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Abstract. Low-level clouds play a key role in the energy budget and hydrological cycle of the climate system. The accurate 

long-term observation of low-level clouds is essential for understanding their climate effect and model constraints. Both 

ground-based and spaceborne millimeter-wavelength cloud radars can penetrate clouds but the detected low-level clouds are 10 

always contaminated by clutters, which need to be removed. In this study, we develop an algorithm to accurately separate low-

level clouds from clutters for ground-based cloud radar using multi-dimensional probability distribution functions along with 

the Bayesian method. The radar reflectivity, linear depolarization ratio, spectral width, and their dependences on the time of 

the day, height and season are used as the discriminants. A low pass spatial filter is applied to the Bayesian undecided 

classification mask by considering the spatial correlation difference between clouds and clutters. The final feature mask result 15 

has a good agreement with lidar detection, showing a high probability of detection rate (98.45%) and a low false alarm rate 

(0.37%). This algorithm will be used to reliably detect low-level clouds at the Semi-Arid Climate and Environment 

Observatory of Lanzhou University (SACOL) site for the study of their climate effect and the interaction with local abundant 

dust aerosol in semi-arid region. 

1. Introduction 20 

Clouds play a crucial role in the Earth-atmosphere system by reflecting solar radiation back to space and trapping 

outgoing terrestrial radiation (Bony et al., 2015; Fu et al., 2000, 2018; Quaas et al., 2016). Clouds also produce precipitation 
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to release large amounts of latent heat into the atmosphere, compensating the atmospheric radiative cooling, which is 

consequently closely related to the hydrological cycle and global distribution of water resources (Bala et al., 2010; Fu et al., 

2002; Nuijens et al., 2017). Low-level clouds are primarily composed of water droplets and have an overall cooling effect on 25 

the climate system. In the context of global warming, tropical low-level cloud amount decreases because of stronger surface 

turbulent fluxes and dryer planetary boundary layer, generating a positive climate feedback through a reduction in the reflection 

of short-wave radiation (Brient and Bony, 2012; Zhang et al., 2018); While the liquid water path of low-level clouds over mid- 

to high-latitude tends to increase due to a reduced conversion efficiency of liquid water to ice and precipitation, which leads 

to a negative feedback (Ceppi et al., 2016; Terai et al., 2016). However, the magnitude of these low-level cloud feedbacks 30 

responds inconsistently in different climate models, producing a wide range of equilibrium climate sensitivity (Mace and Berry, 

2017; Watanabe et al., 2018; Zelinka et al., 2020). To reduce this uncertainty, accurate long-term observations are important 

to characterize low-level clouds and understand their climate feedbacks (Garrett and Zhao, 2013; Toll et al., 2019; Turner et 

al., 2007).  

The ground-based cloud radars can probe the vertical structure of low-level clouds in high temporal-vertical resolution, 35 

including multi-layer clouds (Kim et al., 2011; van der Linden et al., 2015). Due to substantial progress in the development 

and application of ground-based radars, there are increasing numbers of ground-based millimeter-wavelength cloud radars 

(MMCR) being deployed all over the world (Arulraj and Barros, 2017; Huo et al., 2020; Kollias et al., 2019). Their short 

wavelengths allow the radars to detect clouds with small droplets and infer the microphysical and dynamical cloud processes 

(Kollias et al., 2007a). A Ka-band zenith radar (KAZR) has been continuously running at the Semi-Arid Climate and 40 

Environment Observatory of Lanzhou University (SACOL) since 2013 (Ge et al., 2018, 2019; Huang et al., 2008b) to 

investigate cloud properties over the site. SACOL is located in the downwind dust transport path about 2000 km to the east of 

the Taklimakan Desert (i.e. one of the most important global sources of atmospheric dust) (Ge et al., 2014; Huang et al., 2007; 

Su et al., 2008). Low-level clouds in this semi-arid region with abound dust aerosols acting as cloud condensation nuclei may 

contain a larger number of small droplets (Givati and Rosenfeld, 2004; Huang et al., 2006), which may reflect more short-45 
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wave radiation, merge more slowly to fall as precipitation (Huang et al., 2014; Xue et al., 2008), and thus affect regional energy 

budget and water cycle in specific ways. Therefore, cloud observations are vital to understand their effects on the local fragile 

dryland ecosystem (Fu and Feng, 2014; Huang et al., 2017, 2018, 2020). MMCR-observed cloud echoes in the lowest 3 km 

above ground level (AGL) are often contaminated by unwanted clutters, mostly insects for midlatitude continent (Clothiaux 

et al., 2000), presenting non-Rayleigh scattering at millimeter wavelength with their large physical size, which need to be 50 

removed for the low-level cloud research. 

Clouds and clutters show distinguishable morphologies in radar spectra because insects are point targets with wing beat, 

while clouds are distributed targets. Accordingly, they can be well detected with the radar spectral processing (Luke et al., 

2008; Williams et al., 2018). Clutters are generally more non-spherical than cloud droplets that can lead to a relatively larger 

linear depolarization ratio (LDR) value comparted to clouds, and thus LDR is also a widely used variable in moment data to 55 

separate clouds from clutters (Görsdorf et al., 2015; Martner and Moran, 2001; Oh et al., 2018; Rico-Ramirez and Cluckie, 

2008). Although a simple LDR threshold can remove a large part of the clutters, not all the radar range bins with high LDR 

are clutters. For example, the non-spherical melting hydrometeors also generate a significant LDR peak in the melting layer 

(Kowalewski and Peters, 2010). Furthermore, the threshold fails to separate clutters from hydrometeors when their LDR 

probability density function (PDF) curves are in the overlapping area. Instead of a single LDR threshold, using more attributes 60 

to build multi-dimensional PDFs can adequately describe the different properties of clouds and clutters in multi-dimensional 

space, thereby decrease the overlapping region and reduce the fraction of ambiguous classifications. For instance, Golbon-

Haghighi et al. (2016) used three-dimensional PDFs and two-days training data to successfully identify fixed clutters such as 

buildings and trees for weather radar. The latest CALIPSO cloud aerosol discrimination algorithm uses five different 

parameters to build multi-dimensional PDFs and improves the previous classifications (Liu et al., 2019). However, samples 65 

are more scattered in higher-dimensional space and are less likely to capture the characteristics of various insect clutters, for 

examples, which have unique yet complicated behaviors, using short-term data. To clearly characterize the insect’s behaviors, 

a large amount of long-term training data is required to build an accurate multi-dimensional PDF for such clutters.  
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In this study, we develop a robust algorithm to distinguish low-level clouds from clutters. We first remove the 

background noise, precipitation and melting layer from radar measurement. We then examine cloud radar observations and 70 

select discriminants using radar reflectivity, LDR, and spectral width (SW). Next, we utilize one-year micro-pulse lidar (MPL) 

data to establish the multi-dimensional PDFs for clouds and clutters by noting that lidar is not susceptible to clutters and 

therefore can provide accurate cloud base measurements. The obtained PDFs are used to train the Bayesian classifier which 

can determine whether a radar range gate is a cloud or clutter, by comparing their estimated probabilities. Finally, a low pass 

time-spatial filter is applied to the radar range gates where the Bayesian classifier does not work. Section 2 illustrates radar 75 

and lidar observations. The details of the algorithm are described in Sect. 3. Using the presented method, in Sect. 4, several 

case studies and one-year evaluation are showed. Finally, the summary and discussion are provided in Sect. 5. 

2. Instruments and datasets 

The KAZR at SACOL site (35.57° N, 104.08° E) is a zenith-pointing dual-polarization cloud radar operating at 35 GHz. 

It uses an extended interaction Klystron (EIK) amplifier with a peak power of 2.2 kW. KAZR has a narrow (0.3°) antenna 80 

bandwidth and high temporal (4.27 s) and vertical (30 m) resolutions. The cloud radar has been running continuously since 

2013 and provides radar reflectivity, doppler vertical velocity, and SW in each radar range gate from 0.9 km to 17.6 km AGL. 

The LDR is derived as the ratio of cross-polarized reflectivity to co-polarized reflectivity. More details about the KAZR are 

described in (Ge et al., 2017). In this study, we use radar reflectivity, LDR and SW as discriminants to separate low-level 

clouds and clutters. The vertical velocity is also used to identity precipitation and melting layer to reduce the potential 85 

misclassification. A MPL, working at 527 nm wavelength with 1-min temporal and 30-m vertical resolution, is simultaneously 

running nearby the KAZR (Huang et al., 2008a; Xie et al., 2017; Xin et al., 2019). Since lidar is not susceptible to the clutters, 

the lidar-measured cloud base is accurate, which can be used to establish dependable multi-dimensional PDFs for both clouds 

and clutters. We use one-year lidar data (August 2014 to July 2015) to build the multi-dimensional PDFs to train the Bayesian 

classifier (in Sect. 3.2), and another year data (August 2013 to July 2014) to evaluate the algorithm (in Sect. 4.2). We choose 90 
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the latter year to build the PDFs because there are more observations available in that year.  

3. Low-level cloud and clutter discrimination algorithm 

The algorithm uses radar-observed variables to describe the different characteristics of clouds and clutters. A probability 

of a radar range gate to be a cloud or a clutter is estimated based on the Bayesian method using the pre-established multi-

dimensional PDFs. The step-by-step procedure of the algorithm is summarized in Figure 1. Before constructing multi-95 

dimensional PDFs of cloud and clutter, the radar echoes including background noise, precipitation and melting layer need to 

be removed from radar measurement (Sect. 3.1). We then use the simultaneous lidar measurement to distinguish clouds and 

clutters (Sect. 3.2). Any radar echoes above the lidar cloud base height are considered to be clouds, and below are clutters. 

After the multi-dimensional PDFs are created, the Bayesian method is used to estimate the probability of any given radar 

observation being a cloud or a clutter (Sect. 3.3). Although the multi-dimensional PDFs do provide a more comprehensive 100 

description of the difference, the Bayesian classifier can only discriminate cloud from clutter when all radar discriminants 

(radar reflectivity, LDR and SW) are available. The fact that LDR measurement can merely be derived when both co- and 

cross-polarized reflectivities are available, causes a non-negligible amount of undecided classification. A final time-spatial 

filter is therefore used to identify these radar range gates, considering that clouds are more spatially correlated than clutters 

(Sect. 3.4).  105 

3.1. Removing noise and non-cloud meteorological target 

The radar background noise is firstly removed using the noise equivalent reflectivity (NER) (Kalapureddy et al., 2018), 

that is 𝑟2 × 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒, where 𝑟 is height and 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒  is the noise equivalent reflectivity of the first range gate from the 

bottom. Here we use a 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒  of −60𝑑𝐵𝑍, because it fits the radar noise level well after several trials. Figure 2 shows 

an example of raw and noise-removed reflectivity from local time 12:08 to 12:29 on May 28th, 2014. The reflectivity is 110 

irregularly dispersed below 2.6 km, which is caused by flying insects, while it is distributed more homogeneously inside the 
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cloud layers above 2.6 km (Figure 2a). This is because clutter reflectivity is determined by the size and number of individual 

insects in a radar range gate and is little relevant to its surrounding insects. But the reflectivity inside a cloud is largely 

controlled by environmental variables which is highly spatially correlated. The NER curve (blue dashed line in Figure 2b) fits 

well with the background noise, and almost all the background noise is removed (Figure 2c). Additionally, the slanted cloud 115 

boundary around 4.5 km, the fluctuant cloud boundary that may be caused by gravity wave around 6.4 km, and the broken thin 

cirrus boundary around 9.2 km are all kept (Figure 2a and c). It is obvious that the clutter reflectivity is not necessarily less 

than the cloud reflectivity (Figure 2b). A single threshold of reflectivity cannot adequately separate clouds from clutters, and 

therefore multi-dimensional PDFs are needed to describe their differences. 

The non-cloud meteorological targets in the low-level atmosphere, such as precipitation and melting layer, usually have 120 

different features from cloud droplets. If we put them into the cloud category, it would affect the accuracy of the created PDFs 

to characterize clouds and clutters. Thus, these non-cloud meteorological targets need to be removed before establishing the 

multi-dimensional PDFs. Rain drops are normally larger than cloud droplets and have fast fall velocity, thus radar reflectivity 

and vertical velocity can be used to identify precipitation (Shupe, 2007). In some cases, the radar-measured velocity may be 

erroneously aliased (Kollias et al., 2007b; Zheng et al., 2017) when the naturally occurring velocity is larger than the maximum 125 

unambiguous velocity (𝑉𝑚𝑎𝑥 , ±10.38 m/s for KAZR at SACOL), as shown in Figure 3. From this heavy precipitation event, 

one can see that the radar reflectivity is attenuated above 3 km (Figure 3a). The velocity aliasing happens at the lower level of 

atmosphere where radar measured velocity suddenly reverses from large downwards to large upwards (harsh red area in Figure 

3b and blue dots near the right gray line in Figure 3d). The absolute value of the gate-to-gate velocity difference is used to 

check if velocity is aliased. For aliased velocity, that is when absolute velocity difference exceeds 1.5 × 𝑉𝑚𝑎𝑥 , 2 × 𝑉𝑚𝑎𝑥 is 130 

subtracted from (or added to) the aliased velocity if the velocity difference is positive (or negative) (Johnson et al., 2017; Sokol 

et al., 2018). The adjusted velocity is shown in Figure 3c, where the upwards velocity at the lower level of atmosphere is de-

aliased to downwards (smooth blue region in Figure 3c and orange dots in Figure 3d). The de-aliased velocity and reflectivity 

are then averaged over 1 minute to reduce the effect of wind drift effects to identify precipitation. These range bins with 
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averaged reflectivity greater than 10 dBZ and averaged velocity lesser than −3 m/s are identified as precipitation (Chandra et 135 

al., 2015). However, the drizzle with smaller sizes and lower velocity (Kollias et al., 2011; O’Connor et al., 2005) may not be 

identified by the above method. Thus, the radar echoes that below the lidar detected cloud base, while still being connected to 

the cloud, are marked as drizzle (Wu et al., 2015; Yang et al., 2018), and removed from the training data.  

Water coating ice particles inside the melting layer are largely non-spherical, therefore have high LDR values, similar 

with insects (Brandes and Ikeda, 2004; Islam et al., 2012). This can be seen from Figure 4c. The melting layer around 2.8 km 140 

has relatively higher LDRs than the precipitation below and the ice particles above. Clutters near the surface before the 

precipitation reaching the surface at about 20:30 have similar high LDR values. Clutter layer can appear as high as 3 km AGL 

during daytime in warm season at SACOL site, which is close to or even higher than melting layer height. In order to avoid 

wrongly identifying the melting layer with high LDR as clutters, the melting layer is recognized by analyzing the gradient of 

reflectivity and velocity that has a large value associated with the melting layer (Baldini and Gorgucci, 2006; Matrosov et al., 145 

2007; Perry et al., 2017). The peak of |reflectivity'| × |velocity'| (Figure 4e) is located as the middle of melting layer for each 

identified precipitation profile, then the height of maximum (|reflectivity'| × |velocity'|)'' up to 500 m above (below) the peak 

are defined as the top (bottom) of melting layer as shown in Figure 4e with red dots (Devisetty et al., 2019; Khanal et al., 2019). 

The identified melting layer and precipitation are plotted in Figure 4a-c as black dots and slashed shading area.  

3.2. Creating multi-dimensional PDFs  150 

To capture the differences between clouds and clutters as accurately as possible, we need to choose the appropriate 

discriminants before creating the PDFs for both. From a statistical point of view, the description of differences in higher-

dimensional space is generally more complete than in lower-dimensional space. Increasing the number of discriminants could 

decrease the overlapping region of the two PDFs, thereby reducing the fraction of ambiguous classifications (Liu et al., 2004). 

However, only when the added discriminant is largely independent of the other used, can it improve the classification 155 

significantly (Liu et al., 2009). After carefully examining all radar variables for many specific clutter and cloud cases, we chose 
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radar reflectivity, LDR, SW along with their time-height and seasonal dependence as discriminants. LDR is chosen because it 

has distinct distributions for clouds and clutters due to their shape difference (cloud droplets are largely spherical while clutters 

are non-spherical). Insects’ number density and sizes make them often generate low radar reflectivity, which has a similar 

range with strati and broken cumuli (Luke et al., 2008), but is commonly higher in warm seasons when they swarm (Abrol, 160 

2015). The seasonal dependence of radar reflectivity is considered as a factor to build the PDFs. Clutters also generally have 

lower SW and lower vertical velocity because insects may actively oppose environmental vertical motion and control their 

own flying behavior, while cloud particles are more vulnerable to small-scale local turbulence and entrainment processes 

(Geerts and Miao, 2005). Yet after checking both variables, we found that distributions of SW for clouds and clutters are more 

discrepant than that of vertical velocity, thus SW is used to build the PDFs rather than using vertical velocity directly. One 165 

distinctive character of insects that differs from other fixed clutters is that their behaviors are influenced by many natural 

factors (Chapman et al., 2015; Johnson et al., 2016; Thomas et al., 2003). For example, insects’ number density has a high 

correlation with surface temperature (Luke et al., 2008), thus the maximum height and radar echo intensity of insects have 

strong diurnal cycles (Hubbert et al., 2018; Wood et al., 2009). The time and height variations of radar echoes are thereby 

considered in the construction of multi-dimensional PDFs. 170 

Once the discriminant factors are selected, the cloud and clutter samples need to be extracted for building the multi-

dimensional PDFs. The radar echo above the lidar cloud base height after removing noise and non-cloud meteorological targets 

are considered to be clouds, otherwise are clutters. Based on the lidar auxiliary data, all the radar echoes below 3.6 km from 

August 2014 to July 2015 are separated into cloud or clutter samples. Figs. 5 and 6 show the multi-dimensional PDFs for 

different local time and heights for warm and cold seasons, respectively, which is calculated as the number of samples in each 175 

discriminant range for each class (clouds or clutters), divided by the total number of samples in each discriminant range for all 

classes. After examining one-year data, it is found that 3.6 km AGL is the highest level that clutters can reach at the SACOL 

site. As expected, clutters tend to have lower reflectivity (lower density), larger LDR (non-spherical shape) and lower SW (less 

turbulent motion) compared with cloud (Figure 5 and Figure 6). Insect activities are largely influenced by temperature, thus 
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the clutters appear mostly during daytime and their height has an obvious diurnal cycle. It is also notable that there are no 180 

clutters above 2.7 km during the nighttime (Figure 5c1 and d1, Figure 6c1 and d1). The three radar variables for clouds and 

clutters still have contrasting distributions during cold season. Nevertheless both clouds and clutters occur less frequently 

compared to warm season (Zhu et al., 2017). Note that some overlapping regions of cloud and clutter PDFs still occur (e.g. 

Figure 5b3). However, the multi-dimensional PDFs made the ambiguity area much smaller compared with the results by only 

using a single discriminant. The significant differences between clutter and cloud PDFs (Figs. 5 and 6) can be used to 185 

adequately separate them more accurately.  

3.3. Generating classification mask based on Bayesian method  

The obtained multi-dimension PDFs are then used to train the optimal Bayesian classifier to separate clouds and clutters 

for any observed discriminants (𝑿𝑂). According to Bayesian method, the probability of a radar range gate with discriminants 

𝑿 = 𝑿𝑂 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑂 , 𝐿𝐷𝑅𝑂 , 𝑆𝑊𝑂 , 𝑇𝑖𝑚𝑒𝑂, 𝐻𝑒𝑖𝑔ℎ𝑡𝑂 , 𝑆𝑒𝑎𝑠𝑜𝑛𝑂 being class 𝐶𝑖 , (𝑖 ∈ [𝑐𝑙𝑜𝑢𝑑, 𝑐𝑙𝑢𝑡𝑡𝑒𝑟]) can be estimated 190 

as:  

𝑝(𝐶𝑖|𝑿 = 𝑿𝑂) =
𝑝(𝑿 = 𝑿𝑂|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑿 = 𝑿𝑂)
(1) 

where the priori probabilities are assumed to be equal for all classes (Golbon-Haghighi et al., 2016; Ma et al., 2019), which 

means 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑) = 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟) = 1/2. Furthermore, as 𝑝(𝑿 = 𝑿𝑂) is the same for all classes, hence Eq. (1) can be rewritten 

as 195 

𝑝(𝐶𝑖|𝑿 = 𝑿𝑂) = 𝐾𝑝(𝑿 = 𝑿𝑂|𝐶𝑖) (2) 

where 𝐾 is constant for all classes 

𝐾 =
1

2𝑝(𝑿 = 𝑿𝑂)
(3) 

and 𝑝(𝑿 = 𝑿𝑂|𝐶𝑖) is the conditional probability of discriminants being 𝑿𝑂 for each class, which has been derived from one-

year training data as descript in Sect. 3.2. 200 

For any given observation of discriminants, the posterior probability for each class 𝑝(𝐶𝑖|𝑿 = 𝑿𝑂)  is estimated 
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accordingly and compared to decide its category. The radar range gate belongs to cloud only when 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑|𝑿 = 𝑿𝑂) is larger 

than 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟|𝑿 = 𝑿𝑂). And vice versa, if 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟|𝑿 = 𝑿𝑂) is larger than 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑|𝑿 = 𝑿𝑂), it is considered to be a 

clutter gate. 

3.4. Applying low pass spatial filter to undecided mask 205 

Bayesian classifier is able to separate clouds and clutters in most cases when all the radar discriminants as described in 

Sect. 3.2 and 3.3 are offered. Figure 7 shows such a case from local time 05:00 to 22:00 on September 24th, 2013. 

Unsurprisingly, these radar range bins with low reflectivity (Figure 7a), high LDR (Figure 7c), and low SW (Figure 7d) are 

considered more likely to be clutters rather than clouds (Figure 7e, f and g), while high reflectivity, low LDR and high SW 

have higher probability to be clouds (Figure 7a-g). When the individual three radar variables disagree on the classification, for 210 

example, these clutters from 12:00 to 16:00 near the surface with high reflectivity and high SW (likely to be clouds) and high 

LDR (also likely to be clutters), the Bayesian classifier can still correctly separate them as shown in Figure 7g. However, the 

cloud radar may not always provide valid observations. For example, LDR can only be computed when both co- and cross-

polarized reflectivities are available. Figure 7a and b show the reflectivities of co- and the cross-polarized channels, 

respectively. There are some range gates where co-polarized reflectivity detects signal (cloud or clutter) while no signal is 215 

detected in cross-polarized channel, which causes the missing LDR in these radar range gates (e.g., the rightmost range bins 

above the lidar cloud base and some bins scattering near-surface in Figure 7c). Without the LDR input data, Bayesian classifier 

fails to work (green dots in Figure 7g), because no conditional probability was established for an incomplete 𝑿𝑂 . 

Mathematically, there are several approaches to deal with missing data for Bayesian method, such as assuming a distribution 

of them (Linero and Daniels, 2018). However, in practice, we find it is uneconomical to solve such an issue. Rather, we utilize 220 

the spatial correlation difference between clouds and clutters to process the Bayesian undecided classifications, which is more 

effective and simpler. As mentioned earlier, cloud droplets are highly correlated in time and space, while clutters do not have 

the same feature. For those radar bins that cannot be identified as clouds or clutters from the probability estimate, we use their 
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neighboring range gates to provide information to help make the final decision. A spatial filter with five range bins respecting 

to heigh (150 m) and five range bins concerning time (21.4 s), which is centered at each undecided classification bin, is 225 

employed here (Hu et al., 2020; Marchand et al., 2008). Following Ge et al. (2017), if the number of cloud range bins in the 

box is less than 13, this range bin is considered to be clutter, otherwise it will be marked as a cloud bin. The final classification 

mask result is shown in Figure 7h. Comparing with lidar observation on the same day, the undecided range bins are correctly 

categorized into clutters (green dots turned to brown), and clouds (green dots turned to blue above lidar cloud base) after 

applying the low pass spatial filter. It is clear from Fig. 7h that clutter layer height has an apparent diurnal cycle and the insects’ 230 

number density is much stronger in the early afternoon near the surface (patchy high reflectivity rather dotted low reflectivity). 

This is why time and height are also chosen as the discriminants. 

4. Result 

4.1. Case study 

We apply the identification algorithm to a whole year of radar data to discriminate low-level clouds and clutters. The 235 

results are compared with the simultaneous lidar cloud base to demonstrate the performance of the algorithm.  

Figure 8 shows a case of broken cumulus from local time 16:27 to 17:30 on April 15th, 2014. During this period, a 

substantial presence of insects is observed below the broken cumulus. The top of the insect layer is around 1.6 km, where is 

also the cloud base height detected by lidar and our algorithm (Figure 8d). From the radar reflectivity image in Figure 8a, the 

cloud droplets begin to dissipate due to entrainment (Chernykh et al., 2001; Pinsky and Khain, 2019) and have similar 240 

reflectivity values as clutters (around −50 dBZ) around cloud base. As shown in Figure 8b, clutters have the LDRs mostly 

greater than −15 dB but clouds have relatively smaller LDR values. The high SW above the cloud base (more than 0.4 m2/s2) 

indicates strong turbulence inside the cumulus. Combining all these radar variables together, our clutter identification algorithm 

shows a great agreement with lidar detection (Figure 8d).  

Figure 9 shows a case of stratus clouds embedded in insect layers. The reflectivity inside cloud is similar to the clutter 245 
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reflectivity (between −40 to −20 dBZ), but is distributed more homogeneous in time and space (Figure 9a). Note that for these 

flat clouds, Kalapureddy et al. (2018) used the standard deviation of reflectivity to remove clutters. However, this method 

causes some false positives (cloud is wrongly identified as clutter) around fuzzy cloud edges. The stratus cloud is typically 

more featureless than cumulus (Figure 8) due to the absence of active convective elements (Harrison et al., 2017), and it has 

lower SW values which may fall within the same range as clutters (below 0.4 m2/s2, Figure 9c). Thus, in this case, the LDR 250 

(Figure 9b) and spatial filter in our method made the major contribution to separate them.  

Figure 10 shows a case of precipitating stratocumulus. The drizzle droplets that fall from the cloud base are kept as clouds 

(Figure 10d), since they have relatively small falling velocity and reflectivity, and cannot be recognized as precipitation by the 

algorithm. The edge between clutter and drizzle are blurry in radar reflectivity and SW (Figure 10a and c). Under this 

circumstance, the algorithm identifies the clutters near the surface with large LDR (larger than −15 dB), but keeps the drizzle 255 

as hydrometeors with low pass filter since they are temporal and spatial correlated (Figure 10b). Note that although the bottom 

of identified hydrometeors is coincidental with the top height of clutter layer (Figure 10d), it does not mean that the drizzle 

droplets “suddenly” all evaporate when they fall into the insect layer. The drizzle may still fall toward the ground, however 

the signals are much smaller than that from the insect layer. In other words, the clutter mask does not necessarily mean only 

clutter being in this range bin, rather the backscattered power is largely dominated by insects.  260 

Figure 11 shows a case of broken cumulus and shallow convective clouds under stratus. One can see a few thin clouds 

(less than 300 m) below 1.5 km AGL during 04:30 to 05:10 and some broken cumulus from 04:30 to 04:50 like the case shown 

in Figure 8, but with lower cloud top and base heights (“more deeply buried” in the clutter layer). There may be many insets 

in the cloud, causing the large radar observed LDR, e.g., from 04:30 to 04:40 (greater than −15 dB, Figure 11b), therefore, 

these range gates are classified as clutters by our algorithm (Figure 11d). The clouds, where are less affected by insects from 265 

04:40 to 04:50 (lower LDR than −15 dB and higher SW than 0.4 m2/s2), are identified as cloud no doubt. Note that the 

occurrence of interlaced blocky appearance of classification masks around 04:40 (Figure 11d). There are only little available 

LDR range gates there (Figure 11b), meaning the classification masks are mostly achieved by the spatial filter (Sect. 3.4), 
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which causes some misclassification (e.g., from 04:30 to 04:40) because the spatial correlation of clouds is reduced since they 

are largely contaminated by clutters. During 04:55 to 05:15, a few broken clouds higher away from the clutter layer are 270 

successfully identified by the algorithm, which is in accordance with the MPL lidar detections, indicating the spatial filter does 

work well when clouds are not adjacent to falsely identified masks. The shallow convective clouds after 05:15 are more 

turbulent (SW greater than 0.6 m2/s2, Figure 11c) than these broken cumuli, thus are effectively identified as cloud even with 

dense clutter layer below. We believe the identified cloud mask below lidar cloud base from 05:15 to 05:30 are drizzle particles 

because of the virga reflectivity during that time (Figure 11a).  275 

Figure 12 shows a case of low-level clouds completely surrounded by intense insects. This is the most difficult case to 

discriminate each other, because cloud signals are heavily contaminated by clutters. Figure 12d shows that the identified cloud 

masks correspond well with lidar cloud base during 14:15 to 16:00, owing to lower LDR (less than −15 dB,Figure 12b) and 

higher SW (greater than 0.4 m2/s2, Figure 12c) of the cloud particles. However, the algorithm misses some clouds with low 

SW (around 0.2 m2/s2, Figure 12c) from 16:00 to 16:40. Note that a large amount of LDRs are unavailable for this cloud 280 

(Figure 12b) and its structure is loose (Figure 12a), especially around cloud edges where clutter signals are even stronger than 

cloud. In this circumstance, the algorithm can only identify a part of the cloud.  

Figure 13 shows a case of shallow cumulus near the surface in cold season. Compared with the earlier cases (Figure 8-

12), the clutters in this case are less organized. There is no dense insect layer gathering near the surface. The different behaviors 

of insects in warm and cold seasons are why seasonal variation is chosen as a discriminant. The radar reflectivity in the cumulus 285 

is more homogenous than that from the scattering clutters (Figure 13a) and can easily be identified even though human eyes. 

Shallow cumulus have LDR less than −20 dB whereas clutters have higher LDR greater than −15 dB (Figure 13b). Higher SW 

values (around 0.6 m2/s2, Figure 13c) in the cumulus during 18:00 to 20:30 indicate that the cloud droplets are more affected 

by small-scale local turbulence and entrainment processes. The algorithm can screen out the shallow cumulus in cold season 

and filter out the clutters (Figure 13e). 290 
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4.2. One-year evaluation 

To further objectively demonstrate the performance of this algorithm, probability of detection (𝑃𝐷) and false alarm rate 

(𝑃𝐹𝐴) are calculated using one-year data (August 2013 to July 2014) that are defined as: 

𝑃𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

  𝑃𝐹𝐴 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(4) 

where the number of 𝑇𝑃 (true positives), 𝑇𝑁 (true negatives), 𝐹𝑃 (false positives) and 𝐹𝑁 (false negatives) are based on 295 

our algorithm identified clutter (“positive” of “negative”) validated by lidar detection (“true” or “false” of clutter classification 

mask). Note that the evaluation is focused on the identified clutters rather than low-level clouds, because lidar power is often 

attenuated by optically thick low-level water clouds, leading to a significant discrepancy between radar- and lidar-measured 

low-level clouds, while the “true” or “false” of clutter only relies on lidar cloud base height, which would cause less uncertain 

in the assessment. 300 

Figure 14 illustrates the 𝑃𝐷 and 𝑃𝐹𝐴 as functions of reflectivity (a), LDR (b), SW (c), time (d) and height (e). The 𝑃𝐷 

(solid lines) is usually above 98%, except when reflectivity is larger than −10 dBZ (Figure 14a), LDR lower than −15 dB 

(Figure 14b), or SW larger than 0.2 m2/s2 (Figure 14c), where clutters have similar properties as clouds, however, which are 

only small portions of the whole data as shown in Figure 5 and Figure 6. So the seasonally- and yearly-averaged 𝑃𝐷 are all 

above 98% (Figure 14f). Similarly, for the cloud with reflectivity lower than −30 dBZ (Figure 14a), LDR larger than −20 dB 305 

(Figure 14b), and SW lower than 0.1 m2/s2 (Figure 14c), there are chances that clouds are falsely identified as clutters (higher 

𝑃𝐹𝐴, dashed lines). The 𝑃𝐹𝐴 are below 0.5% in all seasons (Figure 14f). Using a single LDR threshold to filter out clutter 

would induce a sharp increase of 𝑃𝐷  from 0% to 100% at the threshold point. Very different from that, by using multi-

dimensional PDFs with the Bayesian method, it can correctly identify cloud-like clutter and clutter-like cloud, thus increase 

the accuracy of the classification mask. Both 𝑃𝐷 and 𝑃𝐹𝐴 are less fluctuating with time (Figure 14d) and height (Figure 14e) 310 

compared with the three radar variables (Figure 14a-c), except for 𝑃𝐷 above 3.2 km, where the clutter is extremely rare (fewer 

samples). This indicates that the time and height variations of cloud and clutter features are well captured by the multi-
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dimensional PDFs. The 𝑃𝐷 and 𝑃𝐹𝐴 of whole year (black lines) are more consistent with that of warm season (red line), 

because clutters are more frequently appear in warm season. Overall, the one-year evaluation shows that the algorithm can 

successfully filter clutter out with a high value of 𝑃𝐷 (98.45%) and a very low value of 𝑃𝐹𝐴 (0.37%) as shown in Figure 14f.  315 

5. Summary and discussion 

We develop a low-level cloud and clutter discrimination algorithm for a ground-based cloud radar based on multi-

dimensional PDFs with the Bayesian method using cloud radar reflectivity, LDR, SW and their time of the day, height, and 

season dependences as discriminants. A low pass spatial filter is applied to the Bayesian undecided classification mask, 

considering the spatial correlation difference between clouds and clutters. The case studies indicate the algorithm can filter out 320 

most of the clutters while still maintaining the low-level clouds (including drizzle), even when they are embedded in clutter 

layer. Unlike the traditional way by selecting a single LDR threshold to remove the clutter, this algorithm particularly shows 

higher accuracy for clutter-like clouds or cloud-like clutters. The one-year evaluation demonstrates a good performance of this 

algorithm (98.5% detection rate and 0.4% false alarm rate). For the quantitative evaluation, the lidar detected cloud base is 

assumed to be perfectly correct, and the small temporal and spatial offsets between the radar and lidar are assumed to have a 325 

small impact. We conclude that this algorithm satisfactorily retains low-level clouds and removes radar clutter at SACOL site. 

For the non-cloud low-level meteorological target, such as precipitation and melting layer, we use radar observation 

itself to identify them (Chandra et al., 2015; Matrosov et al., 2007). Although it might not be as reliable as the method by 

combining the radar with other instruments such as rain gauge, it would still be enough to effectively reduce the 

misclassification of clutters and clouds. The more accurate estimation of rain rate will be carried out in our future work, along 330 

with this algorithm, used to provide more reliable low-level cloud and precipitation radar data to study its climate effect and 

the interaction with local abundant dust aerosol in semi-arid region.  
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Figure 1. Schematic flow diagram for cloud and clutter discrimination. The right panel (connected by dashed arrow) is only 555 

executed once to train the Bayesian classifier.  
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Figure 2. (a) Raw reflectivity and (c) noise-removed reflectivity from local time 12:08 to 12:29 on May 28th, 2014. (b) 300 

reflectivity profiles of the same duration, the blue dashed line is noise equivalent reflectivity curve.   
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 560 

Figure 3. (a) Reflectivity, (b) radar measured doppler velocity and (c) de-aliased velocity from local time 18:56 to 19:10 on 

August 30th, 2013. (d) Raw and de-aliased velocity profile of the white dashed line in left panels, the gray dashed line is the 

maximum unambiguous velocity (±10.38 m/s for SACOL KAZR). Positive velocity represents upwards velocity.  
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Figure 4. (a) Reflectivity, (b) velocity, and (c) LDR from local time 20:15 to 20:45 on August 10th, 2013. (d) Reflectivity and 565 

velocity, and (e) |reflectivity'| × |velocity'| profile of the white dashed line in left panels. Black dos and slashed shading area in 

left panels are identified melting layer and precipitation. Red dots in (e) are the identified bottom and top of melting layer.  
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Figure 5. The multi-dimensional PDFs of clutters (brown dots) and cloud droplets (blue dots) at local time 06:00-12:00 (column 

a), 12:00-18:00 (column b), 18:00-24:00 (column c) and 00:00-06:00 (column d), and height below 1.8 km (row 3), 1.8-2.7 570 

km (row 2) and 2.7-3.6 km (row 1) in warm season (April to September). The size of dots represents the value of probability 

density.   
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Figure 6. Same as Figure 5, except for cold season (October to March).  575 
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Figure 7. (a) Reflectivity of co-pol, (b) reflectivity of cross-pol, (c) LDR, (d) SW, (e) estimated probability of cloud, (f) 

estimated probability of clutter, (g) classification mask using Bayesian method and (h) classification mask after the spatial 

filter from local time 05:00 to 22:00 on September 24th, 2013. The black dots represent lidar detected cloud base height.  
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Figure 8. (a) Reflectivity, (b) LDR, (c) SW and (d) classification mask from local time 16:27 to 17:31 on April 15th, 2014. The 

black dots are lidar detected cloud base.  
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Figure 9. Same as Figure 8, except for local time 09:25 to 10:25 on October 12th, 2013. 

  585 
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Figure 10. Same as Figure 8, except from local time15:30 to 18:30 on July 7th, 2014.   
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Figure 11. Same as Figure 8, except for local time 04:18 to 05:45 on July 20th, 2014.  
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Figure 12. Same as Figure 8, except for local time 14:16 to 17:00 on August 19th, 2013. 
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Figure 13. Same as Figure 8, except for local time 16:00 to 22:00 on February 4 th, 2014. Note that the lidar observation is 

missed that day.   595 
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Figure 14. Probability of detection (𝑃𝐷, solid line) and false alarm rate (𝑃𝐹𝐴, dashed line) as function of reflectivity (a), LDR 

(b), SW (c), time (d) and height (e) for warm season (red line), cold season (blue line) and whole year (black line). The values 

of 𝑃𝐷 and 𝑃𝐹𝐴 for warm season, cold season and whole year are shown in (f).  


