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Abstract 

We present a local-scale atmospheric inversion framework to estimate the location and rate of methane 

(CH4) and carbon dioxide (CO2) releases from point sources. It relies on mobile near-ground atmospheric 

CH4 and CO2 mole fraction measurements across the corresponding atmospheric plumes located 15 

downwind fromof theseir sourcess, on high-frequency meteorological measurements, and on a Gaussian 

plume dispersion model. It The framework exploits the scatter of the positions  of the individual plume 

cross-sections and , the integrals of the gas mole fractions above the background within these plume cross-

sections and the variations of these integrals from one cross-section to the other to infer the position and 

rate of the releases. It has been developed and applied to provide estimates of brief controlled CH4 and 20 

CO2 point source releases during a one-week campaign in October 2018 at the TOTAL’s experimental 

platform TADI in Lacq, France. These releases lasted typically 4 to 8 minutes and covered a wide range 

of rates (0.3 to 200 gCH4/s and 0.2 to 150 gCO2/s) to test the capability of atmospheric monitoring systems 

to react fast to emergency situations in industrial facilities. It also allowed testing their capability to 

provide precise emission estimates for the application of climate change mitigation strategies. However, 25 

the low and highly varying wind conditions during the releases added difficulties to the challenge of 

characterizing the atmospheric transport over the very short duration of the releases. We present our series 

of measurements of CH4 and CO2 mole fraction measurementss using instruments onboard a car that 

drives drove along the roads ~50 to 150 m downwind of the 40 m × 60 m area of for controlled releases 

for each of the releases and along with the results from the inversionestimatess of the release locations 30 

and rates. The comparisons of these results to the actual position and rate of the controlled releases 

indicate an average of 20%-30% average error ion the estimates of thed release rates and a ~30-40m errors 

in the estimates of the release locations. These results are shown to be promising especially since better 

results could be expected for longer releases and under meteorological conditions more favorable to local 
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scale dispersion modeling. However, the analysis also highlights the need for methodological 35 

improvements to increase the skill for estimating the source locations.   

 

1. Introduction 

Accurate detection and quantification of greenhouse gas (GHG) emissions from anthropogenic activities 

is essential to construct effective mitigation policies. A large fraction of pollutant and greenhouse gases 40 

comes from industrial sites. Between 30% and 42% of the anthropogenic emissions of methane (CH4) 

between 2008 and 2017 are from the fossil fuel production and use sector (coal, natural gas and oil) 

according to Saunois et al. (2019). A recent study by Hmiel et al. (2020) suggests that anthropogenic 

fossil CH4 emissions have been underestimated by about 38 to 58 Tg/year, which could implicitly rise the 

contribution of this sector by 25%-40%. CH4 emissions estimates inventories for specific sectors by 45 

inventories combine uncertain activity data and highly uncertain emission factors (Alvarez et al., 2018). 

Furthermore, typical emission factors used as the default values in inventories can hardly be representative 

of the specific configurations and processes of individual sites, and, in practice, they are usually different 

from those measured at specific sites (e.g. Vaughn et al., 2017; Ravikumar et al., 2017; Omara et al., 

2018)  Monitoring of CH4 emissions from individual sites and even at the scale of local facilities within 50 

the same site is thus recommended to assess the effectiveness of local measures applied to minimize 

emissions (Konschnik et al., 2018).  

CH4 emissions from industrial activities are often strongly localized and can occur at many places with 

all kinds of frequenciesy or temporal scales (continuous to infrequent, constant, highly variable) (Zavala-

Araiza et al., 2018). CH4 can be emitted at various stages of activities related to oil and gas production, 55 

transport, and use, e.g.,, such as from venting during oil extraction, pressure controllers, unintended 

fugitive emissions across the entire process chain, pressure regulators along distribution through 

pipelines, and storage (Höglund-Isaksson, 2017). Some of these emissions could be localized and 

quantified through periodical LDAR (Leak Detection and Repair) campaigns. Some others are more 

difficult, as they do not relate to easily measurable processes. Such CH4 emissions are often accompanied 60 

by CO2 emissions, e.g.for example when considering diesel engines powering large compressors or 

flaring activities to reduce natural gas (NG) venting (Caulton et al. 2014). Therefore, the monitoring of 

CO2 emissions whose budget can be significant and which can help detect and characterize the processes 

underlying the CH4 emissions is important too. 

 For Oil and Gas (O&G) related activities, fugitive emissions, for example e.g. from leaky valves or air 65 

bleeds from compressors, should be distinguished from intermittent emissions that occur during nominal 

and maintenance operations e.g.like purging and draining of pipes. Several recent studies have shown that 

a few leaks, often referred to as super-emitters, can be responsible for a large fraction of the O&G 
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emissions of a site, creating a long-tail distribution of emission sources (Omara  et  al.,  2016; Zavala-

Araiza  et  al., 2015, 2017; Frankenberg et al., 2016; Alvarez et al., 2018). Therefore, reducing infrequent 70 

but large releases of CH4 is an effective strategy for reducing the overall emissions of the entire O&G 

sector (Duren et al, 2019). In addition to their effect on climate, large sporadic CH4 emissions can also be 

an issue for safety, a further argument for having developing and deploying systems to allow their fast 

detection and quantification systems. 

Atmospheric CH4 and CO2 concentration mole fraction measurements in the vicinity of industrial sites, 75 

or of facilities within a site, have been used for detecting, localizing and quantifying local emissions. 

These data are combined with tracers or atmospheric transport models for the localization of the sources, 

and dual tracer methods, mass balance approaches or atmospheric transport inverse modelling techniques 

to quantify their release rates (Foster-Wittig et al., 2015; Albertson et al., 2016; Ars et al., 2017; Yacovitch 

et al., 2017; Feitz et al., 2018; etc.). Current measurement methods include both in situ and remote sensing 80 

measurements from fixed stations or mobile platforms (with instruments onboard aircraft, automobile, or 

drones) (Peischl et al., 2013; Pétron et al., 2014; Brantley et al., 2014; Goetz et al., 2015; Foster-Wittig 

et al., 2015; Albertson et al., 2016; Alvarez et al., 2018; Feitz et al., 2018; Cartwright et al., 2019, etc.). 

Controlled release experiments have been regularly conducted In orderto support theto development, test 

and improvement of atmospheric measurement and modeling techniques to for the detection, localizeation 85 

and quantification ofy emissions, controlled release experiments have been regularly conducted (Loh et 

al., 2009; Lewicki and Hilley, 2009; Ro et al., 2011; Humphries et al., 2012; Kuske et al., 2013; van 

Leeuwin et al., 2013; Luhar et al., 2014; Foster-Wittig et al., 2015; Jenkins et al., 2016; Hirst et al., 2017; 

Ars et al., 2017; etc.).  

TOTAL developed the so-called TOTAL Anomaly Detection Initiatives (TADI) platform at Lacq in 90 

southwestern France as a test bed of for different GHG measurement technologies and emission detection 

and quantification methods that could be implemented to support either the fast detection of large leaks 

or for the estimate of the long-term budget of the GHG emissions from facilities. On this TADI platform, 

a wide-range of industrial equipment (pipes, valves, tanks, columns, wellhead, flare, etc.) are used to 

reproduce there could be reproduced around 30 different leaks scenarios  among including the most 95 

common ones potentiallylikely to occurring on operational sites (cold venting, leaks from a flange, leaks 

from a connection, leakage of valves, leakage under insulation, corrosion on a line, etc.) thanks as a wide-

range of to  the diversity of industrial equipment implemented was available (pipes, valves, tanks, 

columns, wellhead, flare, etc.). In October 2018, a one-week campaign was held at the TADI platform to 

evaluate different approaches for to determining determine the precise location and magnitude of brief 100 

CH4 and CO2 controlled releases from point sources. Different groups with various atmospheric 

measurement and modelling techniques participated in the campaign. With typically 4-8-minute releases, 

the experiment was mainly designed for testing safety surveillance systems addressing emergency 

situations rather than for testing the ability to quantify routine emissions accurately on the long runover a 
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long periods of time. However, a wide range of rates were used for the controlled releases, including large 105 

ones releases that can raise safety issues but also small onesreleases, which mainly raise concerns for 

climate change. Such a wide range of sporadic releases was a challenge for the systems deployed by the 

participants since they requiring required highly a good instrumental precisionprecise gas analyzers  that 

operated at for both low and high signals in the atmospheric atmospheric gas mole 

fractionsconcentrations, and the analysis of atmospheric processes over short durations. 110 

We participated in this campaign within the framework of the TRAcking Carbon Emissions (TRACE) 

program (https://trace.lsce.ipsl.fr/), using a mobile measurement strategy similar to that of Yver Kwok et 

al. (2015) and Ars et al. (2017), with thea Cavity Ring Down Spectrometers (CRDS) instruments onboard 

of a vehicle driven back and forth across CH4 and CO2 plumes to take get as many cross-section 

measurementss as possible of for each release. The measurements were made along roads downwind of 115 

the TADI platform with the air intake located ~2 m above the ground. Currently, sSuch mobile 

measurements cannot be conducted continuouslyare generally conducted occasionally,, so that  andand 

they are hardly adapted to a continuous long-term screening for the fast detection of dangerous leaks. 

However, such measurements could be conducted regularly to get a representative diagnostic of emissions 

from a site and of their evolution with time. Furthermore, the development of automated mobile platforms 120 

with light instruments could allow for the use of such a measurement strategy for a more long-term 

systematic monitoring of the emissions from a site.  

One traditional way of quantifying emissions from a source Such with mole fractionconcentration 

measurements near the ground  and across athe along plume from the source are often  coupled, line cross-

sections near the ground is  to the release of a tracer gas with at a known rate close to a targetedthis 125 

targeted e source in order to quantify the corresponding emission by, and to exploiting the mole fraction 

concentration ratios between the targeted gas and the tracer (Yver Kwok et al., 2015). However, one can 

hardly conduct such tracer releases over long time periods for regular campaigns or continuous 

monitoring, or within areas exposed to safety issues. Furthermore, the using this method hardly helpsit is 

difficult to localizing localize the targeted source since as. it the method It itself actually relies on a good 130 

knowledge of its the source position. The use of dispersion models to analyze mobile near groundsuch 

data for the estimate estimation of source locations and rates can be challenging (Foster-Wittig et al., 

2015; Ars et al. 2017). Furthermore, most of the atmospheric inversion approaches to localize and 

quantify point sources have been developed and tested for releases lasting ~30 min or more (Feitz et al., 

2018) whereas the TADI releases during this campaign did not exceed 18 minutes. Because of the short 135 

duration of those releases, only a small number of plume cross-sections could be obtained for each of 

themrelease, limiting the robustness of the inversions. Finally, the meteorological conditions during the 

campaign were quite challenging, with low wind speed and highly varying wind directions. We had to 

develop a specific and pragmatic inversion approach to overcome these challenges, exploiting the spread 

of the positions of the few individual plume crossing cross-sections, and the integrals of the mole fraction 140 

https://trace.lsce.ipsl.fr/
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concentration above the background (i.e. the level of gas mole fraction behind that of the plume from the 

targeted source that is due to remote sources and sinks) within these plume cross-sections, and the 

variations of these integrals from one cross-section to the othercrossings in order to infer the position and 

rate of the brief releases. It Thise inversion approach is based on a Gaussian plume model whose 

parameters were fixed using the meteorological measurements conducted on the TADI platform. Its 145 

successful retrieval of relatively good release location and rates confirm that it could feed more advanced 

strategies for the local scale monitoring of GHG emissions.  

This study documents our measurements, analysis, inversions and the comparison of the results to actual 

release location and rates during the TADI-2018 campaign. In section 2, we detail the experimental setup 

and atmospheric measurements. The theoretical and computational frameworks of the inversion approach 150 

are described in section 3. Section 4 details the data analysis for the configuration of the transport model 

and of the inversion. The results and perspectives of the study are discussed respectively in sections 5 and 

6, followed by the conclusions in section 7.   

 

2. The TADI-2018 campaign   155 

2.1 The site, controlled releases and atmospheric conditions 

The TADI-2018 campaign was conducted during October 15-19, 2018 at TOTAL’s TADI platform in 

Lacq, northwest of Pau. The platform is a rectangular area of approximately 20000 m2 with 

decommissioned oil and gas equipment installed to mimic typical equipment of a “real-world” oil and gas 

facility. Within the platform, there are different points from which CH4 and / or CO2 can be released at 160 

controlled rates from low (e.g. few tens of gCH4/s or gCO2/s) to relatively high (e.g. several hundreds of 

gCH4/s or gCO2/s). There are chemical and industrial plants on the fieldto the East of the platform, and 

the surrounding area has agricultural land and rural settlements. The terrain of the TADI platform is 

almost flat. However, during controlled release experiments, there were small obstacles to the 

atmospheric dispersion: tents for installingcovering the instruments, the decommissioned oil and gas 165 

equipment, and other small infrastructure for storage create obstacles to dispersion andwhich increased 

the roughness and inhomogeneity of the TADI platform. Figure 1 shows a schematic of our experimental 

setup during the TADI-2018 campaign. 
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Figure 1: A schematic of the experimental setup on the top of the satellite image of the TADI platform 170 

(source: Google Earth). The red stars show the some of the possible approximate location of the emission 

sources in the ATEX zone (rectangle with red colored line). The full set of exact locations used for the 

releases is detailed in Figure S1 of the supplementary material. A hybrid SUV drove in electric mode on 

the road next to the site, as shown byalong the yellow colored double dotted lines. The meteorological 

station installed and operated by TOTAL was located at the basis of its black symbol.  175 

 

During the campaign, a total of 50 CH4 and CO2 releases were carried out. All these controlled releases 

were made from different point source locations within a 40 m × 60 m rectangular area classified as the 

“ATEX zone” (Figures. 1 and S1, in the supplementary material), which for security reasons was 

cordoned off and out of reach for all participants. These point sources correspond to various types of 180 

equipment and release scenarios: drilled plugs, pipes, rack corrosion, flanges, valves, control boxes, 

horizontal or vertical tubing, horizontal or vertical piping, manhole, under insulation, tanks, scrubbers, 

product skids (red stars in Figures. 1 and S1) with different release heights between 0.1m to and 6.5m 

above the ground. Mass flow controllers were used to control the releases of CH4 and CO2. Several series 

of releases were performed with pauses of approximately 5 minutes between two releases and with a 185 

range of emission rates varying from 0.3 gCH4/s to 200 gCH4/s for CH4 and from 0.2 gCO2/s to 150 
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gCO2/s for CO2. This setup allowed the reproduction of a variety of gas release scenarios expected in an 

industrial environment.   

2.2 Atmospheric measurements  

Atmospheric CH4 and CO2 measurements mole fractions were obtained measured using two Picarro 190 

Cavity Ring Down Spectrometers (CRDS): with Picarro G2203 and G2401 analyzers for CH4 and CO2, 

respectively. The analyzers were calibrated at the beginning and end of the experiment using high and 

low range calibration standards traceable to the WMO scales (WMOX2007 for CO2, and WMOX2004A 

for CH4; WMO GAW report No. 242; Table 1). Each standard was measured for at least 20 minutes on 

each analyzer. The agreement errors between the analyzer raw data and the calibration standard were 195 

smaller than 0.7% in CO2 and 0.2% in CH4. Yver Kwok et al. (2015) had shown that within the mole 

fraction range of the WMO scales the analyzer precision of a range an ensemble of CRDS analyzers 

including the G2401, defined as the raw data standard deviation over one minute, was <0.05 ppm and 

<0.5 ppb for CO2 and CH4, respectively. The G2203 analyzer is based on identical the same spectroscopy 

as the CRDS analyzers investigated in this study. It was tested in a similar way during S. Ars PhD study 200 

and displayed similar performance (Ars, 2017). CRDS instruments are known to be stable within <0.15 

ppm per year for CO2 and <2.2 ppb per year for CH4 (Yver Kwok et al., 2015). 

 

Table 1: Assigned mole fraction of calibration standards used during the campaign;, SD refers to the 

calibration reproducibility, which is defined as the standard deviation (1σ) of the means of at least 3 205 

independent measurements. 

 CO2 (ppm) CO2 SD (ppm)  CH4  (ppb) CH4 SD (ppb) 

High 522.25 ±0.01 6135.03 ±0.23 

Low 411.94 ±0.01 1980.65 ±0.11 

 

During the campaign the range of measured mole fractions corresponding to the releases selected for the 

inversions (see section 4.2) was 1.9 – 84 ppm for CH4 and 400 – 800 ppm for CO2, with less than 4% of 

the CH4 measurements and less than 2% of the CO2 measurements being higher than the CRDS calibration 210 

range shown in Table 1. The manufacturer specifications recommend operating ranges of 0-20 ppm for 

CH4 and 0-1000 ppm for CO2 for with the G2203 and G2401 analyzers, respectively. In practice the 

analyzers were still operational over a higher range although lower performance may be expected in this 

case. To investigate the performance of both analyzers at high mole fractions, a linearity test of linearity 

was conducted at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE) over a range of 215 

mole fractions range of 2 - 50 ppm for CH4 and 400 - 5000 ppm for CO2, which spans ~99% of the CH4 



8 

 

measurements recorded during the releases selected for the inversions. The results indicate that over this 

range, the precision was < 20 ppb for CH4 and < 0.6 ppm for CO2 for with the G2203 and G2401 analyzers, 

respectively, and that both analyzers still responded linearly (R2 > 0.99) at high mole fractions values, 

with a residual errors between the gas analyzer responses and the assigned values of lower than 2%.  220 

The gas analyzers were installed in a Mitsubishi hybrid SUV vehicle. Measurements were made 

continuously at approximately 0.3-0.4 Hz while the vehicle was driven up and down the two main roads 

next to the TADI platform at a speed of about 10 km/h (which resulted in getting ~1 measurement every 

7m) (Fig.ure 1). The distance between the release points and the car was between ~25 m at the closest to 

and about ~250 m at the furthest.  Due to the brevity of the releases, less than six cross-sections of the 225 

plume were identified in the mobile transects for each controlled release. The sampling inlet was located 

at the back of the vehicle, at approximately 2 m above the ground surface. The top of the sampling mast 

was equipped with a GPS providing a time reference along with measurement positions. At the beginning 

of the campaign, the overall time delay of the different analyzers, including the time delay induced by the 

sampling line and the analyzer time shift relative to GPS time, was empirically assessed by contaminating 230 

(breathing out) shortly at the air inlet at a given GPS time and comparing this time to the analyzer 

timestamp of the CO2 response (at peak summit).The measurements were thus synchronized with an 

overall time delay of 16s. delay between the time a sample is taken at the sampling inlet and its recorded 

time with GPS receiver. Figure 2 shows an example of the transects on the TADI adjacent roadways, with 

the timeseries of observed instantaneous CH4 mole fractions time series during a CH4 release.  235 

In the absence of a controlled tracer release, reliable measurements of the meteorological and turbulence 

parameters are essential to model the plumes from the releases with an atmospheric dispersion model. A 

meteorological station was installed and operated by TOTAL in the north-east of the ATEX zone (Figure 

1). This station included a Metek Sonic 3D sonic anemometer at 10 m height above the ground. The high 

frequency measurements of this anemometer were not recorded but combined at 1-minute resolution into 240 

mean horizontal wind speed (U) and direction (θ), temperature (T), Obukhov length (L), surface friction 

velocity (u*), and standard deviation of wind velocity fluctuations (σu, σv, and σw). We averaged these 1-

minute meteorological data over the entire release periods and used these as inputs for the modelling and 

inversion configurations. Therefore, hereafter, the notations U, θ, T, L, u* and (σu, σv, σw) hereafter 

represent such averages over the release periods rather than the 1-minute data. All the releases were 245 

conducted during daytime under near-neutral or convective stability conditions (L < 0). The prevailing 

atmospheric conditions during the whole campaign were dominated bycorresponded to prevailing low 

and highly variable winds of south-west to south-east windsorigin.   
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Figure 2: Mobile CH4 mole fraction mobiles measurements during CH4 release no. 2 (Table 2): (a) 250 

horizontal representation (b) 3D representation with values as a function of the horizontal location, and 

(c) time series. The green arrow from the source location in (a) shows the averaged wind direction during 

that release.   

(a) (b) 

(c) 
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3. Atmospheric inversion of the release locations and rates 255 

3.1 Gaussian plume dispersion model 

The atmospheric inversion approach used here relies on a local scale Gaussian plume model to simulate 

the dispersion of CH4 or CO2 from the potential locations of the sources. Gaussian plume models (Hanna 

et al., 1982) provide an approximation of the average tracer dispersion on at a local scale (for source-

receptor distances of less than a few kilometers) driven by constant meteorological conditions in time and 260 

space over a flat area. In such conditions, the concentration (C) of a pollutant has a spatial distribution 

described by a combination of normal distributions in both vertical and horizontal planes (Hanna et al., 

1982). We use the following Gaussian model formulation assuming a reflective ground surface: 

𝐶(𝑥𝑋, 𝑦𝑌, 𝑧𝑍) =
𝑄𝑠

2𝜋𝜎𝑦𝑌𝜎𝑧𝑍𝑈𝑒
𝑒𝑥𝑝 (

−(𝑦−𝑦𝑠)𝑌2

2𝜎𝑦𝑌
2 ) [𝑒𝑥𝑝 (

−(𝑧𝑍−𝐻𝑧𝑠)2

2𝜎𝑧𝑍
2 ) + 𝑒𝑥𝑝 (

−(𝑧𝑍+𝐻𝑧𝑠)2

2𝜎𝑍𝑧
2 )]   (1) 

where the x X and y Y axis are defined by the effective wind direction, Qs is the emission rate of a the 265 

point source underlying the plume and located at (xs, ys, zs), Hs is the release height above the ground 

surface, Ue is the effective mean wind speed at the height of a the release, (xX, yY, zZ) are the coordinates 

in the Gaussian model concentration space where the location of the source is the origin (0,0,0) (this 

system of coordinates is distinct from the coordinate system used in the following sections to localize the 

sources in the ATEX zone)of a receptor, and σy 𝜎𝑌 and σz 𝜎𝑍 are the dispersion coefficients in lateral (yY) 270 

and vertical (zZ) directions, respectively. The dispersion coefficients 𝜎𝑌σy and 𝜎𝑍σz are derived from the 

standard deviations of the corresponding velocity fluctuations in the lateral (σv) and the vertical (σw) 

directions as follows (Gryning et al., 1987): 

𝜎𝑦𝑌 = 𝜎𝑣𝑡 (1 + √
𝑡

2𝑇𝑦𝑌
)

−1

                            (2a) 

𝜎𝑧𝑍 = 𝜎𝑤𝑡 (1 + √
𝑡

2𝑇𝑧𝑍
)

−1

                           (2b) 275 

where t (= Xx/Ue) is the travel time from origin xs to xX, Ty TY and Tz TZ are the Lagrangian time scales in 

lateral (yY) and vertical (zZ) direction, respectively. We take Ty TY = 200s (Draxler, 1976) for near surface 

release and Tz TZ = 300s for unstable conditions (L < 0) (Gryning et al., 1987).  

The TADI platform is relatively flat and we assume that the small obstacles interfering with the plumes 

between the ATEX zone and our measurement locations are negligible, which is the main reason for using 280 

a Gaussian model here. Furthermore, our inversion method to localize the sources relies on a very high 
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number of plume simulations to localize the sources, whichthat would was not have been affordable with 

complex models. Advantages of more complex models like the ability to account for variations in space 

and time of the wind were challenged by the very short duration of the releases, which prevented us from 

considering such variations. We also had to rely on a single meteorological station which limited the skill 285 

to account for spatial variations in the wind. The prevailing wind conditions during the whole campaign 

with low wind speeds and highly variable wind directions challenged the spatial representativeness of the 

meteorological measurements and the use of local-scale dispersion models to simulate the peaks in the 

mobile measurement transects. Such a limitation applies to Gaussian models as well as to more complex 

models although our inversion approach attempts to take advantage of strong variations in the wind 290 

direction to localize the sources. 

The small number of plume cross-sections (also called “peaks” hereafter) observed in this study prevented 

us from assessing the average mole fractions concentration along the roads where mobile measurement 

transects were conducted for each release. The average in time of the gas mole fractions concentrations 

measured along all roads is far from converging towards a distribution corresponding to an average plume 295 

and just reflects the scattering of these peaks. However, eEven though a Gaussian model characterizes 

the average plumes under constant wind, and it can thus substantially deviate much from observed 

instantaneous plume cross-sectionsmole fractions, we compared mole fractionsplume cross-sections 

simulated with such a model to the observed instantaneous mole fractionplume cross-sections. A first 

reason is that one can hardly better match observed plumes using models simulating explicitly the 300 

turbulence since it is difficult to capture the right timing and location of turbulent stochastic structures. 

Another reason is that the TADI platform is relatively flat and the very short duration of the releases 

prevented us from considering varying winds. Furthermore, our inversion method to localize the sources 

relies on a very high number of plume simulations that would not have been affordable with complex 

models. Finally, wWe consider the integral of the mole fractions above the background within cross-305 

sections as the index of the plume amplitude whose observed value is fitted by the model in the inversion 

approach, which limits the impact of the lack of simulation of the turbulent patterns (Monster et al., 2014; 

Alberston et al., 2016; Ars et al, 2017). ThereforeWith such a framework, the Gaussian model was was 

assumed to be suitable to assimilate the information from our instantaneous plume cross-sections, which 

was confirmed to a large extent by the precision of the release rate estimates from the inversion based on 310 

this model (see sections 5 and 6). Furthermore, the model error associated with such a use of the Gaussian 

model to simulate instantaneous plume cross-sections is implicitly accounted for in the inversion 

configuration (see section 3.2). Using advanced and more complex models simulating explicitly the 

turbulence to help better match observed instantaneous plume cross-sections could be considered as a 

next step but this raises challenges since it is difficult to capture the right timing and location of turbulent 315 

stochastic structures. Despite many attempts at developing systems based on complex models, in practice, 
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the systems used for the local scale monitoring of CH4 emissions generally rely on mass balance 

approaches or Gaussian models (Fox et al, 2019; Mønster et al, 2019) 

The wind conditions during the whole campaign with prevailing low wind speed and highly variations 

variable of the wind direction challengeds the spatial representativeness of the meteorological 320 

measurements and the use of local-scale dispersion models to simulate the peaks in the mobile transects. 

Such a limitation applies to Gaussian models as well as to more complex models, and, actually,  although 

our inversion approach attempts to take advantage of strong variations in the wind direction to localize 

the sources. 

3.2 Inversion method 325 

The inversion system primarily relies on the plume amplitudes (defined as the integral of the gas mole 

fractions above the background in peaks as in Ars et al. 2017; see section 3.1) along the mobile 

measurement transects to infer the release rates. These amplitudes are the main component of the data 

assimilated by the inversion system. They highly depend on the distance from the source, whose location 

is unknown, to the measured peaks. The inversion scheme also follows the fact that, due to unsteady wind 330 

conditions and turbulence, the effective wind directions from the release point to the peaks in the mobile 

measurement transects along the roads can differ from θ, the mean wind direction averaged over the brief 

release periods. However, the variability of the wind measurements at high frequency should give a good 

indication of the fluctuations of such effective wind directions. This provides information about the source 

location so the position of the peaks along the mobile measurement transects are the other component of 335 

the data assimilated by the inversion system. Crossing the information about the varying amplitude of the 

different peaks and of about their location adds a critical piece of information about the source location, 

since the variations of the effective wind from a source to the roads impacts strongly impact the distance 

between the source and the peaks, and thus, the peak amplitudes. The analysis of the variations of the 

different peak amplitudes is necessary to disentangle the estimates of the rate and location of a release, 340 

since changes in the average peak amplitude due to changes in the release location can be compensated 

by change in the release rate.  Therefore, our method relies on the information from multiple plume cross-

sections to infer unambiguously both the rate and location of the releases. 

In practice, in order to compare modeled peaks to measured ones, the inversion drives the Gaussian model 

with an effective wind direction θm. θm is defined by the direction between the potential source locations 345 

and the peak locations, but with an effective wind speed and plume widths that are constrained with the 

meteorological measurements. θm is defined by the direction between the potential source locations and 

the peak locations. More specifically, θm is taken as the direction from the potential source location to 

the “center” of the measured peak. This center is estimated as the mid-point between the edges of the 

measured plume cross-sections, these edges being defined manually. If the estimate of θm falls outside 350 

the range of measured wind directions θ ± 2σθ, (about 95% of the distribution around the average of the 
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measured wind direction over a release period), θm is set to the corresponding maximum or minimum 

value (θ ± 2σθ), where σθ is the standard deviation of the measured wind direction over a release period. 

Since the high frequency measurements of the wind were not recorded, for each release, σθ is 

approximately calculated as 𝜎𝜃 ≃ 𝜎𝑣 𝑈⁄  (Joffre and Laurila, 1987). The confidence in the θm 355 

corresponding to a given source location is weighted by its relative departure from θ compared to σθ,  

The Gaussian model driven by these parameters yields a simulation of the 3D field of mole fractions 

concentrations above the background due to the source. This 3D field of mole fractions concentrations is 

discretized at the measurement locations. The observed 𝐴𝑜  and modeled 𝐴𝑚  plume amplitudes are 

computed as integrals along these locations of the mole fractions above the background between the edges 360 

of the observed peak. These edges are defined manually, and the derivation of the background in the 

observations is detailed in section 4.1.  

We provide zs the actual source height of each release to the inversion system, which assumes that the 

effective injection height ze corresponds to this height (ze=zs). which The inversion derives the 

unknownestimates of the horizontal source location, knowing it is within ATEX zone, but ignoring theany 365 

information about the set of actual source locations listed in Figure S1. The inversionIt discretizes the 

ATEX zone into small cells of 1 m2 to define all potential horizontal locations (x, y) of the source. For 

each controlled release, the inversion algorithm loopsing over all these locations and on an extensive 

ensemble of values for the release rates Q with intervals of 0.05 gX/s (or of 0.1 gX/s if measurements at 

first sight indicate that the emission rate it is likely well above 10 gX/s;, where X=CH4 or CO2) to find 370 

the optimal estimates of the release location and rate. For each potential location and rate, it drives one 

Gaussian plume simulation per plume cross-section following the principle detailed above, and computes 

the corresponding amplitudes of the modeled plume cross-sections. , the inversion algorithmThen it 

computes the corresponding cost function determines the minimum of a cost function (J) of these rates 

and locations, defined by:  375 

 𝐽 = 𝐽𝑝 + 𝐽𝑤                                    (3) 

where the first term: 

           𝐽𝑝 = ∑ [
𝐴𝑜𝑖−𝐴𝑚𝑖

𝐴𝑜𝑖
]

2𝑁𝑝

𝑖=1
                   (4) 

is the quadratic sum of relative errors between the modeled (𝐴𝑚𝑖) and observed (𝐴𝑜𝑖) amplitudes of the 

Np plume cross-sections (integrals of the mole fractions above the background between the edges of the 380 

observed peak that are defined manually) and the second term:   

           𝐽𝑤 = ∑ [
𝜃−𝜃𝑚𝑖

𝜎𝜃
]

2𝑁𝑝

𝑖=1
                    (5) 
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is the quadratic sum the weighted departure of the implicit effective wind directions 𝜃𝑚𝑖 corresponding 

to the Np peaks from θ, the mean wind direction over the release period.  

At the end of this loop, tThe optimal estimates of the unknown location (xe, ye) and rate (Qe) of each the 385 

release are taken as the values estimates corresponding to the minimum of the cost function J. Jw weights 

the departure of θm from θ using σθ, which characterizes here the uncertainty in the effective winds. 

However, tThe misfits between modeled and simulated peak amplitudes (Eq. 4) are not explicitly 

weighted by the uncertainty in the transport model associated to the comparison between the Gaussian 

model and instantaneous plume-cross sections or to the configuration of the parameters for this model. 390 

However, Actually, the direct comparison of Jw and Jp in J implicitly assumes that there is a 100% 

uncertainty in the skill of the Gaussian model to simulate the amplitude of individual peaks when feeding 

it with the actual release locations and rates, which is a rather conservative assumption (Ars et al., 2017).  

The first results analyzed based on the inversion configuration described above and presented in sections 

5.1 and 5.2 have led us to conduct some tests of sensitivity of the resultsinversions: (1) by fixing the 395 

location of the source to its actual position and minimizing Jp to get an estimate of the release rates (2) by 

modifying the formulation of Jp to influence the way it weights the fit to the different peak amplitudess 

(see section 5.3). Section 5 details these tests and their results. The principle of our method does not apply 

to releases for which we only have one plume cross-section. In such a case, the amplitude and location of 

this cross-section do not provide enough information to infer both the source rate and location. Indeed, 400 

for any location corresponding to the mean measured wind and thus cancelling  Jw, the release rate can 

be fixed to perfectly match the observed plume amplitude and cancel Jp. However, the first results 

analyzed based on the standard inversion configuration described above also showed the limitations of 

the skill to infer the source location. Therefore, in order to highlight this problem and to strengthen our 

statistics regarding the skill to infer the release rates, we have included in our analysis the results from a 405 

release during which we had one plume cross-section only. 

 

4. Data analysis for the configuration of the transport model and of the inversion  

4.1 Assignment of the background mole fractions 

The definition of the background field of CH4 or CO2 for the measured peaksfor the measurements along 410 

the different plume cross-sections can have a strong impact on the derivation of the peak amplitudes in 

the measurement transects. Our modeling framework includes the Gaussian simulation of the plumes 

from the controlled releases but not a simulation of the background mole fractions over which the plumes 

represent an excess of CH4 or CO2. We compute a single background value per release. During a given 

CH4 releases, we define the background for each release as the minimum of the corresponding timeseries 415 
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of measured CH4 mole fractions time series. Indeed, the variations of CH4 between the peaks that are 

unambiguously attributed to the release plume from the targeted source appear to be quite negligible in 

most cases, which can be explained by the short duration of the releases. However, the mole fractions 

concentrations were much noisier between the peaks in the CO2 mobile measurement transects, due to 

potential sources and sinks of CO2 nearby such as vegetation and traffic (e.g. delivery trucks passing 420 

frequently along the road surrounding the TADI platform). Therefore, we define the CO2 background 

value for a given CO2 release as the 5th percentile of the corresponding timeseries of measured CO2 mole 

fraction stime series. These background values are subtracted from the measurement timeseries for the 

comparisons to the Gaussian model outputscomputation of the observed peak amplitudes. 

4.2 Configuration of the Gaussian model and identification of the releases for which the modeling 425 

framework is suitable 

We use the average of the 1-minute data from the Metek 3D sonic anemometer over each release period 

as inputs to the Gaussian plume model: the average of the standard deviations of velocity fluctuations in 

the lateral (σv) and the vertical (σw) directions are used to compute the dispersion parameters 𝜎𝑌σy and 

𝜎𝑍σz, and the average wind speed U is taken as the effective wind speed Ue driving the Gaussian model. 430 

The inversion method relies on the detection and use of clear peaks in the gas mole fraction timeseries 

that really correspond to plume cross-sections from one edge to the other edge of the plumes. Several 

peaks in the measurements were associated to situations for which the vehicle had to turn (e.g. at the 

crossing of roads) and thus did not fully cross the plumes. Such peaks are not retained for the inversions. 

Furthermore, some peaks were measured at locations very far from the area along the road corresponding 435 

to the projection of the ATEX zone with the θ ± 2σθ range of wind directions. The reliability in of 

inversions using such peaks would be very low and we thus exclude all peaks for which the difference 

between the corresponding θm and θ systematically exceeds 30° whichever location is tested for the 

source. Due to the complex meteorological conditions during the campaign (60% of the releases were 

conducted while the wind was lower than 2 ms-1) and due to, the low number of detected peaks, and such 440 

athis selection of thosee peaks that are suitable ones for inversion meant that there were not any 

exploitable peaks for 34 of the controlled releases did not leave anyanywhere without exploitable peaks 

for. 34 of the controlled releases. Only seven CH4 and nine CO2 releases were thus selected for the 

inversions (Table 2). This selection of releases slightly narrows a bit the range of release rates tested 

during the TADI-2018 campaign, but the resulting range (0.3 to 45 gCH4/s and 2 to 150 gCO2/s, see Table 445 

2) still spans three orders of magnitude. 

About 30% of these releases were conducted in weak wind speed conditions, with U < 2 ms-1, which are 

usually assumed to be challenging for local dispersion modeling (Wilson et al., 1976). Such conditions 

are associated with complex dispersion patterns of the gases released, and deviate from the validity range 
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of the Gaussian plume dispersion model. We still analyze these releases, but our confidence a priori in 450 

these results iwas thus weaker than for the other releases and specific statistics will beare derived in 

section 5 for cases when U ≥ 2 ms-1. 

Table 2 provides information about the release rates, number of peaks, and meteorological parameters for 

each of the releases to which the inversion was applied. In releasess nos numbers. 5 and 6, part of the 

mole fractions measured in the plume cross sections (3% and 10% respectively) reach valueswewere 455 

above the CRDS analyzer’s recommended range for CH4 (above 20ppm, see section 2.2), with maximum 

values of ~60ppm and ~85ppm respectively. These are the only releases selected for inversion for which 

measurements were out of this range. There was only 1 plume cross-section during release no. number 

12 Table 2 provides information about the corresponding release rate, number of peaks, and 

meteorological parameters. Meteorological observations were missingmissed for the two last releases 460 

(numbers nos. 15 and 16 in Table 2) due to technical problems (for release nos. 15 and 16 in Table 2). 

For these two releases, meteorological observations from the previous release (i.e. no. 14), which occurred 

about nine minutes before, are used for the inversion. For the selected releases which correspond to low 

wind speed conditions (U < 2 ms-1), we set a minimum value of 0.3 ms-1 for σv, and the effective wind 

speed of the Gaussian model to Ue = (U2 + 2σv)1/2
 (Qian and Venkatram, 2011). Atmospheric stabilities 465 

during the selected releases were in the range of neutral to very unstable as all the gas releases were 

conducted during day time and the observed values of L were negative (Table 2). 

 

Table 2: Releases to which the inversion is applied, with the corresponding release duration, actual release 

rate (Qs), number of peaks (Np) in the mobile measurement transects, and averaged values of the 470 

meteorological and turbulence parameters (mean horizontal wind speed (U) and direction (θ), the 

Obukhov length (L), surface friction velocity (u*), and standard deviation of wind velocity fluctuations 

(σu, σv, and σw)) over the release period.  

Release

no. 

Gas Duration 

(mm:ss) 

No. 

Peaks

Np 

Qs 

(g/s) 

zs 

(m) 

U 

(m/s) 

θ 

(°) 

1/L 

(m-1) 

u* 

(m/s) 

σu 

(m/s) 

σv 

(m/s) 

σw 

(m/s) 

1 CH4 07:48 2 1 2.3 2.06 294.8 -0.03 0.34 0.55 0.60 0.50 

2 CH4 06:54 2 0.5 2.1 2.64 290.7 -0.06 0.26 0.42 0.50 0.42 

3 CH4 18 :25 6 0.3 2.1 2.86 285.7 -0.08 0.23 0.48 0.41 0.42 

4 CH4 08:36 4 0.5 7.0 2.90 312.6 -0.02 0.31 0.49 0.50 0.42 
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5 CH4 08:31 4 45 1.6 2.29 307.4 -0.06 0.22 0.40 0.48 0.37 

6 CH4 14:25 4 3 1.1 1.77 156.3 -0.04 0.22 0.41 0.41 0.38 

7 CH4 12:00 2 0.5 2.6 2.40 142.7 -0.02 0.23 0.44 0.32 0.32 

8 CO2 06:18 2 150 1.6 3.32 67.42 -0.01 0.37 0.67 0.58 0.48 

9 CO2 08:57 2 5 1.7 3.31 76.7 -0.01 0.38 0.77 0.67 0.54 

10 CO2 06:39 4 3 0.6 2.85 55.7 -0.01 0.28 0.49 0.52 0.41 

11 CO2 04:49 2 2 1.9 2.19 52.1 -0.01 0.25 0.39 0.44 0.35 

12 CO2 04:20 1 150 1.6 1.23 312.2 -0.09 0.17 0.25 0.27 0.28 

13 CO2 04:30 2 85 1.6 1.41 304.5 -0.04 0.22 0.28 0.29 0.32 

14 CO2 04:01 2 60 1.6 1.26 308.1 -0.16 0.19 0.34 0.31 0.28 

15 CO2 04:52 2 30 1.6 1.26 308.1 -0.16 0.19 0.34 0.31 0.28 

16 CO2 04:00 3 10 1.6 1.26 308.1 -0.16 0.19 0.34 0.31 0.28 

 

5. Results  475 

We evaluate the inversion estimates of the rates and locations of the selected releases using the actual 

values provided by TOTAL. The number of plume cross-sections used by the inversion for individual 

CH4 or CO2 releases varies from 1 to 6 with a typical range of 2-4 (Table 2).   

5.1 CH4 releases 

Table 3 shows the inverted and actual release rates and location errors for the seven CH4 releases. As an 480 

example, the shape of the cost function J and of its components Jp, and Jw as a function of the source 

location within the ATEX zone and the minimum of the cost function J (and of its components Jp, and 

Jw) are illustrated for release no. 2 in Figure 3 by fixing the release rate to its inversion estimate, and 

compared to the actual source locations position of the source for the release no 2 in Figure 3. This Figure, 

highlights the dominant role of Jw in the determination of the source location. For this release, Figure 4 485 

also shows a comparison between the observed and modeled (using the source location and rate given by 

the inversion) peaks of CH4 mole fractions peaks for two of the plume cross-sections. For both cross-
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sections, the maxima of the measurements are larger than that of the modeled gas mole fractions but the 

modeled plume cross-section is wider, as explained by the use of a Gaussian model which is representative 

of the average dispersion. However, the modeled and observed integral of the gas mole fractions above 490 

the background within the plume cross-sections agree within 25%. The average of this relative difference 

between the amplitudes of the simulated and observed peaks amplitudes (comparing the absolute value 

of the differences to the observed amplitude) over all peaks from all releases is about 43%. The deviation 

of θm from θ varies from less than 1° to ~16° with average deviation of ~7° over all the peaks in all CH4 

releases, while σθ varies between 8° and 17°, with an average value of 11°. These values explain that at 495 

with the inversion optimal estimates of the release location and rate estimates, the value of Jp is smaller 

than that of Jw (as illustrated in Figure. 3).  

   

  
(a) Jp 

  
(b) Jw 

  
(c) J 

Figure 3: Contour plots of (a) Jp , (b) Jw, and (c) J when fixing the release rate to its inverted value Qe for 

release no. 2. Red and white stars respectively show the actual and inverted source locations. 500 
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Figure 4: Observed and modeled peaks in the CH4 mole fractions peaks for two plume cross-sections used 

in the inversion for release no. 2, using the estimates of the source location and rate estimates from the 

inversion.  

 505 

For each controlled release, the error in the retrieved estimate of the source location (the “location error” 

hereafter) El is defined by the Euclidean distance between the inverted and actual source. It varies from 

8.1 m to 62.9 m, with an average value of 29.8 m, across all the selected CH4 releases (Table 3). Figure 

5(a) shows a comparison between the estimated and actual release rates for these releases. The relative 

estimation error for the release rates (dividing the absolute value of the estimation error by the actual 510 

emission rate) varies from less than 10% (for release no. 4) to ~82% (for release no. 5) (Table 3, Figure 

5(a)). These results indicate that the inversions lead to an average relative error of 30.8% in the release 

rate estimates. In most of the cases, the estimates of the rates are within a factor of 1.9 from the actual 

ones, except for release no.  5, for which the actual release rate is underestimated by a factor of 5.5. The 

underestimation of emission the rate forin release no. 6 is the second-worst case with ~47% relative error. 515 

The small percentage of mole fractions measured above the analyser’s operational range for CH4 during 

releases  nos. 5 and 6 (section 4.2) hardly does not sufficiently explains that why these releases correspond 

to the poorest results. Selecting the cases for which U ≥ 2 ms-1 slightly decreases the average relative error 

to 28%, release no. 6 being the only one for which U < 2 ms-1. However, ignoring the results for the worst 

case (release no. 5), the average relative error in the release rate is ~22%. In most of the cases, the actual 520 

release rates are underestimated by the inversion (release nos. 4 and 7 being exceptions).  
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Table 3: Summary of the results from the inversions results with comparisons between the actual and 

inverted source locations and rates for the CH4 releases.   525 

Release 

no. 

Gas Qs 

(g/s) 

Inversions minimizing J (Eq. (3)) Inversions minimizing Jlog(Eq. (7)) 

Qe (g/s) Rel. error El (m) Qe (g/s) Rel. error El (m) 

1 CH4 1 0.8 20.0% 26.8 1.05 5.0% 26.8 

2 CH4 0.5 0.3 40.0% 27.7 0.3 40.0% 27.7 

3 CH4 0.3 0.25 16.7% 21.5 0.25 16.7% 21.5 

4 CH4 0.5 0.5 0.0% 8.1 0.6 20.0% 7.7 

5 CH4 45 8.05 82.1% 38.8 9.05 79.9% 38.8 

6 CH4 3 1.6 46.7% 62.9 3.3 10.0% 62.9 

7 CH4 0.5 0.55 10.0% 23.2 0.75 50.0% 23.2 

 

5.2 CO2 releases 

The general patterns and relative weight of Jw and Jp for the CO2 releases is similar to that for the CH4 

releases. The average relative difference between modeled and observed peak amplitudes is about 31%. 

The deviation of θm from θ varies from less than 1° to ~26° with an average value of ~7° over all the 530 

peaks in all CO2 releases, while σθ varies from 10° to 22° with an average value of 13°. Again, this is 

associated with lower values for Jp than Jw (not shown). 

Table 4 and Figure 5(b) compare the estimates of the CO2 releases rates and locations to their actual 

values. The location error is, on average, ~39 m. For all the 9 nine CO2 releases that have been analyzed, 

the emissions are estimated within a factor of 1.4 of the actual emissions. The relative error in the release 535 

rate estimates varies from less than 2% (release no. 10) to 28.6% (release no. 8), and, on average is 17.2%. 

Ignoring the four releases corresponding to U < 2ms-1, the average relative error for the estimates of 

release rates significantly decreases to 11.6%. Errors on the estimates of the rate and location for release 

no. 12, during which we have one plume cross-section only, are close to the average errors. This highlights 

the limitation of the skill to provide a precise estimate for the release location whatever the number of 540 

plume cross-sections used. As was observed for the CH4 releases, there is a general tendency of the 

inversions to underestimate the actual CO2 release rates (with two exceptions: release no. 10 and 12). 
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Figure 5: Comparison of the estimated and actual emissions rates of the (a) CH4 and (b) CO2 releases.  545 

 

(a) 

(b) 
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Table 4: Summary of results from the inversion results with comparisons between the actual and inverted 

source location and rates for CO2 releases.  

Release no. Gas Qs (g/s) Inversions minimizing J Inversions minimizing Jlog 

Qe (g/s) Rel. error El (m) Qe (g/s) Rel. error El (m) 

8 CO2 150 107.1 28.6% 21.5 122.1 18.6% 21.5 

9 CO2 5 4.6 8.0% 43.9 5.2 4.0% 43.9 

10 CO2 3 3.0 0.0% 32.3 3.0 0.0% 33.2 

11 CO2 2 1.8 10.0% 56.4 2.3 15.0% 60.9 

12 CO2 150 175.1 16.7% 26.1 163.6 9.1% 23.3 

13 CO2 85 69.1 18.7% 44.8 77.6 8.7% 44.8 

14 CO2 60 44.1 26.5% 44.8 56.6 5.7% 44.8 

15 CO2 30 23.1 23.0% 44.8 32.1 7.0% 44.8 

16 CO2 10 7.7 23.0% 39.6 10.2 2.0% 39.6 

 

5.3 Least square fitting of the order of magnitude of the peak amplitudes rather than of their values 550 

of these amplitudes: a sensitivity test  

The results for both CH4 and CO2 releases indicate that for ~90% of the cases, the release rates are 

underestimated by the inversion. However, the locations of the sources are generally found to be too far 

from the main measurement transects compared to their actual position, an inversion bias which should 

rather lead to an overestimation of the release rates. Experiments using the same inversion framework but 555 

fixing the source location to its actual position (minimizing Jp) leads to a ~44% and ~33% average relative 

error in the estimate of the CH4 and CO2 release rates respectively, i.e. to larger errors. Actually, the 

underestimation of the release rates coincides with the underestimation of most of the peak amplitudes. 

Across the different peaks corresponding to a given release, the relative difference between the amplitudes 

of the simulated and observed peakslume amplitude is highly variable and it appears that the system is 560 

often highly sensitive to one or two peaks for which it provides a slight overestimation, balanced by a 

large underestimation of the other peaks. This phenomenon appears to be connected to the limited skill 

for deriving precise estimates of the release locations. Indeed, Aa potential explanation for the 

overestimation of the distance to the source and for the underestimation of the release rates is thus that 

the term Jp of the cost function does not force enough the resultspush enoughsearch hard enough for to 565 

correspond to finding athe source location and rate that providing provides a good fit to most of the peak 
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amplitudes. In particular, it does not search hard enoughforce enough the results push enough for getting  

to correspond to obtain the right variations in terms of peak amplitude from one plume cross-section to 

the other. With such a lack of constraint regarding the relative amplitude of the different peaks, the 

potential to find the actual release location is strongly limited, and with values for Jp much lower than 570 

those for Jw, a primary driver of the minimization of J is that of Jw by localizing the source as far as 

possible..  

Therefore, a sensitivity test is performed to put more emphasis on a better fit to the different peak 

amplitudes and to loosen the strongest constraints towards specific peaks. The term Jp is modified to 

weight the misfits between the modeled and measured amplitudes of the plume cross-sections in terms of 575 

order of magnitude using a logarithmic scale:   

           𝐽𝑝
𝑙𝑜𝑔

= ∑ [
𝑙𝑜𝑔(1+𝐴𝑜𝑖)−𝑙𝑜𝑔(1+𝐴𝑚𝑖)

𝑙𝑜𝑔(1+𝐴𝑜𝑖)
]

2𝑁𝑝𝑃

𝑖=1
                   (6) 

In a new series of estimations, the inversion minimizes 

 𝐽𝑙𝑜𝑔 = 𝐽𝑝
𝑙𝑜𝑔

+ 𝐽𝑤                                                       (7) 

instead of J. The corresponding results (Tables 3 & 4 and Figure 5) are slightly better than that obtained 580 

when minimizing J.  

Minimizing Jlog for the CH4 releases, the location errors vary from 7.7 m to 62.9 m, with an average value 

of 29.8 m (Table 3) and the relative error in the estimates of the release rates vary from ~5% (release no. 

1) to ~80% (release no. 14), with a ~31% average value. These scores are very similar to that when 

minimizing J. Minimizing Jlog for the CO2 releases, the average location error is 39.6 m, which, again, is 585 

similar to the average location error when minimizing J. However, there is a significant improvement in 

the estimate of the CO2 release rates when minimizing Jlog: the relative error in this estimate varies from 

less than 2% to 18.6%, with an average relative error of 7.8%. For all the nine CO2 releases, minimizing 

Jlog leads to release rate estimates within a factor of 1.2 of the actual release rates. 

A more general improvement when minimizing Jlog is that there is no general tendency to underestimate 590 

the release rates, with now 60% of cases for which the release rate is actually over-estimated. However, 

the tendency to overestimate the distance of the source from the main mobile measurements transects  

persists: Jlog is dominated by Jw such as J, and the capability to localize the sources keeps on being limited. 

This reveals that a persistent tendency of the system to lead to the underestimation underestimate of the 

release rates also persists even if it is decreased. However,, but that it isthis tendency is now better 595 

balanced by its the system’s opposed opposing tendency to increase the release rates to compensate for 

the the distance between location of the source and the plume cross-sections being overestimatedtoo far 

relative to mobile measurements transects from the plume cross-sections. Indeed, fixing thewhen the 
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source location is fixed to its actual position, the minimization of Jp
log leads, as and the minimization (like 

the minimization of Jp), to a general tendency totends to underestimate the release rates (and yieldsto a 600 

~37% -respectivelyand ~27%- relative error in the estimate of the CH4 -respectivelyand CO2- release 

rates, respectively).  

 

6. Discussion 

We developed an inversion framework which does not derive explicit estimates of the uncertainties 605 

associated to its release rate and location estimates (unlike statistical frameworks such as that of Ars et 

al., 2017). We did not attempt at conducting sensitivity or ensemble computations to derive such 

theoretical uncertainties and rather entirely relied on comparison to the actual release rates and locations 

to assess the precision of our inversions in an objective way. Our inversion system can provideprovided 

estimates of the CH4 and CO2 release rates with a 20%-30% relative errors over a the wide range of rates 610 

tested during the TADI campaign. The more complex background conditions during the CO2 releases did 

not appear to be a limitation for the inversion which provided more precise estimates of the CO2 release 

ratess than of the CH4 release ratess on average. The CO2 and CH4 measurement precision is very good 

and the impact of the measurement errors is negligible in our computations. In such conditions, the 

linearity of the local scale dispersion of CO2 and CH4 prevents from assuming that the model and the 615 

inversion can behave better for CO2 releases than for CH4 releases. Therefore, this difference of average 

release rate precision can be attributed to the changes in term of meteorological conditions between the 

CH4 releases and the CO2 releases. These conditions appear to be aAn important driver of the release rate 

inversion precision appeared to be the meteorological conditions. Even though the estimates for low wind 

speed were not associated to with much larger estimation error, the specific variations of the wind for 620 

each release appears to play a critical role in the ability to fit the various amplitudes of the plume cross-

sections. The particularly challenging meteorological conditions encountered during the campaign 

probably played a critical role in the limitation ofed the skill ability of the inversion to retrieve the location 

of the releases. But tThe system still achieved a ~30-40m precision for such an estimation with mole 

fractions measured measurements taken obtained at 50-150m from the source most of the time. Such an 625 

error is quite large when compared to the dimension of the ATEX zone.  

However, oOur results in terms of release rate estimates and thus our inversion approach appear to be 

promising given the very complex conditions of the campaign with very brief releases and very low but 

highly varying wind conditions. 20%-30% precision estimates for the release rates can be very useful to 

assess the level of emissions from industrial sites (Brantley et al., 2014). Previous studies dedicated to the 630 

estimate of release rates from point sources using mobile measurements across the plumes and 

atmospheric dispersion models (such as Brantley et al., 2014; Foster-Wittig et al., 2015; Albertson et al., 

2016) also documented typical average precisions of 20-30% but they relied on releases and measurement 
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timeseries lasting at least 20 minutes. Longer release durations (e.g. at least 30 minutes) would provide 

enable a much higher number of plume cross-sections to be measured around the site and this wcould 635 

ensure much more favorable inversion conditions. Previous studies dedicated to the estimate of release 

rates from point sources using mobile measurements across the plumes and atmospheric dispersion 

models (such as Brantley et al., 2014; Foster-Wittig et al., 2015; Albertson et al., 2016) also documented 

typical average precisions of 20-30% but they relied on releases and measurement timeseries lasting at 

least 20 minutes. Caulton et al. (2018) recommended to use at least 10 plume cross-sections to reliably 640 

constrain atmospheric variability and reduce the uncertainties in the estimation of the emission rates using 

mobile measurements. However, our results demonstrate that we can achieve a good estimation precision 

with a much smaller number of plume cross-sections.   

Some major improvements can be foreseen to strengthen the measurement and inversion framework. The 

general tendency of the atmospheric transport and inversion framework to underestimate the release rates 645 

(compensated by its tendency to overestimate the distance between the source and the plume cross-

sections when using a logarithmic cost function) can actually be related to the source release injection 

height (Yacovitch et al., 2020). In the inversion computations, this height is fixed to the actual source 

height zsfor the controlled releases. However, the gas is released with significant velocity and difference 

of temperature relative to the ambient environment, leading to some important rise up ing of the plume to 650 

several meters above the actual release point. Images taken with hyperspectral cameras by other 

participants in the TADI campaign during some of the releases indicated that the released plume had 

significant momentum which caused it to rise by approximately 2-3m (likely up to 10 m for some releases) 

above the actual release points. An estimate ze of the effective injection height accounting for plume rising 

rise (Briggs, 1975) may thus have to be considered in the model. In principle, the inversion could optimize 655 

the injection height estimate ze as well as the release location and rate. However, the problem would be 

too underconstrained for the TADI campaigns given the limited number of plume cross-sections for each 

release, and thus, because of the brevity of the release. Some sensitivity tests (not shown) were conducted 

by increasing incrementally the release height ze in tests identical to those presented in section 5. The 

results show that such an increase can rapidly (after the addition of few meters to zs) yield release rate 660 

estimates that are larger than the actual rates. Precise estimates of the injection height are thus required to 

ensure an improvement of the results presented here. 

Uncertainties in the atmospheric stability and other meteorological and turbulence parameters can be a 

critical source of errors, especially when targeting short releases. Here, the parameterization of the 

Gaussian model relied on meteorological turbulence measurements that can may be poorly representative 665 

of the atmospheric conditions from between the location of the release to and the plume measurement 

cross-sections for some releases. Using the integrals of the gas mole fractions within the plume cross-

sections as observations limits the impact of uncertainties in the horizontal diffusion. However, the 

vertical dispersion is generally more important than the horizontal dispersion and uncertainties in vertical 
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dispersion can significantly impact the inversion of the release rate (Caulton et al., 2018). The strong 670 

underestimation of the CH4 emission in release no. 5 is probably due to a poor representation of the 

atmospheric stability conditions. Mobile measurements taken at different heights simultaneously could 

help overcome such an issue as well as that of the derivation of the release injection height.  

A result from the current shortcomings when applying our inversion technique to the practical test cases 

presented here is the limited ability to extract information on the source location, or to derive precise 675 

estimates for both the locations and rates of the releases, even when exploiting the information from more 

than four plume cross-sections. We showed that this limitation is strongly connected to the lack of weight 

of Jp in our total cost functions in practice. The sources of model errors highlighted above explain it for a 

large part. However, Aa better assessment of the model errors without using the knowledge on the actual 

source rate and location (potentially with the kind of techniques envisaged in Ars et al., 2017) could also 680 

help refine the definition of Jp. The conservative assumption regarding this error that is implicitly made 

in Eq (4) partly explains that J is dominated by Jw and thus the lack of fit to the different plume cross-

sections during a given release. More sensible estimations of the skill ability of the model to simulate the 

amplitude of the peaks lower than 100% could be used to increase the weight of departures from the 

observed amplitudes. 685 

As mentioned earlier, many of the releases during the TADI campaign were conducted under weak wind 

conditions. The Gaussian plume models have limited applicability in such weak wind conditions 

(Thomson and Manning, 2000) even though they are shown to provide reasonable dispersion simulations 

under moderate to strong wind conditions. For practical reasons, the selection of the Gaussian model, 

which is fast and relatively easy to implement and control, appeared to be optimal for the initial tests of 690 

the inversion framework and to the simulatation ofe plumes for a very wide range of potential source 

locations in the inversion scheme. However, in principle, more advanced models like Lagrangian 

dispersion models and/or Computational Fluid Dynamics (CFD) models are more suitable for 

atmospheric dispersion in such extreme meteorological conditions (Tominaga and Stathopoulos, 2013). 

Combining such models with our inversion approach could provide opportunities to account for the 695 

variations of the wind in space and time and for vertical profiles of the releases. CFD models like Large 

Eddy Simulations (LES) Mmodels simulating instantaneous plumes and in particular the turbulence could 

also allow to investigate the width of instantaneous plume cross-sections, which could add some 

significant constraints for the unambiguous estimate of both the rate and location of the releases. 

However, exploiting these potential assets of such models is challenging in practice, and due to their 700 

computational cost of such models, they may be difficult to use for the inversion of the source location. 

A hybrid approach combining both types of modelGaussian models and more complex ones for the joint 

inversion of the source location and rate might be a solution to this problem. 
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7. Conclusions 

In this study, a simple atmospheric inversion modeling framework was developed for the localization and 705 

quantification of unknown CH4 and CO2 emissions releases from point sources based on mobile cgas 

mole fractiononcentration measurements. The inversion framework relies on a local-scale Gaussian 

plume dispersion model and it exploits the position and amplitude of the different gas mole fraction peaks 

plume cross-sections to infer the source locations and rates. We used it to analyze a series of experiments 

with very brief controlled releases of CH4 and CO2 with a covering a wide range of release rates during 710 

the TADI-2018 campaign. These releases were detected and quantified using a series of mobile 

measurement transects across the corresponding plumes made with instruments onboard a car that drove 

along roads around the emission area. Results indicate a 20-30% average error on the estimate of the 

release rates, and ~30-40m average errors in the estimates of the release locations. Considering the 

challenging atmospheric transport and emission conditions during the TADI-2018 campaign, the limited 715 

number of plume cross-sections (typically 2-4) per release, and the limitations of the Gaussian dispersion 

modeling framework to simulate instantaneous mole fractionsplume cross-sections for short durations to 

simulate instantaneous mole fractions, these good inversion results in terms of rates for both CH4 and 

CO2 releases appear to be encouraging. However, some methodological developments seem to be 

required to improve the robustness of the estimates for the release locations. 720 
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