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Abstract.  10 

Cloud condensation nuclei (CCN) play an important role in cloud microphysics and are crucial for the second indirect effect 

of aerosols on global climate. One of the uncertainties in calculations of the indirect effect is due to insufficient data on CCN 

activation. The formation and growth processes of aerosol particles which subsequently become CCN determine their chemical 

composition. Due to the numerous organic and inorganic components present in atmospheric aerosol particles, a determination 

of the chemical composition of individual CCN is still challenging. To expand our understanding of activation of real-world 15 

CCN we introduce a novel method to characterize the chemical composition of single activated CCN in their droplet state. 

This method consists of a coupling of two essential instruments, a CCN-VACES (Cloud Condensation Nuclei-Versatile 

Aerosol Concentration Enrichment System) which is a modification of the original VACES to select and enrich CCN 

concentrations, and a Laser Ablation Aerosol Particle Time of Flight mass spectrometer (LAAPTOF), a single particle mass 

spectrometer. In the CCN-VACES, an aerosol flow is exposed to a specific water vapour supersaturation (in this study:  0.035 20 

%, 0.054 %, 0.1 % and 0.6 %, respectively) and the CCN in the flow grow to droplets if their critical supersaturation is 

exceeded.  These grown droplets are subsequently enriched in concentration by means of a virtual impactor at the end of the 

growth region by a factor of ca. 16 and pass directly into a LAAPTOF to measure the chemical composition of individual 

activated droplets. Contrary to widely held beliefs, the LAAPTOF is able to analyse refractory and non-refractory components 

even in aqueous droplets and can therefore be used to determine the chemical composition of actually activated CCN in their 25 

droplet state. Single particle spectra (for both positive and negative ions) were obtained from activated CCN in the ambient 

aerosol as well as activated CCN originating from aerosolized sea water samples collected at two different regions (Palma de 

Mallorca and San Sebastián, Spain). Ambient CCN were found to contain sometimes highly complex mixtures of different 

carbonaceous and non-carbonaceous components. Sea water derived CCN show the expected content of sea salt constituents, 

but the presence of organics is also observed. Activated CCN from the San Sebastián water samples have stronger sulphate 30 
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signals than the Mallorca water sample.  The LAAPTOF was found to provide insights into the composition of individual 

activated CCN. 

 

1 Introduction 

Atmospheric aerosols have a strong influence on climate directly by interacting with incoming solar radiation and indirectly 35 

by acting as Cloud Condensation Nuclei (CCN) and ice nuclei (IN). CCN and IN can alter cloud properties such as albedo and 

cloud life time (e.g. Albrecht, 1989, Rosenfeld et al., 2014 and Twomey, 1977). The ability of aerosol particles to act as CCN 

depends on their size and chemical composition and the water vapour supersaturation of their environment (e. g. Dusek et al., 

2006, McFiggans et al., 2006, Burkart et al., 2011, Burkart et al., 2012). Numerous studies indicate that chemical composition 

has a strong influence on CCN activity (e. g. Hudson, 2007; Furutani et al., 2008; Quinn et al., 2008). In particular McFiggans 40 

et al. (2006) stressed the high relevance of the composition of ambient aerosol particles in the size range from 40 to 200 nm 

for CCN activation at the typical low supersaturations present at cloud formation. Particles smaller than 40 nm are too small 

and therefore unlikely to become activated regardless of their chemical composition, while particles with sizes larger than 200 

nm will usually contain enough soluble material to activate into cloud droplets. Several laboratory studies characterised the 

activation of well-known single chemical component aerosol particles (e. g. Bilde and Svennigsson, 2004, Giebl et al., 2002, 45 

Burkart et al., 2011). Single ambient aerosol particles contain on the order of 10² to 1015 molecules per particle and have masses 

~ 10-20 to 10-6 g (Pratt and Prather, 2012). They often consist of internal mixtures of possible unknown organic and inorganic 

components (e. g. Murphy et al., 2006; Friedman et al., 2013, Okada et al. 2001). In contrast to the inorganic aerosol 

components which consist of mostly a few well characterised compounds, the organic fraction of the aerosol material 

comprises hundreds of individual species (Kanakidou et al., 2005). Water soluble organic carbon (WSOC) has been shown to 50 

influence particle activation (e.g. McFiggans et al., 2006, Jacobson et al., 2000).  

 

Ambient aerosols originate from multiple different sources. Chemical reactions of natural and/or anthropogenic precursor 

gases lead to particle nucleation events. The freshly formed secondary aerosol particles can attain CCN ability during 

atmospheric ageing processes (e.g. Asmi et al., 2011, Dameto de España et al., 2017, Németh et al., 2018). Natural sources 55 

contribute ca. 90 % by mass to atmospheric aerosols, with sea salt aerosol (SSA) and dust as the largest fractions (Prather et 

al., 2013). SSA properties are still not well characterized. Several studies reveal that SSA are complex mixtures of inorganic 

sea salt and organic compounds with different solubilities (e.g. Prather et al., 2013; Blanchard et al., 1989; Parungo et al., 

1986, Middlebrook et al., 1998). The role of the contribution of organic material to SSA in remote regions is still uncertain 

(O´Dowd and de Leeuw 2007). Models predict that organic matter can enhance cloud droplet concentrations (O´Dowd et al., 60 

2004) under the assumption that SSA particles are internally mixed. Recent studies (e.g. Leck et al., 2005; Pratt et al., 2009) 

indicated however, that some SSA particles smaller than 200 nm could be externally mixed. As SSA is such a major component 

https://doi.org/10.5194/amt-2020-21
Preprint. Discussion started: 28 January 2020
c© Author(s) 2020. CC BY 4.0 License.



3 
 

of the atmospheric aerosol and provides CCN over large areas of the globe, a rigorous investigation of SSA characteristics is 

necessary.  

In addition, the physical and chemical processes that occur during atmospheric ageing of particles continuously change their 65 

properties. Offline bulk measurements to determine the chemical composition do not have sufficient temporal resolution to 

characterize the dynamic changes in the composition of ambient aerosol particles. Measurements of the chemical composition 

of single ambient particles are still challenging. To address this challenge on-line mass spectrometry techniques have been 

intensively developed over the last decade.  As opposed to offline techniques they can provide information of chemical changes 

in atmospheric aerosol particles on short time scales (Pratt and Prather, 2012). The most widely used on-line techniques are 70 

single particle laser ablation (Noble and Prather, 2000) and the Aerodyne aerosol mass spectrometer (AMS) which both have 

been widely used to analyse the bulk chemical composition of ambient aerosols (Canagaratna et al., 2007). 

 

Laser desorption/ionisation (LDI) is currently used for single particle analysis. In contrast to the AMS, the Single Particle Mass 

Spectrometer (SPMS) (Johnston et al., 2000, Hinz and Spengler, 2007) is able to analyse both non refractory (e.g. organics, 75 

ammonium nitrate) and refractory (e.g. mineral dust, soot) components of single atmospheric aerosol particles (Pratt and 

Prather, 2012). Cziczo et al. (2003) and Cziczo et al.  (2006) coupled a continuous flow ice nuclei counter (Rogers et al., 2001) 

to a single particle mass spectrometer (PALMS; Murphy et al, 1998) to focus on chemical characterization of IN, and single 

particle analyses of ice particle residuals where conducted by Schmidt et al (2017) at Jungfraujoch. 

 80 

The LAAPTOF is a recent commercially available single particle mass spectrometer manufactured by AeroMegt GmbH, which 

has been used already in several studies, such as Shen et al. (2018b) who studied atmospheric particles, Mardsen et al. (2018) 

who studied mineral phases in dust aerosol particles, while Wonaschütz et al. (2017) characterized particles formed 

radiolytically in aerosol neutralizers. Ahern et al. (2016) compared the response of the LAAPTOF and another commercial 

single particle mass spectrometer, an infrared (IR) laser vaporization soot-particle aerosol mass spectrometer (SP-AMS, 85 

Aerodyne Research Inc.) to secondary organic material condensing on biomass-burning soot particles and found that the 

LAAPTOF gives quantitative results for organic material even for complex aged biomass burning particles. Weiss et al. (2018) 

examined particles emitted by four mastic asphalt mixtures at different temperatures (195 °C to 245 °C) using the LAAPTOF. 

  

All these studies performed with the various types of single particle mass spectrometer analysed dry particles. In the 90 

atmosphere, however, aqueous aerosols play an important role especially in fog, haze or cloud processes. The presence of 

water in aerosol samples, however, complicates particle detection by SPMS since the water readily evaporates in the vacuum 

inside the instruments leading to vacuum breakdown within the mass spectrometer hindering particle detection. If the droplets 

spend only a short time in the vacuum prior to analysis, SPMS measurements should be possible. Neubauer et al. (1997) 

demonstrated that on-line laser desorption / ionization mass spectrometry is capable of analysing aqueous solutions.  95 
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A few studies directly measured the chemical composition of single particles in the size range critical to cloud formation.  

Zauscher et al. (2011) measured single particles in the size range 50 – 200 nm aerosol after growing them in a growth tube at 

high water vapour supersaturations (20%). Roth et al. (2010) analysed cloud residues and out-of-cloud aerosol particles with 

diameters between 150 and 900 nm with an ALABAMA SPMS described by Brands et al. (2011). Hiranuma et al. (2011) 100 

separated droplets exiting from a cloud condensation nuclei counter from inactivated particles with a counterflow virtual 

impactor, dried them, measured the chemical composition of the resulting residual particles with a PALMS SPMS (Murphy et 

al, 1998), compared the chemical composition of inactivated particles and residuals and interestingly found higher sulphate 

signals in the dried residuals.  

To the best of our knowledge, no study to-date measured the chemical composition of single activated CCN on-line in their 105 

unaltered droplet state; to address this need, we developed a method to characterize single droplets originating from CCN 

activated at different specific supersaturations. We utilized a new CCN-VACES (Versatile Aerosol Enrichment System; 

described by Dameto de España et al., 2019) in series with a LAAPTOF. The CCN-VACES is a modification of the original 

VACES (Kim et al., 2001a, Kim et al., 2001b) and is designed to activate CCN at low supersaturations (in our case 0.035, 

0.054, 0.1 and 0.06 %) and enrich the concentration of the grown droplets for further analysis. The goals of this study are to 110 

analyse the chemical composition of single ambient CCN and of CCN formed from sea water samples by activating them at 

different supersaturations and analyse directly the grown droplets in their liquid state. 

2 Instrumentation 

2.1 CCN-VACES 

The CCN-VACES is a modified version of the VACES (Kim et al., 2001a, Kim et al., 2001b) designed to enrich CCN 115 

concentrations. First descriptions of this modified system were shown by Dameto de España (2018a, 2018c and 2019b). A full 

description and characterisation of the instrument was published recently (Dameto de España et al., 2019). Briefly, the CCN-

VACES consists of two main parts, a saturator and two parallel condenser tubes each followed by a virtual impactor with cut 

size of 1.5 µm. (For the experiments described in this study, only one condenser tube with its virtual impactor was used. The 

other tube also received the aerosol flow but the flows of the virtual impactor connected to this tube were not used for the 120 

measurements.)  

The saturator is a cylindrical tank half filled with ultrapure water (Direct-Q5®, Millipore, Billerica, MA) heated with two 

hotplates (1500 W, EKP3582, Claronc®). Water temperature is kept constant (usually at 52°C) within ±0.1°C. The temperature 

profile in the water tank is homogenized with a peristaltic pump and a temperature sensor measures the water temperature Tw 

within ±0.1 °C. The top cover of the water tank is connected to the two condenser tubes each composed of two concentric 125 

tubes. An ethylene glycol/water (1:1 by volume) coolant circulates between these concentric tubes to establish the water vapour 

supersaturation inside. The coolant temperature, Tc is regulated with a chiller (Thermocube 300 1D 1 LT Solid State Cooling 

Systems, Pleasant Valley, NY).  
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In the virtual impactors after the condenser tubes, grown droplet particles with sizes above the cut size are concentrated into 130 

the minor flow (5 l/min) with an enrichment factor of ca. 16 (Dameto de España et al., 2019). The major flow (100 l/min) 

containing only particles with smaller sizes is removed from the system. As described in previous studies (e.g. by Geller et al., 

2004 or Sioutas et al., 1998) the performance of the virtual impactor is defined by the major and the minor flows. Therefore, 

the flow rates were always checked before each of the measurements. The minor flow of the virtual impactor containing the 

activated droplets as well as particles with sizes below the cut size represents 5% of the total flow. As the LAAPTOF has a 135 

lower size detection limit of 300 nm and as atmospheric aerosol particles with sizes between 300 nm and 1.5 µm that remain 

inactivated at the supersaturations used here are very rare, this small percentage will likely not influence the LAAPTOF 

measurements unduly. 

 

In order to enrich CCN concentrations the aerosol passes first through the saturator region with 100% relative humidity and 140 

then to the condenser tube. The duct connecting the saturator and the condenser was heated with a heating wire to avoid 

premature water condensation. Before entering the condenser tube the air temperature (saturator temperature Ts) is measured. 

In the condenser tube the aerosol flow is cooled down, the water vapour becomes supersaturated and particle activation and 

growth take place. The temperature of the aerosol flow exiting the condenser is measured (Tout). The whole system is controlled 

by four different temperature sensors and the supersaturation is set by adjusting the temperatures according to a calibration 145 

curve as described by Dameto de España et al. (2019). 

2.2 LAAPTOF (Laser Ablation Aerosol Particle Time Of Flight) mass spectrometer 

The on-line aerosol single particle mass spectrometer LAAPTOF (AeroMegt GmbH) provided the chemical information for 

the activated droplets. The LAAPTOF is a recent commercially available SPMS able to analyse refractory and non-refractory 

components (Gemayel et al., 2016). Exhaustive characterizations of the instrument were performed by Gemayel et al. (2016), 150 

Marsden et al. (2016) and Ramisetty et al. (2018). Several studies have already described and characterized LAAPTOFs (e.g. 

Wonaschuetz et al., 2017, Gemayel et al., 2016; Shen et al., 2018a, Ramisetty et al., 2018, Mardsen et al., 2016). In brief, the 

LAAFTOF comprises three different regions as shown in Fig. 1. The first part is the inlet which consists of a 100 µm critical 

orifice and an aerodynamic lens designed by Liu et al. (1995a, 1995b) that focuses particles into a narrow beam by passing the 

flow through six different apertures with decreasing diameters and transmits the particles into the vacuum stage. The sampling 155 

flow is 0.1 l/min. Particles with sizes between 70 nm and 2.5 µm vacuum aerodynamic diameter (dva) are transmitted into the 

vacuum stage (pressure 10 -7 mbar) with 100% efficiency (AeroMegt Usermanual, 2015) (in our setup, however, spectra are 

obtained only for particles >300 nm). This second region, the Particle Time of Flight (PTOF) region, is responsible for particle 

sizing. It consists of two 50 mW laser diodes (wavelength 405 nm) operating in a continuous wave mode, separated by 11.3 

cm. The two lasers irradiate the particles and as a particle successively crosses the two laser beams, the two scattering signals 160 

are recorded and its flight time is determined. The vacuum aerodynamic diameter of a particle is derived from its flight time 
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from a calibration with particles of well-known sizes. In our case we used polystyrene latex particles PSL particles (PSL, 

Polyscience Inc. Warrington, PA) with sizes between 350 nm and 1500 nm. After the second sizing laser, laser ablation takes 

place in the 5*10-7 mbar vacuum. An excimer laser (wavelength 193nm; ATLEX 300 I, ATL Lasertechnik GmbH) with a 

maximum energy of 10 mJ per pulse (10 ns) allows ablation of a single particle every 4 µs (Shen et al., 2018a). The resulting 165 

ions and particle fragments are extracted in the third region into the positive and negative time of flight mass spectrometer 

(Tofwerk, TOF). Charged ions are detected independently by two microchannel plate detectors (MCP). A first pilot study on 

the ability of the LAAPTOF to detect and analyse aqueous droplets was performed by Dameto de España et al. (2018b). 

 

Figure 1: Schematic diagram of the LAAPTOF. 170 

3 Experimental set-up  

The chemical composition of activated CCN was obtained by conducting measurements with the CCN-VACES coupled to the 

LAAPTOF. As the LAAPTOF inlet flow is only 0.1 l/min, the minor flow from the virtual impactor of the CCN-VACES (5 

l/min) was split into three flows. One flow (4.3 l/min, regulated with a flow-controller MC-20SLPM-D, Alicat Scientific, Inc.) 

was drawn with a pump and vented to the outside, 0.6 l/min flowed through a diffusion dryer and then to a condensation 175 

particle counter CPC (Grimm 5412, flow regulated by a critical orifice) to check the aerosol number concentration and the 

remaining 0.1 l/min flow entered the LAAPTOF. An illustration of the experimental set-up is shown in Fig. 2. 
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Figure 2: Schematic illustration of the experimental set-up. For ambient air sampling the inlet was open. For the sea water 
experiment the set-up in the dashed square was coupled to the inlet. 180 

4 Measurements 

4.1 LAAPTOF calibration and measurements 

The Time-of-Flight mass spectrometer provides a set of peaks which have to be attributed to ion masses. A basic calibration 

was performed using Carbon Black (Elftex 124, Cabot Corporation) particles produced by aerosolizing a suspension in an 

80/20 water/isopropanol mixture. The resulting single particle spectra contain only peaks for carbon ions, which can easily be 185 

attributed to single C atoms and multiples (Cn ions Fig. 3). This basic calibration is then used for the identification of ion 

masses from unknown ionic fragments arising from the laser ablation. Data evaluation and data processing was performed 

with LAAPTOF Data Analysis© software (Copyright AeroMegt GmbH 2014). 
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 190 

Figure 3: Single particle spectra of back carbon aerosol 

 

4.2 Measurements of ambient air CCN 

These CCN measurements were performed using the set-up shown in Fig. 2. Ambient air was drawn directly into the saturator 

and the water temperature was set to 52°C. The temperature in the condenser tubes was adjusted according to the desired Tout 195 

which is related to the water vapour supersaturation in the flow exiting the tube before entering the virtual impactor. Details 

of setting a desired supersaturation can be found in the previous paper by Dameto de España et al. (2019). In the supplementary 

data, Table S1 provides the temperature settings in the CCN-VACES and the corresponding supersaturations used in our study.  

4.3 Measurements of CCN produced from sea water samples 

 Seawater samples were collected in two different locations in Spain; one on 06.06.2018 in Palma de Mallorca (39°33'21.8"N,  200 

2°40'50.0"E) and the second on 21.06.2018 in San Sebastián (43°18'53.9"N 1°59'43.5"W). The samples were kept frozen until 

the measurements were conducted. Particles were generated by aerosolizing the seawater with a Collison atomizer (TSI, 3076) 

operated with particle free air at 1.2 bar producing a 2 L/min aerosol flow. This flow was diluted with 3 L/min of dry clean 

air, dried to a relative humidity < 15% with a diffusion dryer and then introduced into the CCN-VACES. The condenser 

temperature was chosen according to the desired water supersaturation at the end of the condenser tube.  205 
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5 Results 

5.1 Results of analyses of activated ambient air CCN droplets 

Ambient air CCN were activated in the CCN-VACES and introduced into the LAAPTOF to obtain single particle spectra for 

each of the droplets. Measurements were performed on five different days with laboratory ambient air at four different 

supersaturations. The number of spectra obtained on each day and supersaturation are represented in Table 1.  The total number 210 

of spectra obtained e.g. at a supersaturation of 0.6% varies between 3150 (25.03.2019) and 10000 (30.04.2019). The number 

of spectra obtainable within one measurement series was limited either by the pressure increase in the vacuum chamber caused 

by the evaporating droplets or the limits imposed by the instrument software. 

 

In analysing dry aerosol particles, ca. 80% of the obtained spectra give sufficiently clear peaks for data evaluation. As shown 215 

by Neubauer et al. (1997), particle water content influences particle detection in SPMS. In our case of analysis of activated 

CCN (droplets), only ca. 10% to 20% of the spectra obtained from the droplets were sufficiently clear for analysis, which 

means >300 spectra for each set of measurements (date, supersaturation) are available for analysis, a number sufficient for 

statistical data processing. Hinz et al. (2004) set the lower limit for the number of spectra at 200.  

 220 

A specific mass calibration was performed selecting three different marker peaks (last two columns in Table 1) from the 

positive and negative spectra. Relevant marker peaks observed in the positive ions spectra are mainly those of carbon ions (C+, 

C+
2, C+

3, m/z= 12, 24 and 36), potassium (K+, m/z= 39 and 41), Si+ (m/z= 28) and NO+ (m/z= 30). In the negative spectra, O- 

and OH- (m/z= 16 and 17), C-
2, C-

3, C-
4  (m/z= 24, 36 and 48) and HSOସ

ି (m/z= 97) predominate. As suggested by Shen et al. 

(2018a), peaks were chosen with a wide separation between peaks in the negative spectra. In the positive spectra peaks were 225 

selected for the specific mass calibration that gave the strongest signals.  

 

 

 

 230 

 

 

 

 

 235 
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Day 

 

SS (%) 

Total number 

of spectra  

Number of 

spectra used  

Fraction of Spectra 

used for analysis (%) 

Positive peaks for 

calibration (m/z) 

Negative peaks for 

calibration (m/z) 

25.03.2019 0.035 10000 1199 12% 12/24/36 24/36/48 

25.03.2019 0.054 10000 1007 10% 12/24/36 16/24/97 

25.03.2019 0.6 3150 688 22% 12/36/39 24/36/72 
    

29.04.2019 0.035 3150 342 11% 12/39/41 16/80/97 

29.04.2019 0.054 3090 274 9% 12/36/39 16/80/97 

29.04.2019 0.1 3100 368 12% 12/28/30 16/80/97 

29.04.2019 0.6 7160 834 12% 18/24/30 17/80/97 
    

30.04.2019 0.035 5110 606 12% 12/30/36 17/80/97 

30.04.2019 0.054 5330 839 16% 12/30/36 17/80/97 

30.04.2019 0.1 5130 803 16% 12/28/30 16/80/97 

30.04.2019 0.6 10000 1556 16% 12/36/39 17/24/26 

15.05.2019 0.035 4090 449 11% 12/30/36 17/80/97 

15.05.2019 0.054 3990 555 14% 12/30/36 17/80/97 

15.05.2019 0.1 4170 630 15% 12/28/30 16/80/97 

15.05.2019 0.6 4170 558 13% 12/36/39 17/24/26 

16.05.2019 0.035 4060 526 13% 12/30/36 17/80/97 

16.05.2019 0.054 3480 410 12% 12/30/36 17/80/97 

16.05.2019 0.1 4130 558 14% 12/28/30 16/80/97 

16.05.2019 0.6 4340 576 13% 12/36/39 17/24/26 

 

Table 2: Summary of spectra obtained for activated ambient air CCN and strongest ion signal used for the specific mass calibration. 

 240 

For the evaluation of the large number of available spectra, automated data processing was performed with a fuzzy c-means 

clustering algorithm (Hinz et al., 1999) incorporated in the LAAPTOF Data Analysis Igor software (Version 1.0.2, AeroMegt 

GmbH). This algorithm groups single particle spectra in different clusters according to the similarity of the spectra (Reitz et 

al., 2016). Every single spectrum corresponds to a specific particle. This program, however, needs the number of clusters to 

be selected as an input variable. In our study, we used another fuzzy c-means clustering program to obtain the number of 245 

clusters best representing the data (i.e. a measurement series) which was used then as input to the instrument software. The 
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membership parameter µ obtained from the fuzzy c-means clustering determines the degree a single particle spectrum belongs 

to each of the clusters according to their spectra similarity. These µ values vary from to 0 to 1, with 0 no pertinence and 1 full 

correspondence with the assigned cluster. Fuzzy c-means clustering enables to assign a particle to multiple clusters and the 

assigned fraction to each cluster arises from the µ value. Every class is represented by a central spectrum, which provides a 250 

visualization of the predominant chemical signals in this cluster. Following Hinz et al. (2005), the number of particles 

corresponding to each cluster was determined by counting the number of particles with a membership µ value > 0.7 (Hinz et 

al., 2005). 

 

The data set for each day and each supersaturation was evaluated with the fuzzy c-means clustering using the methodology 255 

above. The activated CCN droplets measured on 25.03.2019, 29.04.2019 and 30.04.2019 can be grouped in four different 

clusters, which are referred to as “classes” in the following text. Activated CCN droplets measured on 15.05.2019 and 

16.05.2019 were classified into only three classes, as on those days class 4 or “nitrate rich” (see below) was not observed. The 

number of particles corresponding to each class, which means particles with a µ factor > 0.7, are summarized in Table 2. For 

the measurements at 0.1% water vapour supersaturation on 25.03.2019 no data are available due to a technical problem.  260 

5.1.2 Classification of measured ambient air CCN spectra 

The single droplet spectra were attributed to four classes to obtain a general impression of the chemical composition and 

predominant species and to enable comparisons with the results from other studies. Example of average spectra corresponding 

to the classes are illustrated in Figs. (4-7) which correspond to the measurements performed on 30.04.2019 at SS=0.6% 

 265 

Spectra in the first class, class 1, or “internally mixed” spectra contain many different ions in the positive ion spectrum. 

Droplets in this class contain a variety of ions of different compounds or elements, which indicate that the original CCN had 

been internally mixed particles (Kane and Johnston, 2000). Secondary aerosol material is represented by the nitrosonium ion 

(NO+, m/z=30) and NH4
+ (m/z=18) (see Brand et al., 2011, Hinz et al., 2006). The presence of carbonaceous species is 

represented by Cn
+ (m/z= 12, 24 and 36). Sodium Na+ (m/z=23), aluminium Al+ (m/z=27), calcium Ca+ (m/z=40), potassium 270 

K+ (m/z=39, 41) and Fe+ (m/z=56) ions are present in the spectrum. These latter peaks were also observed for dry particles 

analysed at Jungfraujoch in the Swiss Alps (3580 m a.s.l.) by Hinz et al. (2005). Organic particle fragments such as C2H3
+ 

(m/z=27) in the positive ions spectrum and CଶHଶ
ି (m/z=26) in the negative ions spectrum indicate the presence of organic 

material (Brands et al., 2011).  

In the negative ions spectrum signs of Oି  (m/z=16) and OH- (m/z=17) correspond to water. Ions of organic species are 275 

represented by Cଡ଼
ିHଢ଼

ି (m/z= 25, 26 and 27). Ammonium nitrate (represented by NOଶ
ି, m/z=46 and NOଷ

ି, m/z=62) and sulphate 

(peaks for HSOସ
ି, m/z=97, and SOଷ

ି, m/z=80) again show the presence of secondary material.  
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The second class, class 2, we called “carbon and nitrate”. In this class strong elemental carbon peaks are observed in the 

positive spectrum as Cn
+ (m/z= 12, 24 and 36).  Lower intensity peaks for inorganic elements can be distinguished. The 280 

nitrosonium ion NO+ (m/z=30) associated to ammonium nitrate is also present as well as the siliceous ion Si+ (m/z= 28), which 

is often observed in measurements of the chemical composition of the ambient aerosol (e.g. Gemayel et al., 2016, Brands et 

al., 2011). In the negative ions spectrum of this class, no noticeable peaks were observed.  

  

The third class, class 3, called “carbonaceous rich”, is characterized by dominant positive carbonaceous ions (C+, C+
2, C+

3, 285 

m/z= 12, 24 and 36). In the negative ions spectrum, weak peaks related to ammonium sulphate HSOସ
ି (m/z=97) are observed. 

 

The fourth class, class 4, named “nitrate rich”, has a predominant peak of NO+ (m/z=30) associated with nitrate. Carbon 

peaks with lower intensities can be observed in the positive ions spectrum (C+, C+
2, C+

3, m/z= 12, 24 and 36) and Si+ (m/z= 28) 

and NH4 
+ (m/z=18) are also present. In the negative ions spectrum, weak peaks related to ammonium sulphate HSOସ

ି (m/z=97) 290 

and ammonium nitrate, indicated by NOଶ
ି (m/z=46), are observed. This “nitrate rich” class 4 is similar to class 2 “carbon and 

nitrate”, but the intensities of the peaks differ. In class two, peaks of carbonaceous ions are stronger whereas in class four the 

nitrate peaks are more prominent. 

Table 2 shows spectra obtained from ambient air CCN activated at different supersaturations, the attribution of spectra to 

classes 1 – 4 in terms of number of individual spectra per class as well as the percentage of total spectra obtained during the 295 

measurement series. 
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25.03.2019 

class 1 

(# spectra) 

class 2  

(# spectra) 

class3 

(# spectra) 

class 4 

(# spectra) 

TOTAL 

(# spectra) 

class 1 

(%) 

class 2 

(%) 

class3 

(%) 

class 4 

(%) 

SS=0.035% 109 469 164 221 963 11% 49% 17% 23% 

SS=0.054% 50 213 338 177 778 6% 27% 43% 23% 

SS=0.6% 51 284 57 172 564 9% 50% 10% 30% 

29.04.2019 
   

 
 

SS=0.035% 45 100 69 63 277 16% 36% 25% 23% 

SS=0.054% 23 101 43 43 210 11% 48% 20% 20% 

SS=0.1% 140 30 54 224 448 31% 7% 12% 50% 

SS=0.6% 47 352 143 81 623 8% 57% 23% 13% 

30.04.2019 
   

 
 

SS=0.035% 36 160 205 97 498 7% 32% 41% 19% 

SS=0.054% 47 280 239 111 677 7% 41% 35% 16% 

SS=0.1% 43 270 241 115 669 6% 40% 36% 17% 

SS=0.6% 83 464 500 215 1262 7% 37% 40% 17% 

15.05.2019 class 1 class 2 class3  TOTAL class 1 class 2 class3 

SS=0.035% 41 130 176  347 12% 37% 51% 

SS=0.054% 47 150 241  438 11% 34% 55% 

SS=0.1% 56 133 330  519 11% 26% 64% 

SS=0.6% 54 274 145  473 11% 58% 31% 

16.05.2019   

SS=0.035% 32 240 150  422 8% 57% 36% 

SS=0.054% 33 183 125  341 10% 54% 37% 

SS=0.1% 53 171 223  447 12% 38% 50% 

SS=0.6% 67 237 166  470 14% 50% 35% 

Table 2: Summary of the number of particles with a µ factor > 0.7 for a class  
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Figure 4: Central spectrum corresponding to class 1 or “internally mixed” 315 

 

Figure 5: Central spectrum corresponding to class 2 or “carbon and nitrate” 

 

 

Figure 6: Central spectrum corresponding to class 3 or “carbonaceous rich” 320 
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Figure 7: Central spectrum corresponding to class 4 or “nitrate rich” 

In the analysis of ambient aerosol CCN, spectra belonging to classes 2, 3 and 4 appear for activated CCN droplets at all 

supersaturations with small differences in peaks’ intensity. In contrast, spectra attributed to class 1 (“internally mixed”) show 325 

quite some variation. Fig. 8 shows examples of spectra obtained at each of the four supersaturations for particles belonging to 

to class 1 or “internally mixed”. These spectra were obtained by setting the number of clusters in the fuzzy clustering routine 

to 1 for the measurements on 30.04.2019, so all spectra are grouped together. In the positive spectrum carbon peaks intensities 

(C+, C+
2, C+

3, m/z= 12, 24 and 36) are higher for 0.054% supersaturation. The nitrosonium ion (NO+, m/z=30) signal is stronger 

at 0.1% supersaturation, while the potassium K+ (m/z=39, 41) signal is stronger at 0.054% supersaturation. The peak intensities 330 

for organic negative ions CX
െHY

െ (m/z= 25, 26 and 27) are stronger at 0.054% supersaturation.  Ammonium nitrate (NOଶ
ି, 

m/z=46, and NOଷ
ି, m/z=62) is present at all supersaturations. The most prominent peak is from ammonium sulphate (HSOସ

ି, 

m/z=97) for all supersaturations. 

 

Figure 8: Superposition of spectra belonging to class 1 at different supersaturations measured on 30.04.2019 335 
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5.1.3. Spectra obtained from single droplets 

The fuzzy c-means clustering is  a commonly used method to analyse large  numbers of spectra and to give an overview of the 

composition of different kinds of particles. This method, however, provides only an average spectrum of the single spectra, so 

information on individual particles is lost. The major advantage of the link of CCN-VACES and LAAPTOF, however, lies in 340 

the ability to obtain spectra of single activated CCN. Therefore single spectra corresponding to each of the classes obtained 

from ambient CCN activated at 0.6% supersaturation on 25.03.2019 were analysed.  

Figure 9 shows a single drople spectrum contained in the class “carbon and nitrate” indicating an internally mixed CCN 

containing an appreciable amount of Carbon.   

 345 

 

 

Figure 9: Single particle spectra corresponding to class 2 or “carbon and nitrate”  

 

Figure 10 shows a spectrum of a droplet corresponding to the class 3 or “carbonaceous rich”. Of particular note is that the 350 

average negative ions spectrum for this class does not show distinct peaks, while in the single droplet spectrum clear single 

carbon C and multiples’ (Cn) peaks can be observed (C to C8, m/z= 12 to 96) in both the positive and negative ions spectrum. 

In the positive spectrum more multiple C peaks are observed in the single droplet spectrum than in the mean spectrum 

corresponding to this class. This spectrum indicates that the initial CCN was a black carbon particle – possibly a freshly emitted 

Diesel soot particle. 355 
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Figure 10: Single particle spectra of single particle back carbon aerosol corresponding to the class 3 or “carbonaceous rich” 

Figure 11 gives the spectrum of a single droplet corresponding to the class “nitrate rich”. Strong peaks in the negative spectra 

can be observed. 

 360 

Figure 11: Single particle spectrum corresponding to class 2 or “carbon and nitrate”  
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Figure 12: Single particle spectrum corresponding to class 1 or “internally mixed”  

 

 365 

 

Figure 13: Single particle spectrum corresponding to class 1 or “internally mixed”  
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Figures 12-15 show droplet spectra corresponding to the class internally mixed. The presence of Si+ (m/z= 28) in the spectrum 

in Fig.12 might indicate a CCN not originating in the area of Vienna. Okada and Hitzenberger (2001), e. g. found that the 

presence of fine (< 2 µm) Si in the Vienna aerosol occurred for air mass origins over Upper Silesia (Poland). The original CCN 370 

of the droplet shown in Figure 13 may have had its origin in biomass combustion as indicated by the strong K peak (Pachon 

et al., 2013). Aluminium and NH4
+ are also detected in this CCN.  

 

 

Figure 14: Single particle spectrum corresponding to class 1 or “internally mixed”  375 
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Figure 15: Single particle spectrum corresponding to class 1 or “internally mixed”  

 380 

In summary, the ion spectra obtained from the activated ambient aerosol CCN show that the majority of the resulting droplets 

contain mainly the secondary aerosol components nitrates and sulphates as well as carbonaceous material. Spectra obtained 

for single droplets, however, show that the individual CCN can have had quite different compositions both in terms of chemical 

species as well as their distribution within a CCN. Some spectra show a strong signal for potassium, which indicates that at 

least some of the CCN have had their origin in biomass combustion. The detection of organics in the activated CCN shows 385 

that (possibly hydrophobic) organic material did not inhibit activation of these particles.  

5.2.1 Measurements of CCN produced from sea water samples 

Activated CCN droplet spectra measured at different supersaturations are summarized in Table 3. From the total number of 

acquired spectra 20% to 30% were sufficiently clear for data analysis. For the initial mass calibration of the LAAPTOF (see 

section 5.1) the three most dominant peaks for the positive ion spectra (i.e. Na+ (m/z =23), K+ potassium (m/z= 39) and  Na2Cl+ 390 

(m/z=81 and 83)) were used and for the negative ions spectra the peaks for Oି and OHି(m/z= 16, 17), Cl- (m/z= 35, 37), NaCl- 

(m/z=58) and Na2Cl- (m/z=93 and 95). 
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Sample 

 

SS (%) 

Total 

spectra (#) 

Used 

spectra 

(#) 

Spectra for 

analysis (%) 

Positive peaks 

for calibration 

(m/z) 

Negative peaks 

for calibration 

(m/z) 

Palma de Mallorca 
 

          

 0.035 4040 1075 27% 23/81/83 35/37/93 

 0.054 4030 1051 26% 23/39/81 17/35/93 

 0.1 4040 1045 26% 23/39/81 16/35/93 

 0.6 4120 1585 38% 23/39/81 17/35/37 

San Sebastián             

 0.035 3310 618 19% 23/39/81 17/35/58 

 0.054 4030 874 22% 23/39/81 16/35/58 

 0.1 4030 1010 25% 23/39/81 17/35/58 

 0.6 4040 1367 34% 23/39/81 17/35/58 

Table 3: Summary of the single CCN spectra for sea water samples and strongest ion signal used for the single particle mass 
calibration. 395 

5.2.2 Evaluation of spectra of activated CCN produced from sea water samples  

As the aerosolization of sea water samples produced internally mixed particles of homogeneous composition, only one cluster 

was used in the evaluation of the spectra. The resultant spectrum for each location and supersaturation is the mean of all spectra 

obtained for this measurement set. By comparing these mean spectra obtained at the different supersaturations, no differences 

in the dominant peaks are observed. Only the intensities of some peaks change slightly from one mean spectrum to the other.  400 

Results of mean spectra obtained for activated CCN (0.6% supersaturation) from sea water samples from Palma de Mallorca 

and San Sebastián are shown in Fig.16 -17. For samples collected at both locations, the positive ion spectra contain signs of 

carbon C+ (m/z= 12), Na+ (m/z= 23), Mg+ (m/z= 24), K+ (m/z= 39, 41) and Na(H2O)2
+ (m/z=59) as well as  Na2Cl+ (m/z= 

81,83). The peak at m/z=40 could indicate Ca+ and/or Na(H2O)+. The negative ion spectra contain Oെ  (m/z=16) and OHെ 

(m/z=17) which correspond to water, Naെ (m/z= 23), NaClെ (m/z=58, 60), Na2Clെ (m/z=93 ,95), MgClଷ
ି (m/z=129,131) and 405 

NaଶClଷ
ି (m/z=151,153,155).  

These positive and negative peaks were also detected in the study by Prather et al. (2013), who found the positive ion peaks 

Na+ (m/z= 23), Mg+ (m/z= 24), K+ (m/z= 39 and 41) and the clusters Na2Cl+ (m/z= 81 and 83) and the negative ion peaks Na- 

(m/z= 23) and Cl- (m/z= 35 and 37) as well as the intense alkali metal chloride clusters NaClെ (m/z=58 and 60), Na2Clെ 

(m/z=93 and 95), MgClଷ
ି (m/z=129 and131) and NaଶClଷ

ି (m/z=151,153 and155). In their study, particles with intense Na and 410 

Cl predominated in the size range above 300nm. Contrary to our study, Prather et al. (2013) did not find the C+ (m/z=12) peak 

always present in our spectra.  
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Shen et al. (2018a) performed mass spectroscopic analyses of single dry particles obtained from synthetic sea water. The 

spectra are very similar to the spectra obtained in the present study except for the peaks from carbon C+ (m/z =12) and NaClെ 

(m/z=58, 60), which were not seen in the data sets by Shen et al. (2018a). 415 

 

Figure 16: Central spectrum corresponding to activated CCN (0.6% supersaturation) from sea water samples from 

Palma de Mallorca 
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Figure 17: Central spectrum corresponding to activated CCN (0.6% supersaturation) from sea water samples from 420 

San Sebastián 

 

5.2.3. Spectra obtained from single activated sea water CCN  

As explained previously, the averaging process of the clustering method leads to a loss of information on the chemical 

composition of individual particles. Figures 18 and 19 illustrate the spectrum of an activated sea water CCN (supersaturation 425 

0.6%) from sea salt water sample from Palma de Mallorca and San Sebastián respectively. Carbon and organic peaks are 

observed in the negative spectrum. 

 

 

 430 

 

Figure 18: Single particle spectrum corresponding to CCN particle from sea water sample, Palma de Mallorca 
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Figure 19: Single particle spectrum corresponding to CCN particle from sea water sample, San Sebastián 435 

 

 

Figure 20: Single particle spectrum corresponding to CCN particle from sea water sample, San Sebastián 

 

 440 
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Interestingly, there are some differences in the spectra of activated CCN from the two samples. Figure (20, San Sebastián) 

shows more intensive peaks for the typical Cl signals. Figure (20, San Sebastián), on the other hand, shows a strong sulphate 

signal, which is very rarely observed in the spectra for the Palma de Mallorca sample (there is something  wrong with this and 

the previosu sentence- they both refer to San Sebastián but read as if they correspond to different samples) . An analysis of all 

spectra for all sites and supersaturations showed quite some vatiation in individual activated CCN even though the chemical 445 

composition should be the same for each sample due to the production method (aerosolization of bulk samples). The sulphate 

peak, e. g., was not present in all spectra, but if it was, it was quite strong in the San Sebastián CCN. In the Palma de Mallorca 

CCN, on the other hand, the sulphate peak was found only very rarely and, if it was, with a very weak signal.  

Although the mean spectra of CCN activated at the different supersaturations produced from the two sea water samples do not 

contain different major ion peaks, a comparison of the spectra obtained for individual particles shows differences in the signs 450 

of organic material and sulphate. The strong carbon signals in all spectra obtained for activated CCN indicate that the organic 

material present in the sea water samples from both locations did not inhibit CCN activation at the supersaturations used here.  

6 Conclusions 

Ambient aerosol particles are mostly internally mixed containing many different chemical elements and compounds (e.g. Kane 

and Johnston, 2000; Hinz et al., 2005). The aim of this study was to gain information on the chemical composition of individual 455 

CCN by coupling a CCN-VACES to a LAAPTOF. The CCN-VACES provided CCN droplets activated at different 

supersaturations (range from 0.035 to 0.6% super saturation) with concentrations enriched by a factor of ca. 16, which were 

subsequently analysed on-line with the LAAPTOF to obtain both positive and negative ion spectra of individual particles. The 

size detection limit of the LAAPTOF was set at 350 nm, so only activated CCN were analysed. Analyses of activated CCN 

droplets from ambient air were performed at five different measurement days in summer 2019.  The resulting individual particle 460 

spectra mainly could be classified into three or four different classes using a fuzzy c-means cluster algorithm (Hinz et al. 1999). 

The membership factor µ was used to estimate the number of particles corresponding to a class. Results show no correlation 

of µ with supersaturation.   

These classes were named according to their predominant peaks. Ammonium and sulphate were found in classes 1, 2 and 4 

indicating that CCN droplets consist of secondary aerosol. Fuzzy c-means cluster algorithms provide a good overview of the 465 

average chemical composition of entire sets of spectra obtained for a specific aerosol sample, but during the process, 

information on individual particles is lost. The advantage of the LAAPTOF; however, is its ability to yield spectra indicating 

the chemical composition of single particles. Analyses of single particle spectra showed that most activated CCN indeed 

contained some secondary aerosol material, but there were exceptions. Some activated CCN gave strong signals of K+ 

(potassium, m/z= 39 and 41) and organics CX
െHY

െ (m/z= 25, 26, 27), an indication of their origin in the combustion of biomass. 470 

Some activated CCN showed highly complex spectra with a large variety of signals of organic material. Some spectra were 

found in the data set that closely resembled the spectra of carbon black particles used in the calibration of the time-of-flight 
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part of the LAAPTOF, indicating that these CCN had been probably Diesel soot. As practically all spectra contained signs for 

carbonaceous substances, our results show that these organics did not inhibit CCN activation. 

Activated CCN originating from nebulized sea water samples collected at two different sites (Palma de Mallorca and San 475 

Sebastián, Spain) gave spectra indicating the presence of the expected major components of sea salt, but also of a large variety 

of organic compounds. As the CCN were internally mixed with a homogeneous composition owing to their method of 

production, only one cluster was selected for the spectral analysis. The averaged spectra of activated CCN from the sea water 

samples from the two sites are quite similar, but some individual spectra of the CCN produced from the San Sebastián sample 

gave stronger signals for a larger variety of organics than those from the Palma de Mallorca sample, and some had a strong 480 

sulphate signal absent in the Palma de Mallorca CCN, showing again the value of single particle analysis.  
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