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Abstract 18 

Monitoring and describing the spatiotemporal variability of dust aerosols is crucial to understand 19 

their multiple effects, related feedbacks and impacts within the Earth system. This study describes 20 

the development of the MIDAS (ModIs Dust AeroSol) dataset. MIDAS provides columnar daily dust 21 

optical depth (DOD at 550 nm) at global scale and fine spatial resolution (0.1° x 0.1°) over a decade 22 

(2007-2016). This new dataset combines quality filtered satellite aerosol optical depth (AOD) 23 

retrievals from MODIS-Aqua at swath level (Collection 6, Level 2), along with DOD-to-AOD ratios 24 

provided by MERRA-2 reanalysis to derive DOD on the MODIS native grid. The uncertainties of 25 

MODIS AOD and MERRA-2 dust fraction with respect to AERONET and CALIOP, respectively, 26 

are taken into account for the estimation of the total DOD uncertainty (including measurement and 27 

sampling uncertainties). MERRA-2 dust fractions are in very good agreement with CALIOP column-28 

integrated dust fractions across the “dust belt”, in the Tropical Atlantic Ocean and the Arabian Sea; 29 

the agreement degrades in North America and the Southern Hemisphere where dust sources are 30 

smaller. MIDAS, MERRA-2 and CALIOP DODs strongly agree when it comes to annual and 31 

seasonal spatial patterns; however, deviations of dust loads’ intensity are evident and regionally 32 

dependent. Overall, MIDAS is well correlated with ground-truth AERONET-derived DODs 33 

(R=0.882), only showing a small negative bias (-0.009 or -5.307%). Among the major dust areas of 34 

the planet, the highest R values (up to 0.977) are found at sites of N. Africa, Middle East and Asia. 35 
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MIDAS expands, complements and upgrades existing observational capabilities of dust aerosols and 36 

it is suitable for dust climatological studies, model evaluation and data assimilation.  37 

  38 

1. Introduction 39 

Among tropospheric and stratospheric aerosol species, dust aerosol is the most abundant 40 

component in terms of mass, contributing more than half to the global aerosol amount (Textor et al., 41 

2006; Zender et al., 2011). Preferential sources of dust aerosol are located in areas where precipitation 42 

is low, thus favoring aridity, whereas a significant contributing factor is the accumulation of alluvial 43 

sediments. Such regions comprise deserts, dry lake beds and ephemeral channels (e.g., Middleton and 44 

Goudie, 2001; Prospero et al., 2002; Ginoux et al., 2012). Previous studies (Prospero et al., 2002; 45 

Ginoux et al., 2012), have shown that the major portion of the global dust burden originates from the 46 

Sahara Desert, which hosts the most intense dust source of the planet, the Bodélé Depression located 47 

in the northern Lake Chad Basin. In North Africa, large amounts of mineral particles are also emitted 48 

in the Western Sahara while other noticeable sources of smaller spatial extension are located in the 49 

eastern Libyan Desert, in the Nubian Desert (Egypt) and Sudan (Engelstaedter et al., 2006).  50 

One of the major dust sources of the planet, following N. Africa, is the Middle East with several 51 

active regions (Pease et al., 1998; Hamidi et al., 2013; Yu et al., 2013) in which wind-blown dust is 52 

emitted from alluvial plains (Tigris-Euphrates River) and sandy deserts (Rub al Khali Desert). 53 

Important dust sources are also recorded in the Asian continent, particularly in the Taklamakan Desert 54 

(Ge et al., 2014), in the Gobbi Desert (Chen et al., 2017), in its central parts (Karakum Desert; Li and 55 

Sokolik, 2018), in the Sistan Basin (Alizadeh Choobari et al., 2013) and in desert areas (e.g. Thar 56 

Desert) situated in the Indus valley plains of Pakistan (Hussain et al., 2005). In North America, 57 

mineral particles emitted from the Mojave and Sonoran deserts (Hand et al., 2017) have mainly 58 

natural origin while in the Chihuahuan Desert as well as in the Southern Great Plains the 59 

anthropogenic interference on soil can favor emission of dust particles and subsequently their 60 

entrainment in the atmosphere (Hand et al., 2016). Overall, the major portion of the global dust budget 61 

arises from the deserts of the N. Hemisphere (Ginoux et al., 2012) while mineral aerosols are also 62 

emitted in Australia (Ekström et al., 2004), South Africa (Bryant et al., 2007; Vickery et al., 2013) 63 

and South America (Gassó and Torres, 2019), but to a lesser extent. At global scale, most of the 64 

entrained dust loads in the atmosphere originate from tropical and sub-tropical arid regions; however, 65 

about 5% of the global dust budget consists of particles emitted from high-latitude sources (Bullard 66 

et al., 2016). 67 
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Dust plays a key role in several aspects of the Earth system such as climate (e.g. Lambert et al., 68 

2013; Nabat et al., 2015) and weather (Pérez et al., 2006; Gkikas et al., 2018; Gkikas et al., 2019), 69 

attributed to the perturbation of the Earth-Atmosphere system radiation budget (Sokolik and Toon, 70 

1996; Haywood and Bucher, 2000) by mineral particles, the productivity of oceanic waters (Jickells 71 

et al., 2005) and terrestrial ecosystems (Okin et al., 2004), and humans’ health (Kanatani et al., 2010; 72 

Kanakidou et al., 2011; Pérez García-Pando et al., 2014; Du et al., 2016). Dust is characterized by a 73 

pronounced temporal and spatial variability due to the heterogeneity of the emission, transport and 74 

deposition processes governing the dust life cycle (Schepanski, 2018). A variety of atmospheric 75 

circulation mechanisms, spanning from local to planetary scales, are responsible for the uplifting of 76 

erodible particles from bare soils (Koch and Renno, 2005; Knippertz et al., 2007; Klose and Shao, 77 

2012; Fiedler et al., 2013) and their subsequent transport (Husar et al., 2001; Prospero and Mayol-78 

Bracero, 2013; Yu et al., 2015; Flaounas et al., 2015; Gkikas et al., 2015), accumulation and removal 79 

(Zender et al., 2003; Ginoux et al., 2004) from the atmosphere. 80 

Given the scientific importance of dust in the Earth system as well as the numerous socioeconomic 81 

impacts (Stefanski and Sivakumar, 2009; Weinzierl et al., 2012; Kosmopoulos et al., 2018), there is 82 

a need to monitor and forecast dust loads at different spatiotemporal scales. Contemporary satellite 83 

observations, available over long-term periods, have been proven a powerful tool in such efforts as 84 

they provide wide spatial coverage, relatively high sampling frequency and considerably high 85 

accuracy. Spaceborne retrievals have been widely applied in aerosol research for the description of 86 

dust loads’ features and their evolution (e.g., Kaufman et al., 2005; Liu et al., 2008; Peyridieu et al., 87 

2013; Rashki et al., 2015; Gkikas et al., 2013; 2016; Marinou et al., 2017; Proestakis et al., 2018). 88 

Even more accurate aerosol observations, but locally restricted, are derived by ground-based 89 

platforms consisting of sunphotometers, lidars and in-situ instruments. Based on these measurements, 90 

columnar optical and microphysical properties of mineral particles have been analyzed extensively 91 

(Giles et al., 2012), altitude-resolved information of optical properties has provided insight about the 92 

dust vertical distribution (Mamouri and Ansmann, 2014), and a comprehensive description of dust 93 

optical, microphysical and chemical properties has been achieved from surface and aircraft in-situ 94 

instruments (Rodríguez et al., 2012; Liu et al., 2018). Finally, through the deployment of atmospheric-95 

dust models (e.g., Pérez et al., 2011; Haustein et al., 2012), global (e.g., Ginoux et al., 2004) and 96 

regional (e.g., Basart et al., 2012) displays of dust burden have been realized.   97 

Traditionally, observations have been utilized to evaluate and eventually constrain model 98 

performance. Observations are increasingly used in data assimilation (DA) schemes for aerosol 99 

forecast initialization (Di Tomasso et al., 2017) and development of reanalysis datasets (Benedetti et 100 

al., 2009; Lynch et al., 2016; Gelaro et al., 2017). The most exploited reanalysis datasets in dust-101 
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related studies, are the MERRAero (Modern Era Retrospective analysis for Research and 102 

Applications Aerosol Reanalysis; Buchard et al., 2015) and its evolution MERRA-2 (Modern-Era 103 

Retrospective analysis for Research and Applications, Version 2; Gelaro et al., 2017) as well as 104 

CAMSRA (Copernicus Atmosphere Monitoring Service Reanalysis; Innes et al., 2019) and its 105 

predecessor MACC (Monitoring Atmospheric Composition and Climate; Inness et al., 2013). Current 106 

reanalysis datasets provide information about dust aerosols at high temporal resolution and decadal 107 

time scales. However, even though aerosol optical depth (AOD) observations are assimilated, the 108 

performance of the simulated outputs is partly model-driven and their resolution is relatively coarse. 109 

The overarching goal of the present study is to describe the development of the MIDAS (ModIs 110 

Dust AeroSol) dataset, which provides dust optical depth (DOD) over a decade (2007-2016). The 111 

powerful element of this product is its availability at fine spatial resolution (0.1° x 0.1°) as well as 112 

the provision of full global coverage, i.e. both over land and ocean. Ginoux et al. (2012) analyzed 113 

DOD at the same spatial resolution and for a long-term period but they restricted only above 114 

continental surfaces since their scientific focus was the identification of natural and anthropogenic 115 

dust sources. Voss and Evan (2020) combined satellite (MODIS, AVHRR) aerosol retrievals and 116 

MERRA-2 winds, and analyzed DOD over long-term periods at coarse spatial resolution (1° x 1°). 117 

Vertical dust (and other aerosol) backscatter and extinction profiles along with the respective column 118 

integrated AODs at 1° x 1° spatial resolution are distributed through the LIVAS database (Amiridis 119 

et al., 2015). Therefore, the developed MIDAS dataset expands, complements and upgrades existing 120 

observational capabilities of dust aerosols being suitable for research studies related to climatology, 121 

model evaluation and data assimilation. 122 

For the development of the fine resolution MIDAS DOD, a synergy of MODIS-Aqua (Section 123 

2.1), MERRA-2 (Section 2.2), CALIPSO-CALIOP (Section 2.3) and AERONET (Section 2.4) 124 

aerosol products has been deployed by taking advantage of the strong capabilities of each dataset. 125 

Based on the applied methodology (Section 3.1), the DOD is calculated by the product of MODIS-126 

Aqua Level 2 AOD and the collocated DOD-to-AOD ratio from MERRA-2. The uncertainty of the 127 

DOD is calculated from the uncertainties of both MODIS AOD and the MERRA-2 dust fraction, 128 

using AERONET and CALIOP, respectively, as a reference (Section 3.2). We thoroughly compare 129 

the MERRA-2 dust fraction against the CALIOP dust portion in Section 4.2. The MIDAS DOD is 130 

evaluated against AERONET in Section 4.3 and compared with MERRA-2 and CALIOP DODs in 131 

Section 4.4. In section 4.5 we provide the annual and seasonal global geographical distributions of 132 

DOD. Finally, the main findings are summarized and are drawn in Section 5.  133 

          134 
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2. Datasets 135 

2.1. MODIS 136 

 137 

The MODerate resolution Imaging Spectroradiometer (MODIS) is a passive sensor measuring 138 

the top of atmosphere (TOA) reflectance in order to retrieve aerosol optical depth (AOD), among 139 

other aerosol optical properties, at various wavelengths spanning from the visible to the near infrared 140 

spectrum range. MODIS is mounted on the NASA’s twin polar satellites Terra and Aqua acquiring 141 

high-quality aerosol data since 2000 and 2002, respectively, while thanks to its wide swath (~2330 142 

km) provides near-global observations, almost on a daily basis. The derivation of AOD is achieved 143 

through the implementation of three retrieval algorithms based on the Dark Target (DT) approach, 144 

valid over oceans (Remer et al., 2002; 2005; 2008) and vegetated continental areas (Levy et al., 2007a; 145 

2007b; 2010), or the Deep Blue (DB) approach (Hsu et al., 2004; Sayer et al., 2013) over land surfaces 146 

characterized by high reflectivity. Depending on the version of the retrieval algorithms, the MODIS 147 

datasets are organized at various collections as well as at various levels corresponding to their spatial 148 

and temporal resolution. For our purposes, we are utilizing the Collection 6 (C006) MODIS-Aqua 149 

Level 2 (L2) retrievals, over the period 2007-2016, which are reported at 5-min swath granules (Levy 150 

et al., 2013) and are accessible from the Level-1 and Atmosphere Archive & Distribution System 151 

(LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/). 152 

Each swath is composed by 203 x 135 retrievals, of increasing spatial resolution from the nadir view 153 

(10 km x 10 km) towards the edge of the satellite scan (48 km x 20 km), in which a Quality Assurance 154 

(QA) flag is assigned (Hubanks, 2018). More specifically, these bit values represent the reliability of 155 

the algorithm output and are equal to 0 (“No Confidence”), 1 (“Marginal”), 2 (“Good”) and 3 (“Very 156 

Good”). As it has been mentioned above, the MODIS AOD retrievals are acquired based on different 157 

algorithms according to the underlying surface type. In order to fill observational gaps, attributed to 158 

the assumptions or limitations of the applied MODIS algorithms, the DT-Ocean (QA≥1), DT-Land 159 

(QA=3) and DB-Land (QA≥2) AOD retrievals are merged based on the Normalized Difference 160 

Vegetation Index (NDVI) and the highest accuracy criterion, as it has been presented by Sayer et al 161 

(2014). From the raw MODIS files, this “merged” AOD stored in the scientific data set (SDS) and 162 

named “AOD_550_Dark_Target_Deep_Blue_Combined” is extracted and processed for the needs of 163 

the current work. Finally, two quality filtering criteria are applied to the raw MODIS AODs for 164 

eliminating observations which may be unreliable. AODs associated with cloud fraction (CF) higher 165 

than 0.8 as well as those with no adjacent retrievals are masked out following the recommendations 166 

of previous studies (Anderson et al., 2005; Zhang and Reid, 2006; Hyer et al., 2011; Shi et al., 2011). 167 

The first criterion is associated with the potential cloud contamination of AODs, and the second 168 

attempts at removing “suspicious” retrievals from the dataset. 169 
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 170 

2.2. MERRA-2 171 

 172 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), 173 

developed by the NASA Global Modeling and Assimilation Office (GMAO), is the first atmospheric 174 

reanalysis spanning over the new modern satellite era (1980 onward) in which aerosol-radiation 175 

interactions and the two-way feedbacks with atmospheric processes are taken into account (Gelaro et 176 

al., 2017). The key components of MERRA-2 (Buchard et al., 2017) are the Goddard Earth Observing 177 

System (GEOS-5) (Rienecker et al. 2008; Molod et al. 2015), which is radiatively coupled to the 178 

Goddard Chemistry Aerosol Radiation and Transport model (GOCART; Chin et al. 2002; Colarco et 179 

al. 2010), and the three-dimensional variational data assimilation (3DVar) Gridpoint Statistical 180 

Interpolation analysis system (GSI) (Wu et al. 2002).  181 

In the GOCART aerosol module, emission, sinks, removal mechanisms (dry deposition and 182 

gravitational settling, large-scale wet removal and convective scavenging) as well as the chemical 183 

processes of five aerosol species (dust, sea-salt, sulfate, and black and organic carbon) are simulated. 184 

Their optical properties are based on the updated Optical Properties of Aerosols and Clouds (OPAC) 185 

database (Hess et al. 1998), incorporating dust non-spherical shape (Meng et al. 2010; Colarco et al. 186 

2014), and are calculated according to Colarco et al. (2010). For coarse particles (i.e., dust and sea-187 

salt), five non-interacting size bins are considered whose emissions are driven by the wind speed 188 

based on the parameterizations of Marticorena and Bergametti (1995) for dust and the modified 189 

version of Gong (2003) for sea-salt. Both hydrophobic and hydrophilic black (BC) and organic (OC) 190 

carbon emitted from anthropogenic activities (i.e., fossil fuel combustion) and natural processes (i.e., 191 

biomass burning) are considered. Regarding sulfate aerosols (SO4), these either are primarily emitted 192 

or are formed by the chemical oxidation of sulfur dioxide gas (SO2) and dimethyl sulfide (DMS). 193 

Until 2010, daily emissions of eruptive and degassing volcanoes are derived from the AeroCom Phase 194 

II project (Diehl et al. 2012; http://aerocom.met.no/) and afterwards only a repeating annual cycle of 195 

degassing volcanoes is included in MERRA-2. The hygroscopic growth of sea-salt, sulfate and 196 

hydrophilic carbonaceous aerosols is determined by the simulated relative humidity (RH) and the 197 

subsequent modification of particles’ shape and composition is taken into account in computations of 198 

particles’ fall velocity and optical parameters (Randles et al., 2017). A detailed description of the 199 

emission inventories along with the global climatological maps, representative for the period 2000 – 200 

2014, are given in Randles et al. (2017). 201 

MERRA-2 is a multidecadal reanalysis in which a variety of meteorological and aerosol 202 

observations are jointly assimilated (Gelaro et al., 2017). The former group of observations consists 203 

of ground-based and spaceborne atmospheric measurements/retrievals summarized in Table 1 of 204 
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Gelaro et al. (2017) while the full description is presented in McCarty et al. (2016). For aerosol data 205 

assimilation, the core of the utilized satellite data is coming from the MODIS instrument. Over 206 

oceans, are also used AVHRR radiances, from January 1980 to August 2002, and over bright surfaces 207 

(albedo > 0.15) the non-bias-corrected AOD (February 2000 – June 2014) retrieved for the Multiangle 208 

Imaging SpectroRadiometer (MISR; Kahn et al., 2005) is assimilated. Apart from satellite datasets, 209 

the Level 2 (L2) quality-assured AERONET retrievals (1999 – October 2014; Holben et al., 1998) 210 

are integrated in the MERRA-2 assimilation system (Goddard Aerosol Assimilation System, GAAS) 211 

which is presented in Randles et al. (2017; Section 3). From MODIS (above dark target continental 212 

and maritime areas, Collection 5) and AVHRR (above oceanic regions), the AODs are retrieved from 213 

the cloud-free radiances and adjusted (bias correction) to the corresponding AERONET AODs, via a 214 

neural net retrieval (NNR). It must be clarified, that only the MERRA-2 AOD is directly constrained 215 

by the observations while the model’s performance (background forecast) and data assimilation 216 

structure (parameterization of error covariances) are “responsible” for the aerosol speciation among 217 

other aerosol diagnostics (Buchard et al., 2017).  218 

In the present study, we use the columnar MERRA-2 total and dust AOD at 550 nm in order to 219 

calculate the contribution, in optical terms, of mineral particles to the overall load. The computed 220 

dust-to-total AOD ratio is evaluated against CALIOP retrievals and then used for the derivation of 221 

dust optical depth (DOD) on MODIS-Aqua swaths. MERRA-2 products (M2T1NXAER files; 222 

V5.12.4; aerosol diagnostics) have been downloaded from the GES DISC server 223 

(https://disc.gsfc.nasa.gov/)) and are reported as hourly averages at 0.5° x 0.625° lat-lon spatial 224 

resolution.  225 

 226 

2.3. CALIOP 227 

 228 

The Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard the Cloud-Aerosol 229 

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, provides altitude resolved 230 

observations of aerosols and clouds since mid-June 2006 (Winker et al., 2010). CALIPSO, flying in 231 

the A-Train constellation (Stephens et al., 2002), provides almost simultaneous observations with 232 

Aqua thus making feasible and powerful their synergistic implementation for aerosol research. 233 

CALIOP, an elastic backscatter two-wavelength polarization-sensitive Nd:YAG lidar in a near-nadir-234 

viewing geometry (since November 28, 2007, 3 degrees off-nadir), emits linearly polarized light at 235 

532 and 1064 nm and detects the co-polar components at 532 and 1064 nm and the cross-polar 236 

component at 532 nm, relative to the laser polarization plane (Hunt et al., 2009). Based on the 237 

attenuated backscatter profiles (Level 1B) and the implementation of retrieval algorithms (Winker et 238 

al., 2009), aerosol/cloud profiles as well as layer products are provided at various processing levels 239 
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(Tackett et al., 2018). CALIOP Level 2 (L2) aerosol and cloud products both are provided at a uniform 240 

spatial resolution at horizontal (5 km) and vertical (60 m) dimensions. Detectable atmospheric 241 

features are first categorized to aerosols or clouds and then are further discriminated at specific 242 

subtypes according to Vaughan et al. (2009). For aerosols, in the Version 3 used here, 6 subtypes are 243 

considered consisting of clean marine, dust, polluted continental, clean continental, polluted dust and 244 

smoke (Omar et al., 2009). Based on the aerosol subtype classification, specific extinction-to-245 

backscatter ratios (Lidar Ratio - LR) are applied for the provision of extinction coefficient profiles 246 

along the CALIPSO orbit-track (Young and Vaughan, 2009).  247 

In this study we use the CALIOP pure dust product developed in the framework of the ESA-248 

LIVAS (Amiridis et al., 2015) database (http://lidar.space.noa.gr:8080/livas/) according to the 249 

methodology described in Amiridis et al. (2013) and updated in Marinou et al. (2017). The 250 

aforementioned technique relies on the incorporation of aerosol backscatter coefficient profiles and 251 

depolarization ratio, providing a strong signal of dust presence due to mineral particles’ irregular 252 

shape (Freudenthaler et al., 2009; Burton et al., 2015; Mamouri and Ansmann, 2017), allowing the 253 

separation of dust component from aerosol mixtures. For our purposes, instead of the raw universal 254 

CALIOP dust LR (40 sr; Version 3), we are applying appropriate regionally-dependent LR values 255 

(see Figure S1; Marinou et al., 2017; Proestakis et al. 2018 and references within), which are 256 

multiplied with the dust backscatter coefficient profiles at 532 nm in order to calculate the 257 

corresponding extinction coefficient profiles. After a series of strict quality screening filters (Marinou 258 

et al., 2017), the columnar total/dust/non-dust optical depths as well as the DOD-to-AOD ratio over 259 

the period 2007 – 2015 are aggregated at 1° x 1° grid cells covering the whole globe. The performance 260 

of the pure DOD product has been assessed against AERONET over N. Africa and Europe (Amiridis 261 

et al., 2013) revealing a substantial improvement when the abovementioned methodological steps are 262 

applied. This has led to a broadening of research studies, such as the assessment of dust outbreaks 263 

(Kosmopoulos et al., 2017; Solomos et al., 2018) and phytoplankton growth (Li et al., 2018), the 4D 264 

description of mineral loads over long-term periods (Marinou et al., 2017; Proestakis et al., 2018), 265 

the evaluation of dust models (Tsikerdekis et al., 2017; Georgoulias et al., 2018; Konsta et al., 2018) 266 

and the evaluation of new satellite products (Georgoulias et al., 2016) in which the LIVAS pure DOD 267 

product can be utilized.   268 

 269 

2.4. AERONET 270 

 271 

Ground-based observations acquired from the AEronet RObotic NETwork (AERONET; Holben 272 

et al., 1998) have been used as reference in order to evaluate the accuracy of the quality assured 273 
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MODIS AOD as well as of the derived MODIS DOD product. The evaluation analysis has been 274 

performed by utilizing the almucantar (inversion) retrievals, providing information for the total 275 

aerosol amount (AOD) as well as for other microphysical (e.g., volume size distribution) and optical 276 

(e.g., single scattering albedo) properties (Dubovik and King, 2000; Dubovik et al., 2006). In the 277 

present study, focus is put on the aerosol optical properties retrieved at four wavelengths (440, 675, 278 

870 and 1020 nm) utilizing as inputs spectral AODs and sky (diffuse) radiances. More specifically, 279 

we used the Version 2 (V2) AERONET data of AOD (for total and coarse aerosols), Ångström 280 

exponent (α) and single scattering albedo (SSA). For the amount (AOD) and size (α) related optical 281 

parameters, the quality assured retrievals (i.e., Level 2; L2) are only used whereas for the SSA, the 282 

L2 and Level 1.5 (L1.5) observations are merged in order to ensure maximum availability. 283 

Unfavourable atmospheric conditions or restrictions on solar geometry result in a reduced amount of 284 

inversion outputs with respect to the sun-direct measurements or the Spectral Deconvolution 285 

Algorithm (SDA; O’Neill et al., 2003) retrievals. Even though both types of AERONET data provide 286 

information about aerosol size (i.e., Ångström exponent) or coarse AOD (i.e., SDA), the optimum 287 

approach for identifying dust particles and discriminating them from other coarse particles (i.e., sea-288 

salt) requires the of SSA, along with size optical properties, as it will be discussed in the next 289 

paragraph.  290 

Through the combination of the selected optical properties we achieved the spectral matching 291 

between ground-based and spaceborne observations as well as the determination of DOD on 292 

AERONET retrievals. Regarding the first part, the α440-870nm and AOD870nm values are applied in the 293 

Ångström formula in order to interpolate the AERONET AOD at a common wavelength (i.e., 550 294 

nm) with MODIS. In contrast to the MODIS-AERONET AOD comparison, the corresponding 295 

evaluation for DOD requires a special treatment of AERONET retrievals in order to define, as much 296 

as possible based on columnar data, conditions where dust particles either only exist or clearly 297 

dominate over other aerosol species. The vast majority of previous studies (e.g., Fotiadi et al., 2006; 298 

Toledano et al., 2007; Basart et al., 2009) have relied on combining AOD and α for aerosol 299 

characterization, associating the presence of mineral particles with low alpha levels and considerable 300 

AODs. Here, we are keeping records where the α440-870nm ≤ 0.75 and SSA675nm – SSA440nm > 0 without 301 

taking into account the aerosol optical depth. The first criterion ensures the predominance of coarse 302 

aerosols while the second one serves as an additional filter for discriminating dust from sea-salt 303 

particles, taking advantage of the specific spectral signature of SSA (i.e., decreasing absorptivity for 304 

increasing wavelengths in the visible spectrum) in pure or rich dust environments (Giles et al., 2012).  305 

Then, from the coarse AODs at 440, 675 and 870 nm we calculate the corresponding , which is 306 

applied in order to obtain the AERONET coarse AOD at 550 nm. This constitutes the AERONET-307 

derived DOD assuming that the contribution of fine dust particles (particles with radii less than the 308 
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inflection point in the volume size distribution) is small. Likewise, through this consideration any 309 

potential “contamination” from small-size particles of anthropogenic or natural origin (e.g., biomass 310 

burning), which is likely far away from the sources, is tempered or avoided. 311 

 312 

3. Methods 313 

3.1. Derivation of dust optical depth on MODIS swaths 314 

 315 

The core concept of our approach is to derive DOD on MODIS L2 retrievals, provided at fine 316 

spatial resolution, via the synergy with the MERRA-2 products. More specifically, the MERRA-2 317 

dust fraction (MDF) to total AOD550nm (Eq. 1) is multiplied with the MODIS AOD550nm in order to 318 

calculate DOD550nm at swath-level (Eq. 2).  319 

 320 

𝑀𝐷𝐹 =
𝐴𝑂𝐷𝐷𝑈𝑆𝑇;𝑀𝐸𝑅𝑅𝐴

𝐴𝑂𝐷𝑇𝑂𝑇𝐴𝐿;𝑀𝐸𝑅𝑅𝐴
 (Eq. 1) 321 

 322 

𝐷𝑂𝐷𝑀𝑂𝐷𝐼𝑆 = 𝐴𝑂𝐷𝑀𝑂𝐷𝐼𝑆 ∗ 𝑀𝐷𝐹 (Eq. 2) 323 

 324 

To achieve that, the datasets are collocated temporally and spatially. MERRA-2 outputs are 325 

provided at coarse spatial resolution (0.5 x 0.625) in contrast to MODIS-Aqua observations (10 km 326 

x 10 km). MODIS swaths are composed by 203 x 135 retrievals and for each one of them we compute 327 

the distance from the MERRA-2 grid points, considering the closest hourly time step to MODIS 328 

overpass time. Then, the MERRA-2 dust portion is used to calculate the DOD from the AOD on 329 

MODIS swath native grid. Our approach avoids on purpose the inclusion of additional optical 330 

properties providing information on aerosol size () available from MODIS and absorptivity (Aerosol 331 

Index) from OMI that are characterized by inherent limitations. Previous evaluation studies (Levy et 332 

al., 2013) have shown that size parameters acquired by MODIS are highly uncertain, particularly over 333 

land. In addition, since early 2008, the OMI sensor has lost half of its swath due to the “row-anomaly” 334 

issue (Torres et al., 2018) thus “hampering” the MODIS-OMI collocation when it is attempted at fine 335 

spatial resolution. 336 

 337 

3.2 Uncertainty estimation 338 

 339 

As expressed in Eq. 2, the MIDAS DOD results from the product of MODIS AOD and MDF from 340 

MERRA-2. The uncertainty of the DOD product (Δ(DOD)) accounts for the corresponding 341 

uncertainties of the AOD and the MDF, which are calculated using AERONET and CALIOP, 342 
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respectively, as a reference. The mathematical expression of the Δ(DOD), given in Eq. 3, results from 343 

the implementation of the product rule on Eq. 2. 344 

 345 

𝛥(𝐷𝑂𝐷) = 𝛥(𝐴𝑂𝐷) ∗ 𝑀𝐷𝐹 + 𝐴𝑂𝐷 ∗ 𝛥(𝑀𝐷𝐹) (Eq. 3) 346 

The term Δ(AOD) in Eq. 3, representing the expected error (EE) confidence envelope in which 347 

~68% of the MODIS-AERONET AOD differences fall within, varies depending on the MODIS 348 

aerosol retrieval algorithm applied. MODIS provides AODs above oceans, dark vegetated land areas 349 

as well as over surfaces with high reflectivity (excluding snow- and ice-covered regions) based on 350 

retrieval techniques relying on different assumptions whereas over transition zones between arid and 351 

vegetated continental parts, DT and DB AODs are merged (Sayer et al., 2014).  352 

For each retrieval algorithm, we use the linear equations expressing Δ(AOD) with respect to 353 

AERONET AOD documented in the literature, for DT-Ocean (Levy et al., 2013; Eq. 4), DT-Land 354 

(Levy et al., 2010; Eq. 5), and DB-Land (Sayer et al., 2013; Eq. 6) AODs. For the merged (DB+DT) 355 

land AOD, the error is calculated via the square root of the quadrature sum of the DT-Land and DB-356 

Land uncertainties (Eq. 7). Before proceeding with the calculation of the Δ(DOD), few key aspects 357 

must be highlighted for the sake of clarity. In equations 4 and 5, the AOD uncertainty is defined as a 358 

diagnostic error since it is calculated utilizing AERONET as reference. Here, we are using the same 359 

equations replacing AERONET AODs with those given by MODIS. This relies on the fact (results 360 

not shown here) that their averages are almost unbiased. For the ocean AOD uncertainty, the defined 361 

EE margins (Levy et al., 2013) have been modified in order to sustain symmetry by keeping the upper 362 

bound (i.e., thus including more than 68% of MODIS-AERONET pairs within the EE). Sayer et al. 363 

(2013) estimated the uncertainty of DB AOD by taking into account the geometric air mass factor 364 

(AMF) resulting from the sum of the reciprocal cosines of the solar and viewing zenith angles (Eq. 365 

6). 366 

 367 

𝛥(𝐴𝑂𝐷𝐷𝑇−𝑂𝑐𝑒𝑎𝑛) = ±(0.10 ∗ 𝐴𝑂𝐷 + 0.04) (Eq. 4) 368 

𝛥(𝐴𝑂𝐷𝐷𝑇−𝐿𝑎𝑛𝑑) = ±(0.15 ∗ 𝐴𝑂𝐷 + 0.05) (Eq. 5) 369 

𝛥(𝐴𝑂𝐷𝐷𝐵−𝐿𝑎𝑛𝑑) = ±(
0.086+0.56∗𝐴𝑂𝐷

𝐴𝑀𝐹
) (Eq. 6) 370 

𝛥(𝐴𝑂𝐷𝐷𝑇𝐷𝐵−𝐿𝑎𝑛𝑑) = ±√[𝛥(𝐴𝑂𝐷𝐷𝑇−𝐿𝑎𝑛𝑑)]2 + [𝛥(𝐴𝑂𝐷𝐷𝐵−𝐿𝑎𝑛𝑑)]2 (Eq. 7) 371 

 372 

The CALIOP DOD-to-AOD ratio is our reference for estimating the uncertainty limits of the 373 

MERRA-2 dust fraction (MDF). The analysis is performed at 1° x 1° spatial resolution considering 374 

only grid cells in which both MERRA-2 and CALIOP DODs are higher or equal than 0.02. According 375 
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to this criterion, more than 450000 CALIOP-MERRA2 collocated pairs have been found which are 376 

sorted (ascending order) based on MERRA-2 MDF (ranging from 0 to 1) and then are grouped in 377 

equal size bins containing 20000 data each sub-sample. For every group, we computed the median 378 

MDF (x axis) as well as the 68th percentile of the absolute MERRA-2 – CALIOP dust fraction (y 379 

axis) and then we found the best polynomial fit (Eq. 8). 380 

 381 

𝛥(𝑀𝐷𝐹) = ±(2.282 ∗ 𝑀𝐷𝐹4 − 6.222 ∗ 𝑀𝐷𝐹3 + 4.700 ∗ 𝑀𝐷𝐹2 − 0.969 ∗ 𝑀𝐷𝐹 + 0.199) (Eq. 382 

8) 383 

Depending on the selected MODIS algorithm, the appropriate combination between AOD (Eqs. 384 

4, 5, 6 and 7) and MDF (Eq. 8) uncertainties is applied to calculate the Δ(DOD) (Eq. 3) on each 385 

measurement (i.e., DOD), at each grid cell, throughout the study period. When averaging each grid 386 

cell at each considered timescale the uncertainty is obtained by propagating each individual 387 

measurement uncertainty, i.e., taking the square root of the sum of the quadratic Δ(DOD) divided by 388 

the number of available measurements. We also estimate the uncertainty of the average due to 389 

sampling using the standard error (i.e., the standard deviation divided by the square root of the number 390 

of measurements). These two uncertainty quantities are in turn combined into a total uncertainty that 391 

is calculated as the square root of their quadratic sum. The obtained findings will be discussed in 392 

parallel with the global spatial patterns (Section 4.5) of dust optical depth in order to provide a 393 

measure of the reliability of the derived DOD product. 394 

 395 

4. Results 396 

 397 

On the following sections, a series of analyses including an intercomparison between MERRA-2 398 

and MODIS AODs (Section 4.1), the evaluation of MDF with respect to CALIOP (Section 4.2), an 399 

evaluation of MIDAS DOD versus AERONET observations (Section 4.3) as well as an 400 

intercomparison among MIDAS, CALIOP and MERRA-2 DODs (Section 4.4), is presented. All the 401 

aforementioned steps are necessary in order to justify the validity of the applied methodology and to 402 

understand its limitations. In the last section (4.5), the global annual and seasonal DOD patterns are 403 

presented as a demonstration of the MIDAS dataset and the obtained spatiotemporal features are 404 

briefly discussed since a climatological study it is the scientific topic of the companion paper.   405 

 406 

4.1. Intercomparison of MERRA-2 and MODIS AODs 407 

 408 

A prior step of our analysis is to investigate the consistency between MODIS-Aqua and MERRA-409 

2 AODs in order to ensure that they are not similar or identical thus making meaningless the 410 
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implementation of MODIS, which is not providing observations of high sampling frequency (single 411 

overpasses) with respect to MERRA-2 products (hourly outputs). For their intercomparison, the 412 

satellite and reanalysis datasets were regridded at 1° x 1° spatial resolution and they have been 413 

temporally (satellite overpass – timestep) and spatially (grid cell coordinates) collocated. The average 414 

global geographical distributions (2007-2016) of the simulated (MERRA-2) and retrieved (MODIS) 415 

AODs are illustrated in Figures 1-i and 1-ii, respectively, along with their difference map (Figure 1-416 

iii) and the corresponding frequency histogram of MERRA-2 – MODIS AOD deviations (Figure 1-417 

iv).  418 

A visual comparison between the two patterns does not reveal substantial deviations, in terms of 419 

spatial characteristics, as indicated by the reproduction of the maximum AODs over major dust (i.e. 420 

Sahara), biomass (i.e., Central Africa) and pollution (i.e., E. Asia) sources as well as over areas (i.e., 421 

Sub-Sahel) where very high concentrations of aerosol mixtures are recorded. A good agreement is 422 

also apparent over downwind oceanic regions affected by short-to-long range transport of dust 423 

(Tropical Atlantic Ocean) or biomass burning (South Atlantic Ocean). However, the difference map 424 

(Fig. 1-iii) reveals substantial deviations, particularly over areas in which specific aerosol types 425 

dominate. Across N. Africa, the simulated AODs (MERRA-2) are higher (reddish colors) than the 426 

observed ones (MODIS), by up to 0.20-0.25, while positive MERRA-MODIS differences are also 427 

encountered over other dust abundant areas such as the Taklamakan Desert and the southwestern 428 

parts of Asia. On the contrary, higher MODIS than MERRA-2 AODs (bluish colors in Fig. 1-iii) are 429 

predominant in central Africa (by up to 0.3) and evident in the Amazon basin (by up to 0.1) as well 430 

as in Indonesia. In the latter regions, the columnar aerosol load mainly consists of carbonaceous 431 

particles originating from agricultural burning and wildfires taking place from May to October in 432 

central Africa (Bond et al., 2013), from landscape fires in the Amazon, with peak activity in August 433 

and September (van der Werf et al., 2006) and from extended burned areas (Giglio et al., 2013) in 434 

Indonesia, between August and October (Randerson et al., 2012). Negative differences (i.e. higher 435 

MODIS AODs) also appear across the Gangetic Basin, where the major black carbon sources of India 436 

are located (Paliwal et al., 2016), while the maximum values (exceeding 0.3) are recorded in the 437 

heavily populated and industrialized regions of E. Asia (Zhang et al., 2015), emitting absorbing (black 438 

carbon) and scattering (sulphate) fine pollution particles. Above oceans, the majority of reanalysis-439 

satellite departures are negligible, except over the tropical and southern Atlantic Ocean affected by 440 

dust and biomass aerosol transport, respectively, with negative biases (i.e., lower MERRA-2 AODs) 441 

hardly exceeding 0.05 in absolute terms.  442 

The underestimated AODs in MERRA-2 over the major sources of biomass aerosols are probably 443 

due to the negative increment in the assimilation system (Buchard et al., 2017). In Asia, GOCART 444 

as well as the majority of the existing models underestimate the amount of BC aerosols produced by 445 
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man-made activities (Koch et al., 2009). Moreover, the anthropogenic OC/BC and SO2 emissions 446 

vary on yearly basis but in MERRA-2 are kept the same after 2006 and 2008, respectively (Randles 447 

et al., 2017), while there is a lack of nitrate aerosols (Buchard et al., 2017).  All the aforementioned 448 

reasons could account for the underestimation of MERRA-2 AOD in Asia as already shown by 449 

comparisons against AERONET measurements (Sun et al., 2019). Furthermore, the described 450 

inherent weaknesses are intensified by the paucity of ground-based AERONET and cloud-free 451 

MODIS retrievals thus reducing the availability of assimilated observations. In such cases, as it has 452 

been mentioned by Buchard et al. (2017), the performance of MERRA-2 is driven by the underlying 453 

forecast model (GEOS-5). Over N. Africa, as well as in other dust rich environments, the positive 454 

reanalysis-satellite biases are mainly linked with the overestimation of GOCART dust aerosol 455 

amounts, with respect to a variety of spaceborne observations, as it has been discussed by Yu et al. 456 

(2010) and Chin et al. (2014). Moreover, over bright surfaces MERRA-2 assimilates uncorrected 457 

MISR AODs, which are higher than the corresponding MODIS retrievals, particularly at low AOD 458 

conditions, as it has been shown by Banks et al. (2013) and Farahat (2019). From a global and long-459 

term perspective, the positive and negative deviations of an enormous number of pairs span from -460 

0.3 to 0.3 and are almost equally separated around zero resulting in a Gaussian frequency distribution 461 

(Fig. 1-iv).  462 

 463 

4.2. Evaluation of MERRA-2 dust portion versus CALIOP retrievals 464 

 465 

The evaluation of the MERRA-2 dust portion (i.e., MDF) is a critical step of our analysis since it 466 

is used as the scaling factor of the MODIS AOD for the derivation of DOD. For this reason, the 467 

corresponding columnar parameter computed from the quality assured and updated CALIOP profiles 468 

(see Section 2.3) is used as reference. It must be highlighted that the only existing evaluation studies 469 

of MERRA-2 aerosol products have been performed either for specific aerosol species or limited time 470 

periods (Buchard et al., 2017; Veselovskii et al., 2018) showing the ability of MERRA-2 in 471 

reproducing the integrated aerosol fields. Nevertheless, the speciation of the suspended particles, 472 

which is to a large extent determined by the model physics assumptions (Gelaro et al., 2017), has not 473 

been thoroughly evaluated. Therefore, the present analysis will complement and expand further the 474 

current works providing insight about the performance of MERRA-2 in terms of discriminating 475 

among aerosol types (particularly for dust) and subsequently estimating their contribution to the total 476 

atmospheric load. 477 

Figure 2 depicts the geographical distributions of the dust-to-total AOD ratio, based on MERRA-478 

2 (i) and CALIOP (ii), averaged over the period 2007 – 2015. The corresponding maps of mean bias, 479 

fractional bias (FB), fractional gross error (FGE) and correlation coefficient (R) are given in Figure 480 
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3. For consistency, we regridded the MERRA-2 data to 1° x 1° spatial resolution and selected the 481 

closest output to the CALIOP overpass time. Both datasets provide nighttime observations; however, 482 

the analysis has been restricted to sunlight hours only when aerosol retrievals obtained by passive 483 

sensors at visible wavelengths are assimilated. At a first glance, the spatial patterns are very similar, 484 

particularly in areas where the presence of dust is predominant. Across the “dust belt” (Prospero et 485 

al., 2002), the most evident deviations (underestimation of MERRA-2 dust portion by ~0.1 or 10%) 486 

are recorded in the borders of Afghanistan and Pakistan (Dasht-e Margo and Kharan Deserts) as well 487 

as in the Taklamakan Desert (Fig. 3-i). However, from the FB (Fig. 3-ii) and FGE (Fig. 3-iii) maps it 488 

is evident that the calculated values in most of the aforementioned regions are close to zero (ideal 489 

score) thus indicating a very good performance of MERRA-2. In terms of temporal covariation (Fig. 490 

3-iv), moderate R values (~0.5) are computed while in the western parts of Sahara the correlation 491 

levels are slightly higher than zero. Due to the complex and highly variable nature of the emission 492 

processes and therefore the poorer behavior of the model, the correlation tends to be smaller over the 493 

main dust sources. In downwind regions of the N. Hemisphere, particularly over the main transport 494 

paths (i.e., Atlantic Ocean, Mediterranean, Arabian Sea, E. Asia), correlation substantially increases 495 

(up to 0.9). This is further supported by the FB and FGE metrics; which, however, downgrade for 496 

increasing distances from the sources due to the reduction of dust contribution to the total aerosol 497 

load. An exception is observed for the mean bias along the tropical Atlantic Ocean where the 498 

MERRA-2 dust portion is overestimated by up to 10% in its eastern parts in contrast to longitudes 499 

westward of 45° W where zero biases or slight underestimations (~5%, Caribbean Sea) are computed.  500 

A discrepancy between the CALIOP and MERRA-2 dust portion is found in the Mojave, Sonoran, 501 

Chihuahuan desert areas extending between southwestern US and northern Mexico. As shown in 502 

Figure 2, the dust contribution in those areas is more widespread and stronger based on spaceborne 503 

retrievals in contrast to MERRA-2, which simulates less dust amount over the sources (Mojave 504 

Desert) and the surrounding regions. According to the evaluation metrics (Figure 3), the 505 

underestimation of MERRA-2 dust contribution to the total aerosol load ranges between 20% to 50%, 506 

negative FB (down to -1) and high FGE values (locally exceeding 1) are evident while the correlation 507 

levels are low, particularly over Mexico. In the Southern Hemisphere, the deficiency of MERRA-2 508 

is pronounced along the western coasts of S. America as well as in the Patagonian and Monte Deserts, 509 

both situated in Argentina. Similar results are found in South Africa while in Australia a contrast 510 

between its western/eastern and central parts with slight MERRA-2 underestimations and 511 

overestimations, up to 20% in absolute terms, respectively, are recorded (Figure 3-i). Nevertheless, 512 

the agreement between MERRA-2 and CALIOP in temporal terms is supported by the moderate-to-513 

high R values over the “hotspot” regions (Figure 3-iv). Outside of the main dust-affected regions, an 514 

obvious discrepancy is found in the eastern Canada and northeastern Russia where MERRA-2 dust 515 

15

https://doi.org/10.5194/amt-2020-222
Preprint. Discussion started: 22 June 2020
c© Author(s) 2020. CC BY 4.0 License.



contribution yields very low values (< 20%) in contrast to CALIOP reaching up to 50%. Due to their 516 

geographical position, the occurrence of dust loads might not be frequent there but their contribution 517 

to the total load can be significant under low AOD conditions, mainly recorded in the region. This 518 

indicates a poor representation by MERRA-2; however, it must also be taken into account a potential 519 

cloud contamination in the lidar signals.  520 

The discrepancies are mainly driven by the partial representation of dust sources in MERRA-2 521 

resulting in potentially underestimated dust emission areas and subsequently to lower dust 522 

contribution to the total burden. In many areas dust is originated either from natural (arid lands, salt 523 

lakes, glacial lakes) or from anthropogenic sources (Ginoux et al., 2012). Nevertheless, dust sources 524 

in MERRA-2 are based on Ginoux et al. (2001) accounting mostly for natural dust emission areas. 525 

This could partly explain the higher CALIOP dust contribution levels. Interestingly, most of the 526 

positive CALIOP-MERRA-2 differences (i.e. bluish colors in Figure 3-i) are recorded in mountainous 527 

areas characterized by complex terrain. Due to the variable geomorphology, the enhanced surface 528 

returns contaminate the CALIOP signal close to the ground leading to higher columnar AODs and 529 

lower contribution by dust loads suspended aloft. In addition, depending on the homogeneity of the 530 

atmospheric scene over regions characterized by complex topography, variations in the optical paths 531 

of subsequent CALIPSO L2 aerosol profiles considered in the L3 product may result to unrealistic 532 

DOD and AOD values. Previous evaluation studies (e.g., Omar et al., 2013) have shown that CALIOP 533 

underestimates AOD with respect to ground-based AERONET retrievals, particularly over desert 534 

areas (Amiridis et al., 2015), which was attributed primarily to the incorrect assumption of the lidar 535 

ratio (S) (Wandinger et al., 2010) and secondarily to the inability of the lidar to detect thin aerosol 536 

layers (particularly during daytime conditions due to low signal-to-noise ratio). The former factor is 537 

related to aerosol type and for Saharan dust particles the necessary increase of S (from 40 to 58 sr) 538 

improved substantially the level of agreement versus AERONET and MODIS (Amiridis et al., 2013). 539 

Similar adjustments (increments) on the raw S values, which are highly variable (Müller et al., 2007; 540 

Baars et al., 2016), considered in the CALIOP retrieval algorithm have been applied in other source 541 

areas of mineral particles (see Section 2.3; Figure S1). An additional factor that must be taken into 542 

account, is the number of MERRA-2 – CALIOP pairs which is used for the metrics derivation. The 543 

corresponding global geographical distribution (Figure S2-i), representative over the period 2007-544 

2015, shows that in areas where the model-satellite agreement is good (Figure 3) the number of 545 

common samples is high (>100) in contrast to regions (<50) where the computed metrics are 546 

degraded.  547 

In order to complete the evaluation of the MERRA-2 dust portion versus CALIOP, the 548 

dependency of the level agreement on the spatial representativeness within the 1°x1° CALIOP grid-549 

cell has also been investigated. Figure S2-ii displays the long-term averaged geographical distribution 550 
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of the number of CALIOP L2 profiles (up to 23) aggregated for the derivation of the 1°x1° grid-cell. 551 

According to the global map, the maximum number of CALIOP profiles are recorded in the latitudinal 552 

band extending from 45° S to 45° N while the “impact” of extended clouds around the equator is 553 

apparent. Outside of this zone, the number of profiles used is mainly less than 14 and decreases 554 

towards the poles due to the enhanced cloud coverage. The same evaluation metrics presented in 555 

Figure 3 have been also computed at planetary scale for individual classes of CALIOP L2 number of 556 

profiles (Figure S3). Overall, about 3.4 million pairs (x tick named “ALL” in Figure S3-a) have been 557 

found over the period 2007-2015 and are almost equally distributed for bins spanning from 8 to 20 558 

while the number of collocated data is higher in the lowermost (≤ 7) and uppermost (≥ 21) tails of the 559 

distribution. Based on FB (Figure S3-c), FGE (Figure S3-d) and correlation (Figure S3-e) results it is 560 

revealed that the consistency between MERRA-2 and CALIOP gradually improves for higher 561 

CALIOP grid-cell representativeness. In quantitative terms, FB decreases from ~1.2 to ~0.2, FGE 562 

decreases from ~1.6 to ~ 0.9 and R increases from ~0.5 to ~0.8 while the corresponding overall results 563 

(i.e., first red bar) are equal to ~0.7, ~1.3 and ~0.7, respectively. At global scale, MERRA-2 564 

overestimates dust portion by up to 1.5% with respect to CALIOP (Figure S3-b). Among the bin 565 

classes, the maximum overestimation (~2.8%) is recorded when four CALIOP profiles are averaged 566 

for the derivation of the 1°x1° cell, while the positive MERRA-2-CALIOP differences become lower 567 

than 0.1 when at least 12 CALIOP profiles are considered. Regarding the bias sign, the only exception 568 

is observed for cases where 22 or 23 CALIOP profiles are used resulting in slight MERRA-2 569 

underestimations. 570 

Based on the findings of the Sections 4.1 and 4.2, the MERRA-2 related outputs (AOD, MDF) 571 

used in this method, after their quantitative evaluation with MODIS and CALIPSO products, showed 572 

reasonable results comparing them on a global scale. In order to provide a deeper assessment of the 573 

derived DOD product we have used AERONET AOD and DOD data for an additional evaluation 574 

purpose.   575 

 576 

4.3. Evaluation of MIDAS DOD versus AERONET observations 577 

 578 

In the present section, we provide an assessment of MODIS L2 AOD and the derived MIDAS 579 

DOD against the corresponding AERONET almucantar retrievals as discussed in Section 2.4. The 580 

validation of the MODIS quality filtered AOD (Section 2.1) aims at assessing the performance of the 581 

input data while for the derived DOD to check the validity of our approach (Section 3.1). An 582 

illustration of the MODIS-AERONET collocation is shown in Figure S4. At first, a short discussion 583 

is made on the MODIS-AERONET AOD evaluation results, shown in Figure S5, obtained by 59445 584 

pairs (Figure S5-ii) collected at 645 ground stations (Figure S5-i) during the period 2007-2016. Based 585 
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on the 2D histogram scatterplot of Figure S5, the very high correlation (R=0.894), the slope (α=0.929) 586 

which is close to unity and the near-zero offset (b=0.008) reveal a remarkable MODIS-AERONET 587 

agreement. Overall, MODIS slightly underestimates AOD (-0.003 or -1.741% in absolute and relative 588 

percentage terms, respectively) with respect to AERONET. Our results are consistent with those 589 

obtained by dedicated global evaluation studies (Levy et al., 2013; Sayer et al., 2013; Sayer et al., 590 

2014) of C006 MODIS AOD product despite the differences regarding the time periods, 591 

spatiotemporal collocation criteria, filtering of satellite retrievals based on QA flags and the 592 

consideration of AERONET data. 593 

The corresponding analysis for DOD is presented at global and station levels in Figures 4 and 5, 594 

respectively. As expected, the coincident spaceborne and ground-based DODs collected at 376 595 

AERONET stations (red circles in Figure 4-i) are drastically reduced down to 7299 pairs due to the 596 

implementation of filters for the determination of DOD on AERONET data (Section 2.4). However, 597 

the global scatterplot metrics (Figure 4-ii) are similar to those computed for AOD revealing a very 598 

good performance of the MODIS derived DOD. Both datasets are well correlated (R=0.882) with 599 

MIDAS slight underestimating DOD compared to AERONET (-0.009 or -5.307%). According to our 600 

methodology, only the AERONET AODs associated with  lower/equal than/to 0.75 are kept for the 601 

evaluation procedure. The defined upper threshold on  values is higher compared to previous 602 

findings or applied cut-off levels (e.g. Dey et al., 2004; Tafuro et al., 2006; Reid et al., 2008; Kim et 603 

al., 2011; Gkikas et al., 2016). We repeated the analysis by reducing  from 0.75 to 0.25 (results not 604 

shown here) and obtained very similar global scatterplot metrics. 605 

The evaluation analysis was also performed individually for each station. Figure 5 depicts only 606 

sites with at least 30 common MODIS/AERONET observations, thus making the comparison at 607 

station level meaningful. This criterion is satisfied in 61 stations, which overall comprise 70% (or 608 

5085) of the total population of MODIS-AERONET coincident DODs, and are mostly located over 609 

dust sources as well as on areas affected by dust transport, from short to long range. Figure 5-i shows 610 

the station-by-station variability of the number of common MODIS/AERONET observations ranging 611 

from 100 to 355 (Banizoumbou, Niger) across N. Africa and Middle East whereas in the remaining 612 

sites is mainly lower than 70. Between the two datasets, very high R values (up to 0.977) are found 613 

in N. Africa, Middle East, outflow regions (Cape Verde, Canary Islands, Mediterranean) and at distant 614 

areas (Caribbean Sea) affected by long-range transport. Over the stations located across the Sahel, 615 

the maximum RMSE levels (up to 0.243) are recorded (Figure 5-iii) due to the strong load and 616 

variability of the Saharan dust plumes. The maximum positive biases (0.133) indicate that the derived 617 

MIDAS DOD is overestimated. Several reasons may explain the predominance of positive MIDAS-618 

AERONET differences over the above-mentioned stations taken into account that the MERRA-2 dust 619 

portion is adequately reproduced with respect to CALIOP. The first one is related to the MODIS 620 
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retrieval algorithm itself and more specifically with the applied aerosol models, surface reflectance 621 

and cloud screening procedures (Sayer et al., 2013). However, for AOD (results not shown here), 622 

small negative biases are observed in agreement with the findings by Sayer et al. (2013) who utilized 623 

DB products only. The second factor is the absence of fine DOD on AERONET data which would 624 

have reduced the obtained positive differences but its contribution to the total dust AOD it is difficult 625 

and probably impossible to be quantified. Similar tendencies, but at a lesser degree, are found for the 626 

RMSE and bias scores in the Middle East where the satellite and ground-based DODs are in general 627 

well-correlated. In the Mediterranean, the temporal covariation between the two datasets is quite 628 

consistent (R>0.8) with the MIDAS DOD being slightly underestimated probably due to the 629 

underestimation of the MERRA-2 dust portion.  630 

In Asia, few stations are available with sufficient number of MODIS-AERONET collocations in 631 

which negative biases are generally recorded both for DOD (Figure 5-iv) and AOD (results not shown 632 

here). This agreement indicates that the MODIS AOD underestimation is “transferred” also to DOD 633 

and locally can be further enhanced by the MERRA-2 dust portion underestimation (Figure 3-i). 634 

Along the western coasts of the United States, the evaluation scores at 5 AERONET sites show that 635 

the performance of the retrieved AOD is superior than those for the derived DOD (R: 0.42-0.78, bias: 636 

-0.02-0.05, RMSE: 0.03-0.07) attributed to the deficiency of MERRA-2 to reproduce adequately the 637 

contribution of dust particles to the total dust aerosol load. Finally, our assessment analysis in the 638 

Southern Hemisphere, for stations located in Argentina, Namibia and Australia, indicate slight 639 

MODIS-AERONET deviations, spanning from -0.03 (Lucinda) to 0.02 (Gobabeb), and correlations 640 

ranging from 0.12 (Fowlers_Gap) to 0.8 (Birdsville).  641 

   642 

4.4. Intercomparison of MIDAS, MERRA-2 and CALIOP DOD products 643 

 644 

Following the evaluation of MIDAS DOD against AERONET, the three DOD products derived 645 

from MIDAS, MERRA-2 and CALIOP are investigated in parallel. For this purpose, the MERRA-2 646 

outputs and MODIS retrievals have been regridded to 1° x 1° grid cells in order to match CALIOP’s 647 

spatial resolution while the study period extends from 2007 to 2015, driven again from CALIOP’s 648 

temporal availability. Then, the three datasets have been collocated by selecting the coincident pixel 649 

for which the temporal deviation between model outputs and satellite overpasses is minimized. The 650 

intercomparison has been performed only during daytime conditions and the obtained findings are 651 

presented through geographical distributions (Section 4.4.1) and intra-annual timeseries of regional, 652 

hemispherical and planetary averages (Section 4.4.2). Finally, it must be clarified that our focus in 653 

this part of the analysis is the intercomparison of the different DOD products and not to interpret their 654 
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spatiotemporal features which will be discussed thoroughly in a companion paper analyzing the 655 

DODs from the MIDAS fine resolution dataset.     656 

 657 

4.4.1. Geographical distributions 658 

 659 

The annual geographical distributions of CALIOP, MERRA-2 and MIDAS DODs are depicted 660 

in Figures 6-i, 6-ii and 6-iii, respectively, while the corresponding global seasonal maps are provided 661 

in Figure S6. Among the three datasets, both for annual and seasonal geographical distributions, it is 662 

apparent a very good agreement in spatial terms in contrast to the magnitude of the simulated 663 

(MERRA-2) and retrieved (MIDAS, CALIOP) DODs. The most evident deviations of MERRA-2 664 

(Figure 6-ii) and MIDAS (Figure 6-iii), with respect to CALIOP (Figure 6-i), are encountered across 665 

N. Africa forming clear patterns with positive and negative biases over the Sahara and the Sahel, 666 

respectively. In particular, MERRA-2 DOD overestimations range from 0.04 to 0.20 while the 667 

MIDAS-CALIOP deviations are lower; placing our DOD product between active remote sensing 668 

retrievals and reanalysis dataset. A common feature is the location where the maximum 669 

“overestimations” are observed. These areas are identified in Algeria, Niger and Chad featuring 670 

substantially high dust concentrations. Previous studies relied on satellite (Yu et al., 2010; Kittaka et 671 

al., 2011; Ma et al., 2013) and ground-based (Schuster et al., 2012; Omar et al., 2013) observations 672 

have noted that CALIOP underestimates AOD over the Sahara. Konsta et al. (2018), who utilized 673 

higher and more realistic dust lidar ratio (55 sr; adopted also for the region in the current study), with 674 

respect to the aforementioned works (40 sr), reported similar tendencies against MODIS. Therefore, 675 

other factors might contribute to the lower lidar-derived DODs over the arid regions of N. Africa. For 676 

example, it has been observed that CALIOP can misclassify as clouds very intense dust layers which 677 

can also attenuate significantly or totally the emitted laser beam (Yu et al., 2010; Konsta et al., 2018). 678 

All these aspects, most likely met over dust sources, act towards reducing the extinction coefficient 679 

and may explain the “missing” hotspot on CALIPSO in/around the Bodélé Depression in contrast to 680 

single-view, multi-angle and geostationary passive satellite sensors (e.g., Banks and Bridley, 2013; 681 

Wei et al., 2019). Across the Sahel, CALIOP provides higher DODs (mainly up to 0.2) both against 682 

simulated and satellite products. These differences might be attributed to the misrepresentation of 683 

dust sources in MERRA-2 along this zone where vegetation cover has a prominent seasonal cycle 684 

(Kergoat et al., 2017). An inaccurate representation of vegetation also impacts the surface reflectance 685 

which in turn can introduce critical errors in the retrieval algorithm. Sayer et al. (2013) showed that 686 

MODIS overestimates AOD with respect to AERONET while the maximum MIDAS-AERONET 687 

negative DOD bias (-0.154) is recorded at Ilorin (Figure 5-iv).     688 
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Over the eastern Tropical Atlantic Ocean, the difference between CALIOP and MIDAS is 689 

negligible whereas MERRA-2 underestimates DOD by up to 0.08. In the Middle East, MERRA-2 690 

and MIDAS DODs are higher than those retrieved by CALIOP over the Tigris-Euphrates basin while 691 

an opposite tendency, particularly for MIDAS, is found in the interior parts of Saudi Arabia. Lower 692 

DODs are also observed by CALIOP over the arid/semi-arid regions, including the Aral Sea, 693 

eastwards of the Caspian Sea. This area of the planet is one of the most challenging for passive 694 

observations from space due to the terrain complexity prohibiting the accurate characterization of the 695 

surface reflectance and type. Such conditions impose artifacts to the retrieval algorithm resulting in 696 

unrealistically high MODIS AODs (Klingmüller et al., 2016; see interactive comment posted by 697 

Andrew Sayer) that may also affect MERRA-2 via assimilation. Along the mountainous western parts 698 

of Iran, CALIPSO DOD is substantially higher than those derived with our methodology while 699 

against MERRA-2 the obtained positive or negative differences are close to zero. The largest negative 700 

MIDAS-CALIOP differences (exceeding 0.2), not only in Asia but all over the world, are recorded 701 

in the Taklamakan Desert whereas the corresponding results between MERRA-2 and CALIOP are 702 

somewhat lower. This might be attributed to an inappropriate selection (overestimation) of the lidar 703 

ratio taking into account that CALIOP mainly underestimates AOD over the region, dust contribution 704 

to the total AOD exceeds 70% (Proestakis et al., 2018), throughout the year, and MDF shows robust 705 

consistency (Figure 3). Eastwards of the Asian continent, the situation is reversed and the CALIOP 706 

DODs are lower by up to 0.2 when compared to MERRA-2 and MIDAS indicating a weaker trans-707 

Pacific transport, predominant during boreal spring (second row in Figure S6), being in agreement 708 

with the findings of Yu et al. (2010) and Ma et al. (2013). In the S. Hemisphere, negative MERRA-709 

2-CALIOP and MIDAS-CALIOP differences are computed in Patagonia, which are not however 710 

spatially coherent. On the contrary, in the desert areas of the inland parts of Australia, there is a clear 711 

signal of positive MERRA-2-CALIOP deviations, not seen between MIDAS and CALIOP, most 712 

likely attributed to the overestimation of aerosol (dust) optical depth by MERRA-2 as it has been 713 

recently presented by Mukkavilli et al. (2019). On a global and long-term perspective, based on more 714 

than 470000 collocated data, MERRA-2 correlates better with CALIOP than MIDAS (R=0.740 vs. 715 

0.665), but is more biased (relative bias=4.264% vs. 9.405%).     716 

 717 

4.4.2. Planetary, hemispherical and regional intra-annual variability 718 

At a next step of the intercomparison, the variability of the planetary (Figure 7-i) and 719 

hemispherical (Figures 7-ii, 7-iii) monthly averages of CALIOP (black curve), MERRA-2 (red curve) 720 

and MIDAS (blue curve) DODs were compared. It is clarified that the calculations presented here 721 

have been performed, at each considered timescale, following the upper branch shown in Figure 5 of 722 

Levy et al. (2009), comprising first a temporal averaging and then a spatial averaging taking into the 723 
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weight of the grid cell surface area to the total domain area with available data. In the N. Hemisphere, 724 

the most evident deviations among the three products occur from March to June when the dust activity 725 

is more pronounced (Figure 7-ii). During the high-dust seasons, the DOD peaks are recorded in June, 726 

being identical (0.117) for MERRA-2 and MIDAS with CALIOP giving lower levels (0.114). Both 727 

the MIDAS/MERRA-2 “temporal consistency” and the CALIOP “underestimation” are mostly valid 728 

during boreal spring and summer with few exceptions, highlighted when focus is given on the 729 

temporal covariation. Within the course of the year, CALIOP and MERRA-2 DODs gradually 730 

increase from January to June while decrease during the second half of the annual cycle. While the 731 

trends in MIDAS DOD are similar overall, there is a local minimum observed in May (0.083) 732 

resulting in deviations of -0.009 and -0.021 compared to CALIOP and MERRA-2, respectively. On 733 

an annual basis (Table 1), the averaged MERRA-2 and MIDAS DODs, for the northern hemisphere, 734 

are the same (0.055) and higher by up to 10% than the corresponding CALIOP mean (0.050). In the 735 

S. Hemisphere (Figure 7-iii), DODs range at very low levels (up to 0.011), attributed to the low 736 

amounts of mineral particles emitted from spatially restricted desert areas, and the limited dust 737 

transport over oceanic regions. Despite these low values, there is an annual cycle pattern, which, 738 

however, is not commonly reproduced by the three datasets in contrast to the annual means which are 739 

almost identical among them (0.007-0.008; Table 1). In particular, MIDAS and MERRA-2 DODs are 740 

maximized in February (0.009) while the highest levels for CALIOP are recorded in September 741 

(0.011). For all DOD products, the minimum values (slightly less than 0.006) are found in May, which 742 

are slightly lower than those observed during April-July (austral winter). At global scale (Figure 7-i), 743 

the seasonal patterns of DODs are mainly driven by those of the N. Hemisphere, where the main dust 744 

sources of the planet are situated, but the intra-annual cycles of MIDAS and MERRA-2 are not 745 

identical with those of GLB in contrast to CALIOP. More specifically, there are two peaks (~0.05, 746 

March and June) for MIDAS, flat maximum levels (~0.05) between March and June for MERRA-2 747 

while there is a primary (0.048) and a secondary (0.041) maximum in June and March, respectively, 748 

for CALIOP DODs. Even though there are month-by-month differences, the CALIOP (0.029), 749 

MERRA-2 (0.031) and MIDAS (0.031) annual DODs are very close indicating a sufficient level of 750 

agreement among the three datasets (Table 1). Likewise, our findings are almost identical with the 751 

global DOD average (0.030) reported by Ridley et al. (2016).      752 

The consistency among the three datasets, in terms of DOD magnitude and temporal covariation, 753 

is highly dependent on the region of interest. Table 1 lists the computed annual averages as well as 754 

their minimum/maximum limits, Figure S7 shows the defined sub-domains and Figure S8 their intra-755 

annual timeseries. The best agreement among MIDAS, CALIOP and MERRA-2 DODs is found along 756 

the Tropical Atlantic Ocean, which is affected by Saharan dust transport throughout the year, 757 

particularly its eastern sector. In the nearby outflow regions, considerably high DODs (> 0.1) are 758 
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found between January-August, being maximum in June, as indicated by the three datasets, with slight 759 

underestimations in MERRA-2 (Fig. S8-k). Over the western Tropical Atlantic Ocean, the sharp 760 

increase of DOD from May to June indicates the arrival of considerable amounts of Saharan particles, 761 

which are sustained at high levels in summer and diminish during autumn and winter (Fig. S8-q). 762 

This seasonal fluctuation is almost identically reproduced by the spaceborne (MIDAS, CALIOP) and 763 

reanalysis (MERRA-2) products. Nevertheless, when the dust activity is well established in the area 764 

(boreal summer), there is clear difference on DOD values with higher CALIOP levels compared to 765 

MERRA-2 and MIDAS, which are quite similar.  766 

Across N. Africa, and particularly in the Bodélé (Fig. S8-a) and W. Sahara (Fig. S8-h), the 767 

CALIOP DODs are substantially lower when compared to MIDAS and MERRA-2. In the Bodélé, 768 

this is evident for the entire year and in W. Sahara it can be clearly seen during the high-dust boreal 769 

summer season. Similar findings are drawn either for other source areas, such as Central Asia (Fig. 770 

S8-c), the northern Middle East (Fig. S8-d), the southwest United States (Fig. S8-e) or outflow 771 

regions, such as the Mediterranean (Fig. S8-m). Over the Taklamakan (Fig. S8-f) and Gobi (Fig. S8-772 

b) Deserts, the CALIOP DODs are higher than the corresponding MIDAS and MERRA-2 regional 773 

averages in April-May. Among the three DOD products, a very good temporal agreement it is found 774 

in the Thar Desert (Fig. S8-g), but there are deviations regarding the peak of July which is higher in 775 

MIDAS (1.172) than in CALIOP (0.978) and MERRA-2 (0.484), respectively. Over downwind 776 

continental areas downwind of E. Asia (Fig. S8-i), only few exceptions break down the consistency 777 

between MIDAS and CALIOP and MERRA-2 is able to reproduce the annual cycle but 778 

underestimates the intensity of dust loads. In southern Middle East (Fig. S8-n), the reanalysis and the 779 

spaceborne lidar DODs are very well correlated and reveal minor differences within the course of the 780 

year. MIDAS captures satisfactorily the monthly variability of DOD, despite the local minimum in 781 

May, but fails to reproduce the magnitude of the recorded maximum in June. Over the Northern 782 

Pacific, Asian dust is transported eastwards during spring affecting nearby (Fig. S8-p) and distant 783 

(Fig. S8-j) oceanic areas.  The “signal” of this mechanism is clearly evident on MIDAS and MERRA-784 

2 timeseries in contrast to CALIOP which exhibits substantially lower DOD maxima. Moreover, they 785 

appear earlier (March) with respect to the other two datasets (April) in the western North Pacific 786 

Ocean. Based on MERRA-2 and MIDAS, in the sub-Sahel (Fig. S8-o), a primary and a secondary 787 

maximum are recorded in March and October, in agreement with ground-based visibility records 788 

(N’Tchayi Mbourou et al., 1997). CALIOP reproduces both peaks, but with a weaker intensity in 789 

March compared to MIDAS and MERRA-2. However, throughout the year, the maximum CALIOP 790 

DOD is observed in June (a local maximum is also recorded in MIDAS), which might be unrealistic 791 

since it is not expected the accumulation of dust particles during summer months, when the 792 

precipitation heights in the area are maximized. Saharan dust aerosols, under the impact of the 793 
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northeasterly harmattan winds, are carried over the Gulf of Guinea (Fig. S8-l) during boreal winter, 794 

although DODs among the three datasets reveal a noticeable variability in terms of intensity.   795 

   796 

4.5. MIDAS DOD global climatology 797 

 798 

The annual and seasonal DOD patterns averaged over the period 2007 – 2016 are illustrated in 799 

Figures 8 and 9. Among the desert areas of the planet, the most intense dust loads (DODs up to ~1.2; 800 

Fig. 8) are hosted across the Sahara Desert and particularly in the Bodélé Depression of the northern 801 

Lake Chad Basin (Washington et al., 2003). Over the region, these high DODs are sustained 802 

throughout the year (Fig. 9) while due the prevailing meteorological conditions, during MAM (Fig. 803 

9-ii) and JJA (Fig. 9-iii), mineral particles are transported westwards, along the Sahel, contributing 804 

to the locally emitted anthropogenic dust (Ginoux et al., 2012). Substantial high climatological DODs 805 

(up to 0.6; Fig. 8) are recorded in the western sector of Sahara, in contrast to the eastern parts, 806 

attributed to the accumulation of dust aerosols primarily in JJA (Fig. 9-iii) and secondarily in MAM 807 

(Fig. 9-ii), under the impact of the Saharan Heat Low (Schepanski et al., 2017). Saharan dust is 808 

subjected to short-range transport affecting frequently the nearby maritime areas of the Gulf of 809 

Guinea (Ben-Ami et al., 2009), the Mediterranean Sea (Gkikas et al., 2015) as well the Red Sea 810 

(Banks et al., 2017). Nevertheless, the strongest signal of Saharan dust transport appears over the 811 

Tropical Atlantic Ocean with massive loads of mineral particles, confined within the Saharan Air 812 

Layer (SAL; Kanitz et al., 2014), reaching the Caribbean Sea (Prospero, 1999), under the impact of 813 

the trade winds. The characteristics of the transatlantic dust transport reveal a remarkable intra-annual 814 

variation (Fig. 9) as it concerns plumes’ latitudinal position, longitudinal extension and intensity, 815 

being maximum during boreal summer (Fig. 9-iii).  816 

Dust activity over the Middle East is more pronounced in a “zone” extending from the alluvial 817 

plain of the Tigris-Euphrates River to the southern parts of the Arabian Peninsula (Fig. 8), through 818 

the eastern flat-lands of Saudi Arabia (Hamidi et al., 2013). Mineral particles emitted from these 819 

sources affect also the Persian Gulf (Gianakopoulou and Toumi, 2011) and the Red Sea (Banks et al., 820 

2017); however, the major transport pattern is recorded across the northern Arabian Sea in JJA (Fig. 821 

9-iii), when dust plumes can reach the western coasts of India (Ramaswamy et al., 2017). In the Asian 822 

continent, the Taklamakan Desert (Ge et al., 2014), situated in the Tarim basin (NW China), consists 823 

one of the strongest dust source of the planet yielding DODs up to 1 during spring (Fig. 9-ii). These 824 

intensities are substantially higher than those recorded in the Gobi Desert, situated eastwards in the 825 

same latitudinal band, due to the different composition of the erodible soils (Sun et al., 2013). 826 

Midlatitude cyclones, propagating eastwards during springtime (Fig. 9-ii), mobilize dust emission 827 

from both sources inducing uplifting and subsequently advection of mineral particles towards the 828 
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continental E. Asia (Yu et al., 2019) as well as over the north Pacific Ocean (Yu et al., 2008) and 829 

exceptionally over the United States (Husar et al., 2001). Other hotspots of dust activity in Asia, are 830 

recorded in the central parts (Li and Sokolik, 2018) and in the Sistan Basin (Alizadeh Choobari et al., 831 

2013). Dust aerosols originating from agricultural activities along the Indus River basin (Ginoux et 832 

al., 2012) and natural processes in the Thar Desert (Proestakis et al., 2018) result in the accumulation 833 

of mineral particles in the Pakistan-India borders while under favorable meteorological conditions 834 

these loads are carried towards the Indo-Gangetic plain mainly during the pre-monsoon season (Dey 835 

et al., 2004). In North America, dust production becomes more evident in the southwestern United 836 

States and northwest Mexico in regional terms and during spring within the course of the year (Fig. 837 

9-ii). However, DODs are mostly lower than 0.2, with few local exceedances, indicating weak dust 838 

emission from the natural (Mojave and Sonoran Deserts; Hand et al., 2017) and anthropogenic 839 

(Chihuahuan Desert and Southern Great Plains; Hand et al., 2016) dust sources of the region. Between 840 

the two hemispheres, there is a clear contrast in DODs, being substantially lower in the S. 841 

Hemisphere, attributed to the weaker processes triggering dust emission from the spatially restricted 842 

deserts located in S. Africa (Bryant et al., 2007), S. America (Gassó and Torres, 2019) and in the 843 

interior parts of Australia (Prospero et al., 2002).  844 

Apart from the global climatological DOD pattern in Figure 8-i, the corresponding distributions 845 

of the total uncertainty (taking into account the propagation of each individual DOD uncertainty to 846 

the average grid cell value as well as the sampling uncertainty expressed by the standard error) and 847 

the temporal availability are shown in Figs. 8-ii and -iii, respectively, thus allowing to assess the 848 

accuracy of the derived product as well as its representativeness throughout the study period (2007-849 

2016). More than 70% of satellite retrievals, with respect to the full period, are participating in the 850 

calculation of the mean DODs (Fig. 8-i) over the cloud-free desert areas while over dust-affected 851 

downwind regions the corresponding percentages range from 30 to 60% (Fig. 8-iii). Regarding the 852 

total DOD uncertainty (Fig. 8-ii), the spatial pattern indicates maximum absolute levels (up to 0.1) in 853 

the sub-Sahel and in the Gulf of Guinea whereas similar values are found in the Taklamakan Desert 854 

and lower in the Tropical Atlantic. On a seasonal basis (Figure S9), the spatial features of DOD 855 

uncertainties are driven by those of DOD (Figure 9) over sources and receptor areas while MIDAS 856 

DODs are similarly less reliable, in absolute terms, over regions affected rarely by dust loads. 857 

However, in relative terms, across deserts and areas subjected to dust transport, the DOD uncertainty 858 

with respect to the obtained long-term averages, throughout the year, is mainly lower than 20% and 859 

over regions with weak dust loads is higher than 60%. This contrast is attributed to the larger number 860 

of available DODs over/nearby the deserts, where dust signal is maximized, as well as to the lower 861 

Δ(DOD) resulting from the lower relative AOD errors and the better MDF performance there.  862 

 863 
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5. Summary and conclusions  864 

 865 

In the current study, we presented the MIDAS (ModIs Dust AeroSol) dust optical depth (DOD) 866 

dataset, combining MODIS-Aqua AOD and DOD-to-AOD ratio extracted from collocated MERRA-867 

2 reanalysis outputs. The derived fine resolution (0.1° x 0.1°) global dataset, valid for a decade (2007-868 

2016), provides DOD both over continental and oceanic areas, in contrast to similar available satellite 869 

products restricted over land surfaces (Ginoux et al., 2012), thus making feasible a thorough 870 

description of dust loads not only over the sources but also over downwind regions where transport, 871 

from short- to long-range, is taking place. Reanalysis datasets, spanning through decades and 872 

available at high temporal frequency, can fulfill such tasks; however, their coarser spatial resolution 873 

imposes a restriction when investigating mineral loads’ features at finer spatial scales. Our developed 874 

DOD product aims at complementing existing observational gaps and can be exploited in a variety of 875 

studies related to dust climatology and trends, evaluation of atmospheric-dust models, estimation of 876 

dust radiative effects and assessment of the associated impacts as well as on improving dust 877 

forecasting and monitoring via data assimilation. 878 

The core concept of the applied methodology relies on the utilization of MODIS AOD and 879 

MERRA-2 DOD-to-AOD ratio for the derivation of DOD on MODIS swaths. Nevertheless, two prior 880 

steps have been done ensuring the necessity and the validity of the proposed method. First, the 881 

MODIS AODs have been compared against the corresponding MERRA-2 outputs in order to justify 882 

that these two datasets are not similar, thus avoiding the consideration of a dataset of low temporal 883 

frequency (one overpass per day) rather than hourly reanalysis outputs. According to our results, the 884 

spatial AOD global patterns are commonly reproduced by MODIS and MERRA-2; however, there 885 

are evident differences in the aerosols loads. For example, MERRA-2 shows a higher AOD across N. 886 

Africa by up to 0.25, and over other dusty regions. Over biomass burning areas (e.g. Amazon, Central 887 

Africa) and industrialized regions (E. Asia) the AOD can be smaller in MERRA-2 by up to 0.3. Over 888 

oceans, the majority of MERRA-2 – MODIS differences are very small, except in the case of the 889 

Tropical Atlantic Ocean where the MODIS AODs are higher than the corresponding simulated levels 890 

by up to 0.05. 891 

The second prior step comprises the evaluation of the MERRA-2 MDF against reference values 892 

obtained by the columnar integration of quality assured dust and non-dust CALIOP profiles. Over 893 

dust-abundant areas extending across the “dust belt”, MERRA-2 reproduces adequately the 894 

magnitude of dust portion as indicated by the calculated primary statistics (bias, FB, FGE) with the 895 

maximum underestimations (up to 10%) being observed in Asian deserts. The agreement between 896 

MERRA-2 and CALIOP is reduced in the main dust regions of N. America and in the S. Hemisphere. 897 

Regarding the temporal covariation of the observed and simulated dust portions, over the period 2007-898 
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2015, moderate R values (up to 0.5) are computed above the sources, attributed to the high 899 

spatiotemporal variability of the emission processes. On the contrary, the correlation increases 900 

substantially (up to 0.9) over downwind maritime regions (Tropical Atlantic Ocean, north Pacific 901 

Ocean, Arabian Sea, Mediterranean Sea) where the main dust transport paths are recorded. Apart 902 

from the geographical dependency of the level of agreement between MERRA-2 and CALIOP DOD-903 

to-AOD ratios, we also investigated the impact of the spatial representativeness of the CALIOP 904 

observations. Through this analysis, we revealed that for an increasing number of CALIOP L2 905 

profiles (from 1 to 23), aggregated for the derivation of the 1° x 1° grid cell, the computed metrics 906 

converge towards their ideal scores.  907 

Finally, the obtained MIDAS DOD was evaluated against AERONET retrievals and compared 908 

with CALIOP and MERRA-2 DODs. AEROENT observations were processed to minimize the 909 

contribution of other aerosol species and assuming that dust loads are mainly consist of coarse 910 

particles (their radii is larger than the defined inflection point). Overall, the agreement between ~7300 911 

MIDAS-AERONET pairs resides is very high (R=0.882), whereas the satellite DODs are lower by 912 

~5% with respect to the ground-based ones. At station level, the R values are mainly above 0.8 at 913 

most sites of the N. Hemisphere (except western US) while they don’t exceed 0.5 in the S. 914 

Hemisphere. Moreover, positive MIDAS-AERONET deviations (up to 0.133) are mainly 915 

encountered in N. Africa and Middle East in contrast to negative values (down to -0.154) recorded at 916 

the remaining sites. Based on the annual and seasonal global DOD patterns averaged over the period 917 

2007-2015 the locations with the maximum DODs are in a good agreement among the three datasets. 918 

Nevertheless, in many regions (e.g., Bodélé, sub-Sahel, north Pacific Ocean) there are deviations on 919 

the intensity of dust loads, attributed to the inherent weaknesses of DOD derivation techniques based 920 

on different approaches. Despite the regional dependency of biases among the three datasets, the 921 

collocated global long-term averaged DODs are very similar (0.029 for CALIOP, 0.031 for MERRA-922 

2 and MIDAS) and very close to those reported (0.030) by Ridley et al. (2016). In the S. Hemisphere 923 

the corresponding levels (0.007-0.008) slightly differ for the three datasets, whereas in the N. 924 

Hemisphere, CALIOP DODs (0.050) are lower by 10% with respect to MIDAS and MERRA-2 925 

hemispherical averages (0.055).     926 

As a demonstration of the MIDAS dataset, a brief discussion about dust loads’ regime at global 927 

scale is made by analyzing the annual and seasonal DOD patterns. The most pronounced dust activity 928 

recorded in the Bodélé Depression of the northern Lake Chad Basin (DODs up to ~1.2), across the 929 

Sahel (DODs up to 0.8), in western parts of the Sahara Desert (DODs up to 0.6), in the eastern parts 930 

of the Arabian Peninsula (DODs up to ~1), along the Indus river basin (DODs up to 0.8) and in the 931 

Taklamakan Desert (DODs up to ~1). On the contrary, the weaker emission mechanisms triggering 932 

dust mobilization over the spatially limited sources of Patagonia, South Africa and interior arid areas 933 
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of Australia do not favor the accumulation of mineral particles at large amounts (DODs up to 0.4 at 934 

local hotspots), even during high-dust seasons. Over oceans, the main pathways of long-range dust 935 

transport are observed along the tropical Atlantic and the northern Pacific, revealing a remarkable 936 

variation, within the course of the year, in terms of intensity, latitudinal position and range. Finally, 937 

the Mediterranean and the Arabian Sea are affected by advected dust plumes originating from N. 938 

Africa and Middle East, respectively. Based on the performed uncertainty analysis, the MIDAS DOD 939 

product, within the course of the year, is highly reliable (less than 0.1 and 20% in absolute and relative 940 

terms, respectively) over dust rich regions and becomes more uncertain (>60%) in areas where the 941 

existence of dust loads is not frequent. This contradiction is interpreted by the stronger “signal” of 942 

dust loads and the larger data availability thus converging towards lower measurement and sampling 943 

uncertainties.  944 

The exploitation of the MIDAS DOD product will be expanded in scheduled and under 945 

preparation studies. At present, focus is given on: (i) the DOD climatology over dust sources and 946 

downwind regions, (ii) the implementation of the MIDAS dataset in the DA scheme of the NMMB-947 

MONARCH model (Di Tomaso et al., 2017) and (iii) the estimation of dust radiative effects and the 948 

associated impacts on solar energy production, in North Africa and Middle East, upgrading the work 949 

of Kosmopoulos et al. (2018). 950 
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Table 1: Planetary (GLB), hemispherical (NHE and SHE) and regional DOD averages, representative for the period 1821 

2007-2015, based on collocated CALIOP, MERRA-2 and MIDAS 1°x1° data. Within the brackets are given the minimum 1822 

and maximum limits. The regional averages have been calculated following the upper branch (first temporal averaging 1823 

and then spatial averaging) in Figure 5 of Levy et al. (2009). The full names of the acronyms for each sub-region are 1824 

given in the caption of Figure S7. 1825 

 1826 

REGION CALIOP MERRA-2 MIDAS 

GLB 0.029 [0.027-0.033] 0.031 [0.027-0.035] 0.031 [0.028-0.035] 

NHE 0.050 [0.048-0.062] 0.055 [0.049-0.065] 0.055 [0.051-0.065] 

SHE 0.008 [0.007-0.008] 0.007 [0.006-0.008] 0.007 [0.006-0.008] 

ETA 0.105 [0.083-0.172] 0.095 [0.077-0.141] 0.108 [0.086-0.163] 

WTA 0.027 [0.022-0.034] 0.019 [0.016-0.024] 0.021 [0.018-0.028] 

MED 0.072 [0.062-0.092] 0.089 [0.079-0.102] 0.091 [0.082-0.107] 

GOG 0.166 [0.085-0.292] 0.275 [0.076-0.434] 0.323 [0.097-0.488] 

WSA 0.259 [0.233-0.332] 0.337 [0.309-0.388] 0.306 [0.275-0.393] 

SSA 0.291 [0.237-0.397] 0.263 [0.158-0.356] 0.253 [0.163-0.355] 

BOD 0.309 [0.217-0.366] 0.519 [0.393-0.637] 0.598 [0.416-0.883] 

NME 0.218 [0.104-0.257] 0.243 [0.142-0.252] 0.296 [0.144-0.350] 

SME 0.212 [0.171-0.253] 0.203 [0.176-0.258] 0.186 [0.156-0.237] 

CAS 0.078 [0.051-0.090] 0.139 [0.128-0.202] 0.137 [0.106-0.184] 

THA 0.172 [0.112-0.204] 0.143 [0.113-0.156] 0.137 [0.079-0.155] 

TAK 0.372 [0.284-0.448] 0.262 [0.234-0.320] 0.144 [0.102-0.285] 

GOB 0.121 [0.090-0.156] 0.120 [0.107-0.147] 0.154 [0.073-0.146] 

EAS 0.089 [0.055-0.131] 0.065 [0.049-0.080] 0.077 [0.060-0.094] 

WNP 0.015 [0.013-0.019] 0.026 [0.021-0.029] 0.027 [0.022-0.030] 

ENP 0.008 [0.005-0.011] 0.018 [0.014-0.019] 0.018 [0.015-0.022] 

SUS 0.021 [0.011-0.031] 0.028 [0.016-0.040] 0.027 [0.012-0.042] 
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 1830 

 1831 

54

https://doi.org/10.5194/amt-2020-222
Preprint. Discussion started: 22 June 2020
c© Author(s) 2020. CC BY 4.0 License.



(i) 

(ii) 

(iii) 

(iv) 

Figure 1: Annual geographical distributions of: (i) MERRA-2 AOD550nm, (ii) MODIS-Aqua AOD550nm and (iii) 1832 

MERRA2-MODIS AOD550nm biases, at 1° x 1° spatial resolution, averaged over the period 2007 – 2016. (iv) Relative 1833 

frequency histogram of MERRA2-MODIS AOD550nm differences.  1834 

 1835 
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(i) 

(ii) 

Figure 2: Annual geographical distributions of dust contribution to total aerosol optical depth, at 1° x 1° spatial resolution, 1836 

based on: (i) MERRA-2 products at 550 nm and (ii) CALIOP retrievals at 532 nm, during daytime conditions, over the 1837 

period 2007-2015. 1838 

 1839 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

Figure 3: Annual geographical distributions illustrating the assessment of MERRA-2 dust-to-total AOD ratio versus 1840 

CALIOP retrievals, during daytime conditions at 1° x 1° spatial resolution, according to the primary skill metrics of: (i) 1841 

mean bias, (ii) fractional bias, (iii) fractional gross error and (iv) correlation coefficient, representative for the period 1842 

2007-2015.  1843 
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(i) 

(ii) 

Figure 4: (i) AERONET sites where at least one pair of ground-based and spaceborne retrievals has been recorded, 1846 

according to the defined collocation criteria, during the period 2007 – 2016. (ii) Density scatterplot between MODIS (y-1847 

axis) and AERONET (x-axis) dust optical depth at 550nm. The solid and dashed lines stand for the linear regression fit 1848 

and equal line (y=x), respectively. LOC in the titles indicates that both land (L) and ocean (OC) MODIS retrievals are 1849 

considered. 1850 
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(i) (ii) 

(iii) (iv) 

Figure 5: Scatterplot metrics between MODIS and AERONET DOD550nm, at station level, during the period 2007 – 2016. 1862 

(i) Number of concurrent MODIS-AERONET observations, (ii) correlation coefficient, (iii) root mean square error and 1863 

(iv) bias defined as spaceborne minus ground-based retrievals. The obtained scores are presented for sites with at least 30 1864 

MODIS-AERONET matchups. 1865 
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(i) 

(ii) 

(iii) 

Figure 6: Long-term (2007 – 2015) average geographical distributions, at 1° x 1° spatial resolution, of daytime: (i) 1889 

CALIOP DOD532nm, (ii) MERRA-2 DOD550nm and (iii) MIDAS (MODIS) DOD550nm. 1890 
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(i) 

(ii) 

(iii) 

Figure 7: Intra-annual variability of CALIOP (black curve), MERRA-2 (red curve) and MODIS (blue curve) monthly 1899 

DODs, regionally averaged over: (i) the whole globe (GLB), (ii) the Northern Hemisphere (NHE) and (iii) the Southern 1900 

Hemisphere (SHE). The error bars correspond to the standard deviation computed from the interannual timeseries during 1901 

the period 2007 – 2015.  1902 
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(i) 

(ii) 

(iii) 

Figure 8: Annual geographical distributions, at 0.1° x 0.1° spatial resolution, of: (i) the climatological DODs, (ii) the 1905 

absolute DOD uncertainty and (iii) the percentage availability of MODIS-Aqua retrievals with respect to the entire study 1906 

period spanning from 1 January 2007 to 31 December 2016. Grey color represent areas with absence of data.  1907 
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(i) (ii) 

(iii) (iv) 

Figure 9: As in Figure 8-i but for: (i) December-January-February (DJF), (ii) March-April-May (MAM), (iii) June-July-1915 

August (JJA) and (iv) September-October-November (SON).  1916 
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