)). Nonethe-
less, the Russian authorities deny any leakage from the Mayak plant (Nikitina and Slobodenyuk, 2018). Current estimates of
106Ru source location and source term are mainly based on an analysis of ambient measurements of '°’Ru concentrations.

There is always a trade-off between sensitivity and timely reporting of concentration results, and the standard procedure

provides a rather poor time resolution of the concentration monitoring data for the purposes of ATM analyses. The time delay
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between the possible arrival of the contamination at the monitoring site and its detection can easily be as long as one week.
Long-term shortening of the sampling interval below one day is virtually unachievable, mainly for logistic reasons.

This limitation is of great research interest at the National Radiation Protection Institute (NRPI), Czech Republic, where
near real-time monitoring systems (AMARA and CEGAM, see Section 2 for a detailed description ) are currently under
development. Both systems yield minimum detectable activity (MDAC) at a level of 1 mBq/m?® which was sufficient to detect
106Ru during the 2017 episode. We were able to perform an experimental run of the AMARA device, and we managed to detect
the exact moment when the contamination arrived. These real-time monitoring data were then used for source localization and
the results were compared with the standard time resolution. For this purpose, we use a Bayesian inversion method called the
least squares with an adaptive prior covariance (LS-APC) method (Tichy et al., 2016) which was later extended also for the
source location problem (Tichy et al., 2017).

Our aim is to use the data from the Czech radiation monitoring network to investigate two points. First, we will study the
influence of the real-time monitoring data on the resulting estimate of the temporal profile of the emission. Our hypothesis is
that the use of real-time monitoring data should lead to more time-specific estimates. Second, we will investigate and discuss
what information can be estimated from the Czech monitoring data only. This task is very challenging since it implies a very
sparse monitoring network due to the small area of the Czech Republic in comparison with the relevant Europe-Asia spatial

domain. The results will be validated and will be compared with results of the much larger IAEA dataset IAEA, 2017).

2 Measurement methodology and datasets
2.1 Standard sampling and measurement procedure

In the Czech radiation monitoring network (RMN), aerosol samples are taken from 10 permanent monitoring sites which are
equipped with high volume aerosol samplers with a flow rate in the range of 150 — 900 m? /h. In addition to these monitoring
sites, radionuclides are also monitored in the local networks in the vicinity of the nuclear power plants in the Czech Republic
— these data are not included in the analysis.

The standard sampling frequency is usually once or twice a week. Combined weekly samples are subjected to semiconductor
gamma spectrometry, with no further treatment, at four RMN laboratories. Preliminary measurement of aerosol filters starts
a few hours after the end of the sampling, to allow time for the short-lived radon progenies to decay. Otherwise, they would
significantly affect the measurement sensitivity. The preliminary measurements last approximately 5 hours, after which the
detection limit (minimum detectable activity — MDAC) is at a level of 10 zBq/m?3. Consequently, a detailed measurement
lasting approx. 5 days is performed, after which the sub—uBq/m? MDAC level is achieved.

106Ry is a B-emitter and therefore cannot itself be detected by means of gamma-ray spectrometry. '°°Ru activity is deter-
mined on the basis of its short-lived progeny '°°Rh, which emits several gamma rays of convenient energy and intensity (622
keV and 1050 keV being the most prominent). In order to determine the activity accurately, it is necessary to correct for true
coincidence effects, as '"’Rh emits gamma photons in cascades. By failing to do this, one can easily underestimate the activity

by 15-20%.
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Figure 1. AMARA system schematics; the activity deposition is measured using an HPGe detector above an aerosol filter during sampling.
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Figure 2. The response of the AMARA system to the °°Ru contamination passing over during the corresponding sampling interval; A) the
106Ru signal increase in the (615 - 630) keV energy region after subtracting the radon background; B) the example reconstructed real-time

106Ru concentration and its 4-hour averaged values which corresponds to the CEGAM time resolution .

2.2 Real-time sampling and measurement procedure
2.2.1 AMARA system

The AMARA system employs a fully continuous measurement regime where the aerosol filter is counted via gamma-ray
spectrometry already during sampling using a high-volume (900 m? /h) sampler. In this setup, shown in Fig. 1, a spectrometric

5 module consisting of an HPGe detector is placed directly above the aerosol filter. This straightforward solution benefits from
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Figure 3. CEGAM system schematics; the activity deposition is measured using an HPGe detector above an aerosol filter after sampling in

radiation shielding.

its simplicity and from the real-time nature of the measurement. However, the detection limits are higher due to the very high
and variable natural background caused mainly by ??2Rn and ??°Rn decay products. Our approach for suppressing the high and
widely variable radon background is based on the NASVD algorithm(Minty and Hovgaard, 2002) and consists of extracting
the characteristic spectral shapes from a large dataset of background measurements. We adopted this approach already in the
previous version of the AMARA system, which was based on a Nal(T1) detector. The implementation details are described by

HyZa and Rulik (2017) and a demonstration of the signal treatment is displayed in Fig.2.
2.2.2 CEGAM system

The CEGAM system is based on semi-continuous sampling where samples are taken at preset intervals and then measured
via gamma spectrometry. The device is based on a carousel sampling changer, which moves the aerosol filters between the
sampling position and the measuring position, see the configuration in Fig. 3. This allows the CEGAM’s HPGe spectrometer
to be placed inside a heavy lead shielding and it is also possible to let the radon progenies decay before the measurement. The
natural background level is therefore much lower in comparison with the AMARA system and it yields similar MDAC but at

a much lower flow rate (10 m? /h).
2.2.3 Measurement procedure and systems comparison

Both the AMARA and CEGAM systems employ an electrically cooled HPGe (ORTEC/CANBERRA) detector in a temperature-
/humidity-controlled environment in order to ensure smooth continuous operation even during demanding weather conditions.

The signal processing is done by digital multi-channel analyzer (DSPEC/LYNX). The eventual gain shift is automatically
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corrected by stabilization algorithm based on the position of background peaks. The efficiency calibrations were done exper-
imentally using aerosol filters spiked with standard activity solutions provided by the Czech metrological institute. For the
purpose of calibration and measurement respectively, the correction to the True coincidence summation was taken into ac-
count. As the AMARA system operates in a continuous regime, the spectrum acquisition time was set to 5 minutes in order
to make full use of its time resolution. Consequently, the running spectral sums of arbitrary lengths can be constructed. The
actual activity values are then computed using the numerical derivative of smoothed cumulative response. On the other hand,
the time resolution of the CEGAM system is limited by the carousel changer time steps. Typically, the spectrum acquisition
time is set to 24 h and in case of emergency it is shortened to 4 h or less.

The inherent time resolution of the monitoring system is inevitably related to the accuracy of the contamination arrival time.
For the '°°Ru case, the AMARA system estimated its arrival with approx. 1-h accuracy depending on the chosen level of
statistical significance and the type of statistical test.

Although the detector efficiency and flow rate are determined relatively accurately, there are other effects negatively influ-
encing the final activity uncertainty. For instance, the radon decay products concentration and therefore the MDAC and the
activity uncertainty vary significantly. In case of positive detection, there is also an additional uncertainty contribution due to
the deposition dynamics as the system needs to subtract the contribution from the already deposited contamination. Comparing
the real time values with those obtained by laboratory measurements ('°’Ru case or natural "Be) we estimate the uncertainty
of (10 — 15) percent for the 4-hour integration time and the activity of several mBq/m?.

Although both systems are intended for a rapid detection of artificial radionuclides in the air, they differ in their typical use.
The CEGAM system is an autonomous system with a high filter capacity and it is suitable for remote places with a difficult
access of the operating personnel. The power consumption is also much lower in comparison with the AMARA system due
to the employment of a low-volume sampler with an adjustable throughput. During a normal situation, the CEGAM system
could be used within a monitoring network as a stand-by device (low flow rate, long sampling intervals) which could quickly
switch to an emergency mode (higher flow rate, more frequent sampling). The switching command could be based on some
prior information about arriving contamination or on the positive detection in a laboratory or by a more sensitive/ rapid device,
such as AMARA system.

The AMARA system is intended as an upgrade of an already existing monitoring site equipped with a high-volume sampler
with operational personnel because the filters are not changed automatically. The advantage of this approach is a better time
resolution and therefore a rapid response. Monitoring sites with high volume samplers are usually equipped with a gamma-
ray spectrometry laboratory and therefore the filters from AMARA are consequently measured in a dedicated counting room
and potentially investigated further by radiochemical procedures to determine the activities of non gamma-ray emitters. The
proximity of laboratory also solves to a certain degree the dilemma between the sensitivity of measurement and sampling
duration as the final most sensitive measurement will be performed in laboratory after the sampling using the standard analytic
procedure.

Both systems together provide a very good solution for rapid radiation monitoring response to various release scenarios. The

technical parameters are summarized in Tab. 1.
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Parameter AMARA CEGAM

Detector type HPGe (electrically cooled) HPGe (electrically cooled)
Rel. efficiency 30 % 50 %
FWHM 1.9 keV 1.9 keV
Shielding None 10 cm Pb
Filter size 57 cm X 27 cm 10 cm diameter disc
Filter material FPM 1545 GF/A glass microfibre
Spectrum stabilization Automatic Automatic
Mode of operation Continuous Carousel type sample changer
MDAC ~mBgq/m* * ~mBgq/m? **
Flow rate 900 m®/h 0to 10m?/h
Filter cartridge capacity No cartridge 300 filters

* one-hour integration time and 12 hours of sampling
** per 4-hour sampling/measurement period

Table 1. Technical specification of AMARA and CEGAM systems.

2.3 Dataset description

The monitoring data comes from 10 standard monitoring sites in the Czech Republic from the time period between 25 Septem-
ber 2017 and 13 October 2017. Once '°°Ru was confirmed by the AMARA system (located in Prague), the filters were changed,
and the monitoring interval was shortened at all monitoring sites. The previous, less sensitive version of the AMARA system
equipped with Nal(T1) spectrometer operated in the Hradec Kralove location. Unfortunately, the CEGAM system was not yet
operational during the 106 Ry incident , hence, all used data come from AMARA system.

A total of 47 samples were collected, and 24 of them were positive results with reported activity above the MDAC level.

Four distinct datasets were derived on the basis of this monitoring campaign:

1. RAW dataset — raw monitoring, as reported by the individual standard monitoring sites. The real-time measurements are

not included.

2. WEEKS dataset — derived from the raw dataset by weekly averaging. This dataset corresponds to the standard RMN

monitoring regime.

3. FAST dataset — raw data complemented by real-time values from the AMARA and CEGAM (simulated) systems. The

integration window was set within the interval of 3 — 13 hours during the concentration peak period.

4. CUT dataset — created by cutting off the time interval between the start of sampling and the arrival of the °°Ru con-

tamination at the particular monitoring site. As there was no real-time measurement apart from the Prague and Hradec
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Figure 4. The measurements from the Prague station are displayed for each dataset using coloring given in the legend.

Kralove AMARA measurements, the arrival times were estimated on the basis of an overall analysis of the atmospheric

transport across the Czech Republic, using the HYSPLIT model.

Note that the artificial WEEKS and CUT datasets are derived from the RAW and FAST datasets, and are rather experimental.
All four datasets are attached as a supplement to this article.
For illustration, the measurements from the Prague station (equipped by the AMARA system) are given in Fig. 4 where

much better temporal specificity is demonstrated.

3 Inverse modeling

The general purpose of inverse atmospheric modeling is to estimate the time profile of an unknown emission, called the source
term, in the so-called top-down approach (Nisbet and Weiss, 2010), where ambient measurements are combined with the result
of an atmospheric transport model (ATM). The source term can be estimated using optimization of the differences between the
measurements and the corresponding simulated values predicted by an ATM. An even more challenging task is to identify the
location of the release. This can be done, e.g., using possible source location selection and comparison, as in the case of the
1311 release in January/February 2017 (Masson et al., 2018), using computed correlation or cost function maps as in the case
of radioxenon after the third North Korea nuclear test (De Meutter et al., 2018), or using a Bayesian approach as in the case
of the 1311 release in the fall of 2011 (Tichy et al., 2017) or in the case of the ">Se leakage in 2019 (De Meutter and Hoffman,
2020).

In this paper, we follow the general concept of a linear model of the atmospheric dispersion using an SRS matrix (e.g., Seibert
(2001); Seibert and Frank (2004)). Here, an atmospheric transport model is used to calculate the linear relation between the

potential source and the measured concentrations. Aggregating all possible time steps of the release in a source term vector
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x € R™ and measurements from all sites and times in the vector y € RP, we can define the model
y=Mx+e, ()

where M € RP*" is the SRS matrix and e € RP? is an observation error, where the model errors and the measurements errors
are aggregated. This concept has been largely used previously to recover the source term within larger-scale scenarios such as
nuclear power plant accidents (Stohl et al., 2012; Evangeliou et al., 2017), estimates of the emission of greenhouse gases (Stohl
et al., 2009), or volcanic emission (Kristiansen et al., 2010).

The estimation of the source term vector x from Eq. (1) is non-trivial, since the SRS matrix M is typically ill-conditioned and
some regularization is needed. One possible approach is to minimize a suitable cost function (Eckhardt et al., 2008; Evangeliou

et al., 2017) such as
J=(y —Mx)" R (y — Mx) + x"Bx + ex’ D Dx, 2)

The first term stands for the deviation of the model from the measurement, including the error in the meteorological data; the
second term penalizes high values of the source term using diagonal matrix B; and the third term favors the smoothness of the
estimated source term using tridiagonal matrix D (numerically representing the second derivative) and weighting coefficient €.
The key issue of the minimization is then to select matrices R, B, and e.

The minimization of Eq. (2) can be interpreted using a probabilistic model and the proper Bayesian inference can be used to

estimate the source term x. Consider the logarithm of the likelihood function
Inp(yx,R) =InN (Mx,R™") o< (y — Mx)" R (y — Mx), 3)

where symbol o denotes equality up to the normalizing constant, then Inp (y|x,R) is the probabilistic equivalent to the first
term of J. Equivalents for the second term and for the third term can be found in a similar way. However, one benefit of
the Bayesian inference is that the elements of R, B, and ¢ do not need to be fixed in advance but can also be estimated and
optimized within the method. The second benefit is the model selection property of the Bayesian inference (Bernardo and
Smith, 2009). This approach can be used to select the most likely setting of the dispersion model or the most likely matrix M
when it is computed for multiple locations (Tichy et al., 2017).

In the following sections, we review the Bayesian inversion method based on similar probabilistic formulation as in Eq.
(3) called the least squares with adaptive prior covariance (LS-APC) (Tichy et al., 2016). We then discuss an extension of the

method using a covariance model of the measurements.
3.1 Probabilistic LS-APC model

The probabilistic inversion model of Tichy et al. (2016) called LS-APC (least squares with adaptive prior covariance) is briefly
reviewed and its extension is discussed. In (Tichy et al., 2016), the covariance structure has been simplified as R = wI, where
I is the identity matrix. This simplification may be misleading. We therefore consider the likelihood in Eq. (3) with covariance

R scaled by the scalar parameter w being considered unknown. In the variational Bayes inference, all unknown parameters
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need to be accompanied by their prior distribution. We select gamma distribution for w due to its conjugacy with the Gaussian

likelihood (Tipping and Bishop, 1999) obtaining the data model in the form:

p(ylx,w) =N (Mx,wilRfl), 4)
p(w) =G (Yo, p0), (5)
where g, po are selected constants needed for numerical stability; however, they are selected very low, e.g. 10719, providing
a non-informative prior. The construction of the precision matrix R (inverse covariance) will be discussed in the next section.
The prior model of x is a probabilistic relaxation of the second and third terms in Eq. (2). The prior is chosen to be Gaussian

truncated to positive support (notation tA (u, o, [a,b]), see (Tichy et al., 2016) for details) with a covariance matrix in the

specific form of the Cholesky decomposition
™1
p(xX,L) =tV (0, (LYLT) ™[0, +od] ), (©)

where Y is a diagonal matrix with diagonal entries v; and L is a lower bidiagonal matrix with ones on the diagonal and

sub-diagonal entries ;. The prior models for the unknowns vy,...,v, and ly,...,l,,_; are selected as
p(vj) =G (ao, o), @)
p(le;) =N (—1,97), 8)
p (1) =G (Co5m0) » 9

where parameters v; model the sparsity of the source term x and parameters [; model the smoothness using prior selection of
the mean value as —1. The prior constants «yg, 5y are selected similarly to Eq. (5) as 10719, while the prior constants (y, 7o
are selected as 102 to favor a smooth solution, see the discussion in Tichy et al. (2016) for more details. We also note that
the algorithm is shown to be robust with respect to the choice of starting and tuning parameters, see discussion in Tichy et al.
(2020) for more details.

The key parameter in the inversion method, which has not yet been discussed, is the error covariance matrix R in Eq. (4).

The definition of this matrix will be given and will be discussed in the next section.
3.2 Measurement error covariance

There are various approaches in the literature for selecting the shape of the covariance matrix R.. A straightforward assumption
is the diagonal model with the same (Tichy et al., 2016; Liu et al., 2017) entries where this scalar value can be estimated. When
considering different entries on the diagonal of R, they may be selected on the basis of physical information, when available,
rather than estimating them, because numerical issues arise during convergence (Berchet et al., 2013). A common assumption
is to compose the diagonal entries from three source of errors: (i) the absolute error of the measurement, (ii) the relative error
of the measurement, and (iii) the application dependent error, such as the model-observation mismatch (Brunner et al., 2012;

Song et al., 2015) or the error based differences between observations and simulations (Henne et al., 2016).

10
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Similarly to (Stohl et al., 2012; Evangeliou et al., 2017), we adopt the first two error terms in our covariance structure while

introducing the third term based on the length of the measurement. In sum, the R is

. 1
R =diag, |02 + (010 y)’ + —— (10)
Glength

where o2 _ is the absolute measurement error which is selected between 0.2 and 1.4 mBq based on the maximum a posteriori
estimate, o is the uncertainty level of measurements, which is between 5.5 and 30% for our dataset, and 1/ Uﬁength is the term

considering the length of the measurement as o'jength = where the selection of 6 hours window is motivated by the

measurement hours
6
GFS meteorological data resolution. Here, a shorter measurement time implies higher uncertainty and a longer measurement

time implies lower uncertainty.
3.3 Variational Bayes inference and source location

Within the variational Bayes (VB) framework (Smidl and Quinn, 2006), the posterior distributions are found in the same
functional form as their priors. The moments of the posteriors are determined using an iterative algorithm with details in Tichy
et al. (2016). Here, the reference Matlab implementation can be downloaded as a supplement. The method will be denoted here
as the LS-APC-VB method.

Moreover, we consider the scenario where we have a finite set of SRS matrices {M;,Ms,...,M,.}, representing differ-
ent considered locations of the release here. For each SRS matrix from the set, we can evaluate the posterior probability
(M =Myly) as

p(M=Mily) xp(M=Mp)exp(LmMm,), k=1,...,7, (11

where p (M = My,) is the prior probability of M, which can be omitted here since each location has the same prior probability
and Ly, is a variational lower bound on p(y|M},) (Bishop, 2006). Finally, the term Lag, can be computed as (Tichy et al.,
2017)

Lm, = Ellnp(y,x, T, L,%,0,My)] - E[lnp(w)] — E[npx)] - Eflnp(T)] — E[lnp(L)] - E[lnp(4)], (12)

where E[.] denotes the expected value with respect to the distribution of the variable in its argument and p() are approximate
posterior probability distributions. These terms are given in the supplementary material of (Tichy et al., 2017).

Note that to display and to compare the computed probabilities for each computational domain in following sections, we
need to normalize results due to the proportional equality in Eq. (11). We use normalization using maximum of each domain

so that the maximum of each normalized domain is equal to 1.

4 Experiments and discussion

The aims of our experiments are to estimate the location of the 106Ry source, to estimate the source term, and to compare

results obtained using four datasets from the Czech monitoring network introduced in Section 2, and with results obtained

11
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using the dataset reported by the International Atomic Energy Agency (IAEA) (IAEA, 2017). For this purpose, we use the
HYSPLIT atmospheric transport model (Stein et al., 2015; Draxler and Hess, 1997), coupled with the NCEP/NOAA global
forecast system (GFS) meteorological data.

To validate our results, we also use the FLEXPART model (Pisso et al., 2019) coupled with meteorological analyses from
the European Centre for Medium-Range Weather Forecasts (ECMWF) to study the release based on location selected using
HYSPLIT model simulations.

4.1 Atmospheric transport modeling
4.1.1 HYSPLIT model configuration

We use the HYSPLIT model in backward mode to compute all the required SRS matrices for a domain. The spatial domain is
selected to cover the region spanning from 5° E to 115° E in longitude and from 25° N to 65° N in latitude, covering Central
and Eastern Europe and the western half of the Russian Federation. Note that the displayed domain in the following figures
is cropped in order to focus on the important area only. Spatially, the domain was discretized with resolution 0.5° x 0.5°.
Vertically, there is no discretization of the domain, and sensitivities are calculated for a layer 0-300 m above the ground, which
allows for both ground releases and somewhat elevated releases, e.g. through a stack. The temporal resolution is selected as
6 hours, starting from 20 September and ending on 10 October 2017. Runs were forced with GFS meteorological fields with
horizontal resolution of 0.5° x 0.5°, 26 vertical layers, and 6 hours temporal resolution.

The SRS matrices for the domain are computed from HYSPLIT backward runs for each domain grid cell. The backward
run configuration is selected since the number of domain grid cells (17600) is much higher than the number of measuring sites
(tens, depending on the dataset, hundreds in the case of the IAEA dataset). Each backward run starts at the point location of
each measuring site and release particles during the period corresponding to the measurement time of the sample. For each
run, 1 million particles were simulated. Each of the backward runs corresponding to one measurement provides an SRS field
of a particular measurement to all spatial-temporal sources in the selected domain. We assume that the release occurred from
a point source, and that we can therefore calculate SRS matrices for the whole domain at once. We end up with 17600 SRS

matrices for each dataset, all of which are source location candidates.
4.1.2 FLEXPART model configuration

FLEXPART version 10.4 (Pisso et al., 2019) releases computational particles that are tracked in time following 3-hourly
operational meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) with 137
vertical layers and a horizontal resolution of 1°x1°. The model accounts for dry and wet deposition (Grythe et al., 2017),
turbulence (Cassiani et al., 2015), unresolved mesoscale motions (Stohl et al., 2005) and convection (Forster et al., 2007). SRSs
were calculated for 30 days backward in time, at temporal intervals that matched measurements at each receptor site. 1°’Ru
is tracked assuming gravitational settling for spherical particles with an aerosol mean diameter of 0.6 yum and a normalised

standard deviation of 3.3 and a particle density of 2500 kg m>® (Masson et al., 2019).

12
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Figure 5. Source location of the '°°Ru release via the marginal log-likelihood, where the observed data are explained by a release from a
grid cell using the LS-APC-VB method HY SPLIT atmospheric transport model coupled with GFS 0.5° meteorological data. The dataset that

has been used is indicated in the titles of each map. The measuring sites are displayed using green dots.

4.2 Results for the Czech monitoring data

For each dataset and each SRS matrix, we apply the LS-APC-VB method to compute the probability of each spatial grid cell
according to Eq. (11). Note that no prior information on source location, p(M = My,), in Eq. (11) is used. This corresponds to
the assumption that all locations are equally possible. The resulting maps with source location probabilities for the RAW (top
left), WEEKS (top right), FAST (bottom left), and CUT (bottom right) datasets are displayed in Fig. 5. Here, a darker color
means a more probable location of the release while the scale is relative and dimensionless due to the proportional equality in
Eq. (11).

In all four cases, an estimated probability region of source locations forms the strip spanning from southern Romania to
approximately the Ob river in the Russian Federation. Notably, these regions are computed on the basis of data from the Czech
monitoring stations only. Limited ability of the method to determine one specific location was therefore expected. During the
period in question, the wind mostly blew towards the west, which is in agreement with the probable source region located
to the east of the Czech republic. The RAW dataset tends to prefer the northern part of the estimated source location strip,
leaving the south part less probable. Similar behavior is observed in the case of the WEEKS dataset where, in addition, low

probability was also observed in wide areas in the south and north of the strip. This is probably caused by the lower temporal

13
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study

probable source location

total release

temporal character (year 2017)

(Kovalets and Romanenko, 2017)

Urals, southern Russia

1TBqto1PBq

(Sgrensen, 2018) Dimitrovgrad or Mayak < 1.1 PBq 26 September, between 5:00 and
13:00 (Mayak)
(De Meutter et al., 2019) Mayak < 1PBq -
(Maffezzoli et al., 2019) Mayak - -
(Shershakov et al., 2019) Mayak ~ 500 TBq 25 and 26 September
(Saunier et al., 2019) Mayak 250+ 13 TBq 26 September (small activity also
on 23 and 24 September)
(Le Brazidec et al., 2020) Mayak between 100 and 200 TBq 26 September
(Western et al., 2020) Mayak 441+ 13 TBq 24 September, between 12:00 and
18:00
Source term based on Czech FAST Mayak 237+107 TBq between 6:00 AM on 25

dataset

September and 6:00 AM on 26

September

Based on Fig. 5 and a review of the situation in the literature, see Tab. 2, we consider four source locations. Two of them

and the temporal character. The last row contains results based on the Czech FAST dataset.

14

Table 2. This table summarizes and compares previous studies on the '°Ru release in 2017, focusing on the total release, the source location,

resolution of the measurements, implying a wider possibility of radionuclide transport. The results obtained using the FAST
and CUT datasets are more homogeneous, covering the whole strip. However, the CUT dataset provides locations with very
low probability inside the strip. These are probably artifacts caused by the artificial adjustment of the data. Note that better
source location is possible with better spatial distribution of the measuring sites. This is, indeed, available and will be discussed
in Sec. 4.3 on the IAEA dataset.

are Russian nuclear facilities capable of producing a significant amount of '°°Ru (Saunier et al., 2019; Masson et al., 2019;
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Figure 7. Estimated source terms from the locations considered in Fig. 6 (indicated in the titles of each column) for the RAW (blue lines),
WEEKS (magenta lines), FAST (red lines), and CUT (green lines) datasets. The estimated source terms are accompanied by the 95%

uncertainty regions (gray filled regions). Note that the vertical axis has a different scales for each location.

Sgrensen, 2018): the Research Institute of the Atomic Reactor (RIAR) in Dimitrovgrad (location 1) and the Mayak Production
Association, a spent fuel reprocessing facility in Ozersk (location 2), see Fig. 6. Location 3 is selected as a location with
high probability in all four datasets, and is situated to the east of Perm, to the north of the Mayak location. Location 4 is
situated in southern Romania, and is also a candidate according to all datasets. We are aware that, according to further analyses
(Le Brazidec et al., 2020; Saunier et al., 2019; Shershakov et al., 2019; De Meutter et al., 2019; Western et al., 2020), all
locations except Mayak, location 2, could be rejected. However, we have considered them here, since they are candidate
locations based on just Czech monitoring data. Dimitrovgrad, location 1, was later rejected due to inconsistency with the
concentration measurements to the south and east of Dimitrovgrad (Saunier et al., 2019; Maffezzoli et al., 2019). Location 3 is
hypothetical, with no known nuclear facility around the location capable of producing a substantial amount of °Ru that would
explain the concentration measurements thousands kilometers away from this location. A release at location 4 in southern
Romania would contradict ground-based observations tothe east of the location was thus also rejected (see Masson et al.
(2019)). Nevertheless, we will discuss all four possible source terms in these locations in this Section, in order to demonstrate

the effects of the fast measuring systems.
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estimated total ST (TBq) | RAW | WEEKS | FAST | CUT |

location 1 (Dimitrovgrad) 352 363 241 439
location 2 (Mayak) 245 203 237 445
location 3 (north of Mayak) | 1737 1755 1583 | 2075
location 4 (south Romania) 853 248 787 603

Table 3. Estimated total source terms in TBq for a specific dataset (columns) and for a specific location (rows).

estimated length (hours) | RAW | WEEKS | FAST | cUT |

location 1 (Dimitrovgrad) 36 78 24 42
location 2 (Mayak) 36 18 24 18
location 3 (north of Mayak) 30 42 24 30
location 4 (south Romania) 30 96 30 66

Table 4. Estimated length of non-zero activity (higher than 1 TBq in a period of 6 hours) of source terms in hours for a specific dataset

(columns) and for a specific location (rows).

The estimated source terms are displayed in Fig. 7 for all the considered datasets and locations, see the titles and labels. Note
that in Fig. 7 we have cropped zero activities at the beginning and at the end of the source terms to maintain better visibility.
All source terms are associated with the 95% (two sigmas) highest posterior density region, using gray-filled regions. The total
estimated activities are further summarized in Tab. 3. Note that only the Dimitrovgrad and Mayak locations are in agreement
with the previously reported total activities of approximately 100 - 500 TBq (Shershakov et al., 2019; Saunier et al., 2019;
Le Brazidec et al., 2020; Western et al., 2020). Estimates from all datasets for these locations fit this interval.

As regards the temporal specification of the release, the estimated lengths of the release are displayed in Tab. 4. The release
probably occurred at Mayak between 25 September and 26 September, see literature review in Tab. 2. Shershakov et al. (2019)
estimated the two-days interval (both 25 September and 26 September) while further analyses by Saunier et al. (2019) and by
Le Brazidec et al. (2020) indicate a higher probability of the release on 26 September, with a possible minor release on 23
September and 24 September (Saunier et al., 2019). This is consistent with our findings, where 26 September was estimated
using the WEEKS and CUT datasets; most of both days, 25 and 26 September, were estimated using the RAW dataset; and
the time period between 6:00 AMon 25 September and 6:00 AM on 26 September was estimated by the FAST dataset. Further
validation with the TAEA dataset, Sec. 4.3, shows that the estimates from the WEEKS and FAST datasets are in better agreement
with the JAEA reported concentration measurements than the estimates from the RAW and CUT datasets. Considering that
the bulk of the release was probably within one day, we conclude that the FAST dataset provides the most consistent results,
estimating a one-day (24 hours) release for locations 1, 2, and 3 and 30 hours for location 4. The RAW dataset estimated that
the release lasted between 30 and 36 hours. Wider ranges were obtained in the case of the WEEKS dataset (between 18 and 96

hours) and the CUT dataset (between 18 and 66 hours). This wide ranges of the release from different locations are probably
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Figure 8. Scatter plots between the IAEA measurements and reconstructions using the RAW, WEEKS, FAST, and CUT datasets (specified

in titles) for location 2, Mayak. Computed correlation coefficients are given in the legends.

caused by the natural assumption of the LS-APC model that the shorter release is more probable than a longer one using
selection a zero prior mean value of the source term in Eq. (6). These findings support the hypothesis that the fast measuring

systems have better time-specificity than the standard measurement procedure.
4.3 Validation and comparison with the IAEA dataset

The same atmospheric transport modeling procedure as in Sec. 4.1 is applied here to the dataset of the '°°Ru measurements
available from the IAEA report (IAEA, 2017). This consists of 451 relevant measurements, mostly from Northern, Eastern and
Central Europe and the Russian Federation, see Fig. 10 for the exact locations of the measuring sites. This dataset will serve as
a validation set (Czech monitoring data has been removed).

First, scatter plots between the measured data reported by the TAEA and s reconstruction using estimated source terms from
the four studied Czech datasets studied here are displayed in Fig. 8 for location 2, Mayak. Here, the same colors as in Fig.
7 for each dataset are used. The scatter plots are accompanied by the computed correlation coefficient (R value) given in
the legend of each plot. We observed that the highest correlations coefficients are for the WEEKS (0.383) and FAST (0.381)
datasets. The RAW dataset has a lower correlation coefficient (0.378) and the CUT dataset has a significantly lower correlation

coefficient (0.345). This demonstrates that the fast measuring systems provide comparable or even better results than the
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Figure 9. Scatter plots between the IAEA measurements and reconstructions using the FAST dataset for all four considered locations

(specified in the titles). Computed correlation coefficients are given in the legends.

standard measurement procedure. The artificially constructed CUT dataset has a significantly lower agreement with the IAEA
dataset, which may indicate e.g. inaccuracy in cutting the time intervals of the measurements in this dataset.

Second, the scatter plots between the measured data reported by the IAEA and the reconstruction using the FAST dataset
for all four considered locations are displayed in Fig. 9, accompanied by the computed correlation coefficients. Here, the
reconstruction for location 2 (Mayak) is in better agreement with the IAEA data than any other considered location. Note that
similar results are also obtained also for all other datasets, indicating that the Mayak location is the most consistent with the
TAEA dataset. This confirms the findings of previous studies (Saunier et al., 2019; Maffezzoli et al., 2019; De Meutter et al.,
2018; Le Brazidec et al., 2020), which suggest the Mayak location as the most probable.

Third, similarly as for the Czech monitoring data, the source location methodology from Section 3.3 is also applied to
the TAEA dataset. The results are displayed in Fig. 10. Again, a darker color denotes a more likely location of the release,
while the scale is relative and dimensionless due to the proportional equality in Eq. (11). In direct comparison with the source
locations using the smaller datasets studied in Fig. 5, the patterns are very similar. Indeed, the source location using the JAEA
dataset rejected locations that cannot be rejected on the basis of the Czech data alone, due to the lack of data, see e.g. the
locations in Romania, Ukraine, and Finland. However, the estimates using all datasets in the southern Urals are consistent

with the IAEA dataset results, and also with e.g. the results of Saunier et al. (2019).For a numeric comparison of the source
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Figure 10. Top: source location of the release of *°°Ru via marginal log-likelihood, using the IAEA dataset. Bottom: the computed normal-
ized mean square error (NMSE), the normalized mean square error of the distribution of the normalized ratios (NNR), the figure of merit
in space (FMS), and the fractional bias (FB) between the source location results obtained using the IAEA dataset and the RAW, WEEKS,
FAST, and CUT datasets.

location maps using the Czech datasets and the map using the IAEA dataset, we compute four statistical coefficients used for
evaluations of atmospheric modeling results. Concretely, we compute the normalized mean square error (NMSE) which may
be, however, biased (Poli and Cirillo, 1993). Therefore, we also compute the normalized mean square error of the distribution
of the normalized ratios (NNR) suggested by Poli and Cirillo (1993) accompanied also by the figure of merit in space (FMS)
5 (Abida and Bocquet, 2009) and the fractional bias (FB) (Chang and Hanna, 2004). Note that coefficients closer to zeros are

better in all cases except the FMS where higher is better. These statistical coefficients are defined as
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FLEXPART run for location 2 (Mayak)
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Figure 11. Estimated source terms for location 2, Mayak, using SRS matrices computed using FLEXPART atmospheric transport model (top
row) associated with scatter plots between the IAEA reported measurements and reconstruction using specified dataset (bottom row). The

coloring of panels is the same as in previous Fig. 7 and Fig. 8.

where ¢ is the number of map tiles, piaga is the vector with the probabilities of the source location computed using the IAEA
dataset, and pg is the vector with the probabilities of the source location computed using the selected Czech dataset. The
results are summarized in Fig. 10, below the probability map.

We conclude that in all cases, results obtained using the FAST dataset are better than those obtained using other datasets.
The CUT dataset performs slightly worse than the FAST dataset while results obtained using RAW and WEEKS datasets are
significantly worse than obtained using FAST and CUT datasets. This demonstrates that the use of fast measurement systems
could better reflect the variability of the release even when it is located far from the release site, and could better match the

results of the IAEA dataset, which has a far better spatial distribution of the measurement stations.
4.4 Results using FLEXPART model

In this section, we aim to demonstrate that better time-resolution of measurement is beneficial independently on the used atmo-
spheric transport model and the used time-resolution. Concretely, we use FLEXPART model (Pisso et al., 2019) in backward

mode with finer, 3 hours, output temporal resolution as described in Sec. 4.1.

20



10

15

20

25

30

We present results for considered location 2, Mayak, in Fig. 11. There are source terms estimated using the LS-APC algo-
rithm in the top row and scatter plot between measured data reported by the IAEA and reconstruction using each dataset in the
bottom row. Note that the coloring of panels is the same as in previous Fig. 7 and Fig. 8. The totals of source terms are 1388
TBq, 1459 TBq, 852 TBq, and 948 TBq for datasets RAW, WEEKS, FAST, and CUT respectively. The lengths of releases are
18 hours, 24 hours, 9 hours, and 12 hours for datasets RAW, WEEKS, FAST, and CUT respectively.

Following differences are observed in comparison with results based on HYSPLIT runs. First, we observe significant releases
between the 22th and the 23th September in the case of RAW and WEEKS datasets. These releases are not observed for FAST
and CUT datasets. However, note also that the response on this initial release in, e.g., [AEA dataset is relatively low, see
comparison of R values in Fig. 11. Second, the release periods are estimated rather in the beginning of the 25th September
than in the end as in the case of HYPSLIT runs, however, this difference is negligible considering the temporal-spatial domain.
Third, totals of releases are in all cases significantly larger than in the case of HY SPLIT runs. The reason for this disproportion
may be in different parametrization of the atmospheric model. Considering the scatter plots in Fig. 11, bottom, we assume the
estimated releases slightly overestimated while they are on the upper limit of estimates in literature, Tab. 2.

From this perspective, the better temporal resolution of the output temporal grid seems to better reflect better temporal
resolution of the measurements. Similarly to the Sec. 4.3, we also validate (with the use of FLEXPART) the estimated source
terms with the IAEA reported measurements and compute associated R value for each scatter plot in Fig. 11. The R value is
slightly better for the FAST dataset (0.710) than for the RAW dataset (0.695) while it is 0.578 for the RAW dataset and even
lower for the WEEKS dataset (0.288). These results support the hypothesis that better temporal resolution of measurements

are beneficial for source term inversion.

5 Conclusions

We have investigated the occurrence of '°°Ru in Europe in the fall of 2017. We have used data from the Czech monitoring
network which also includes measurement data from novel real-time monitoring systems. Based on this case study, it can be
concluded that both systems are suitable for the task of rapid detection of radioactive contamination in the atmosphere at the
level of mBq/m?. Each of the developed devices employs a different sampling/measurement procedure and therefore there are
also different possibilities of their integration into a large-scale monitoring network. The combination of the AMARA system
and laboratory measurement seems to be an optimal setup balancing response sensitivity and timeliness. On the other hand, the
CEGAM system can be operated unattended in remote locations in a stand-by regime with a relatively low power consumption
and can be switched to emergency regime if needed. Regarding the employed electrically cooled HPGe detectors, they proved
to be resilient enough to be deployed long term. For the past three years we have not experienced any malfunction or need
of excessive maintenance so the only drawback of HPGe detectors are the accompanied costs compared to the Nal(Tl) setup
which we used in the past.

Using the inversion modeling technique, we have compared the results obtained from four datasets ranging from raw data,

using the standard measuring procedure, to real-time monitoring data with a much better temporal resolution. The results have
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been compared with the published state-of-the-art estimates of the °°Ru release in 2017. Based on this comparison, we have
observed that the results obtained using real-time monitoring data are comparable in terms of the total estimated release and
are better for the temporal specification of the release, while they are consistent with the previously reported findings regarding
the location of the 19°Ru source term.

In addition, we have compared our results based on the Czech monitoring data with the dataset reported by the IAEA,
which has a much better spatial coverage. The source location results have been compared usingNMSE, NNR, FMS, and
FB coefficients between the IAEA results and the results based on the Czech monitoring data. We have concluded that the
real-time monitoring data result is close to the IAEA result. Four source location hypotheses have been tested based on the
correlation coefficient between the IAEA measurements and the model reconstruction using Czech monitoring data. Here, the
results are in agreement with previous studies, with the Mayak location being the most probable (R = 0.381) in comparison
with Dimitrovgrad (R = 0.349), southern Romania (2 = 0.139), and the location to the north of Mayak (R = 0.109).

Concerning the real time monitoring capabilities of the Czech radiation monitoring network, we have shown that a single
operating device can enhance the inverse modeling predictions even for a relatively low radionuclide concentration at the level
of mBq/m?3. Although the continental scale scenario such as the 1°°Ru case in the 2017 may not be ideal for quantification
of a real-time monitoring system benefits due to the diffusion over several days transport, we believe that the benefits are still
observable. It is safe to state that the installation of multiple devices such as AMARA and CEGAM over a larger region (on a
European scale) would certainly yield additional improvements in source location and in source term estimation in the event

of a radionuclide atmospheric release.
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