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Abstract. Low-level clouds play a key role in the energy
budget and hydrological cycle of the climate system. The ac-
curate long-term observation of low-level clouds is essential
for understanding their climate effect and model constraints.
Both ground-based and spaceborne millimeter-wavelength5

cloud radars can penetrate clouds but the detected low-level
clouds are always contaminated by clutter, which needs to
be removed. In this study, we develop an algorithm to ac-
curately separate low-level clouds from clutter for ground-
based cloud radar using multi-dimensional probability distri-10

bution functions along with the Bayesian method. The radar
reflectivity, linear depolarization ratio, spectral width, and
their dependence on the time of the day, height, and season
are used as the discriminants. A low-pass spatial filter is ap-
plied to the Bayesian undecided classification mask by con-15

sidering the spatial correlation difference between clouds and
clutter. The final feature mask result has a good agreement
with lidar detection, showing a high probability of detec-
tion rate (98.45 %) and a low false alarm rate (0.37 %). This
algorithm will be used to reliably detect low-level clouds20

at the Semi-Arid Climate and Environment Observatory of
Lanzhou University (SACOL) site for the study of their
climate effect and the interaction with local abundant dust
aerosol in semi-arid regions.

1 Introduction25

Clouds play a crucial role in the Earth–atmosphere system by
reflecting solar radiation back to space and trapping outgoing
terrestrial radiation (Bony et al., 2015; Fu et al., 2000, 2018;

Quaas et al., 2016). Clouds also produce precipitation to re-
lease large amounts of latent heat into the atmosphere, com- 30

pensating the atmospheric radiative cooling, which is conse-
quently closely related to the hydrological cycle and global
distribution of water resources (Bala et al., 2010; Fu et al.,
2002; Nuijens et al., 2017). Low-level clouds are primarily
composed of water droplets and have an overall cooling ef- 35

fect on the climate system. In the context of global warm-
ing, tropical low-level cloud amount decreases because of
stronger surface turbulent fluxes and drier planetary bound-
ary layer, generating a positive climate feedback through a
reduction in the reflection of shortwave radiation (Brient and 40

Bony, 2012; Zhang et al., 2018), while the liquid water path
of low-level clouds over midlatitudes to high latitudes tends
to increase due to a reduced conversion efficiency of liquid
water to ice and precipitation, which leads to a negative feed-
back (Ceppi et al., 2016; Terai et al., 2016). However, the 45

magnitude of these low-level cloud feedbacks responds in-
consistently in different climate models, producing a wide
range of equilibrium climate sensitivity (Mace and Berry,
2017; Watanabe et al., 2018; Zelinka et al., 2020). To reduce
this uncertainty, accurate long-term observations are impor- 50

tant to characterize low-level clouds and understand their cli-
mate feedbacks (Garrett and Zhao, 2013; Toll et al., 2019;
Turner et al., 2007).

The ground-based cloud radars can probe the vertical
structure of low-level clouds in high temporal–vertical res- 55

olution, including multi-layer clouds (Kim et al., 2011; van
der Linden et al., 2015). Due to substantial progress in the de-
velopment and application of ground-based radars, there are
increasing numbers of ground-based millimeter-wavelength
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cloud radars (MMCRs) being deployed all over the world
(Arulraj and Barros, 2017; Huo et al., 2020; Kollias et al.,
2019). Their short wavelengths allow the radars to detect
clouds with small droplets and infer the microphysical and
dynamical cloud processes (Kollias et al., 2007a). A Ka-5

band zenith radar (KAZR) has been continuously running
at the Semi-Arid Climate and Environment Observatory of
Lanzhou University (SACOL) since 2013 (Ge et al., 2018,
2019; Huang et al., 2008b) to investigate cloud properties
over the site. SACOL is located in the downwind dust trans-10

port path about 2000 km to the east of the Taklimakan Desert
(i.e., one of the most important global sources of atmospheric
dust) (Ge et al., 2014; Huang et al., 2007; Jing Su et al.,
2008). Low-level clouds in this semi-arid region with abound
dust aerosols acting as cloud condensation nuclei may con-15

tain a larger number of small droplets (Givati and Rosenfeld,
2004; Huang et al., 2006), which may reflect more shortwave
radiation, merge more slowly to fall as precipitation (Huang
et al., 2014; Xue et al., 2008) and thus affect the regional
energy budget and water cycle in specific ways. Therefore,20

cloud observations are vital to understand their effects on the
local fragile dryland ecosystem (Fu and Feng, 2014; Huang
et al., 2017, 2018, 2020). MMCR-observed cloud echoes in
the lowest 3 km a.g.l. are often contaminated by unwanted
clutter, mostly insects for midlatitude continents (Clothiaux25

et al., 2000), presenting non-Rayleigh scattering at millime-
ter wavelength with their large physical size, which need to
be removed for the low-level cloud research.

Clouds and clutter show distinguishable morphologies in
radar spectra because insects are point targets with wing beat,30

while clouds are distributed targets. Accordingly, they can
be well detected with the radar spectral processing (Luke
et al., 2008; Williams et al., 2018). Clutter is generally more
non-spherical than cloud droplets, which can lead to a rel-
atively larger linear depolarization ratio (LDR) value com-35

pared to clouds, and thus LDR is also a widely used vari-
able in moment data to separate clouds from clutter (Görs-
dorf et al., 2015; Martner and Moran, 2001; Oh et al.,
2018; Rico-Ramirez and Cluckie, 2008). Although a sim-
ple LDR threshold can remove a large part of the clut-40

ter, not all the radar range bins with high LDR are clut-
ter. For example, the non-spherical melting hydrometeors
also generate a significant LDR peak in the melting layer
(Kowalewski and Peters, 2010). Furthermore, the threshold
fails to separate clutter from hydrometeors when its LDR45

probability density function (PDF) curves are in the over-
lapping area. Instead of a single LDR threshold, using more
attributes to build multi-dimensional PDFs can adequately
describe the different properties of clouds and clutter in
multi-dimensional space and thereby decrease the overlap-50

ping region and reduce the fraction of ambiguous classifi-
cations. For instance, Golbon-Haghighi et al. (2016) used
three-dimensional PDFs and 2 d training data to successfully
identify fixed clutter such as buildings and trees for weather
radar. The latest Cloud-Aerosol Lidar and Infrared Pathfinder55

Satellite Observation (CALIPSO) cloud–aerosol discrimina-
tion algorithm uses five different parameters to build multi-
dimensional PDFs and improves the previous classifications
(Liu et al., 2019). However, samples are more scattered in
higher-dimensional space and are less likely to capture the 60

characteristics of various insect clutter, for example, which
have unique yet complicated behavior, using short-term data.
To clearly characterize the insect’s behavior, a large amount
of long-term training data is required to build an accurate
multi-dimensional PDF for such clutter. 65

In this study, we develop a robust algorithm to distin-
guish low-level clouds from clutter. We first remove the
background noise, precipitation and melting layer from radar
measurement. We then examine cloud radar observations
and select discriminants using radar reflectivity, LDR, and 70

spectral width (SW). Next, we utilize 1-year micropulse li-
dar (MPL) data to establish the multi-dimensional PDFs for
clouds and clutter by noting that lidar is not susceptible to
clutter and therefore can provide accurate cloud base mea-
surements. The obtained PDFs are used to train the Bayesian 75

classifier, which can determine whether a radar range gate is
a cloud or clutter, by comparing their estimated probabilities.
Finally, a low-pass time–space filter is applied to the radar
range gates where the Bayesian classifier does not work. Sec-
tion 2 illustrates radar and lidar observations. The details of 80

the algorithm are described in Sect. 3. Using the presented
method, in Sect. 4, several case studies and a 1-year eval-
uation are shown. Finally, the summary and discussion are
provided in Sect. 5.

2 Instruments and datasets 85

The KAZR at the SACOL site (35.57◦ N, 104.08◦ E) is a
zenith-pointing dual-polarization cloud radar operating at
35 GHz. It uses an extended interaction Klystron (EIK) am-
plifier with a peak power of 2.2 kW. KAZR has a narrow
(0.3◦) antenna bandwidth and high temporal (4.27 s) and 90

vertical (30 m) resolutions. The cloud radar has been run-
ning continuously since 2013 and provides radar reflectivity,
Doppler vertical velocity, and SW in each radar range gate
from 0.9 to 17.6 km a.g.l. The LDR is derived as the ratio of
cross-polarized reflectivity to co-polarized reflectivity. More 95

details about the KAZR are described in Ge et al. (2017).
In this study, we use radar reflectivity, LDR, and SW as dis-
criminants to separate low-level clouds and clutter. The ver-
tical velocity is also used to identity precipitation and melt-
ing layer to reduce the potential misclassification. A MPL, 100

working at 527 nm wavelength with 1 min temporal and 30 m
vertical resolution, is simultaneously running near the KAZR
(Huang et al., 2008a; Xie et al., 2017; Xin et al., 2019). Since
lidar is not susceptible to the clutter, the lidar-measured cloud
base is accurate, which can be used to establish dependable 105

multi-dimensional PDFs for both clouds and clutter. We use
1-year lidar data (August 2014 to July 2015) to build the
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multi-dimensional PDFs to train the Bayesian classifier (in
Sect. 3.2) and another year of data (August 2013 to July
2014) to evaluate the algorithm (in Sect. 4.2). We choose the
latter year to build the PDFs because there are more observa-
tions available in that year.5

3 Low-level cloud and clutter discrimination algorithm

The algorithm uses radar-observed variables to describe
the different characteristics of clouds and clutter. A prob-
ability of a radar range gate to be a cloud or clutter is
estimated based on the Bayesian method using the pre-10

established multi-dimensional PDFs. The step-by-step pro-
cedure of the algorithm is summarized in Fig. 1. Before con-
structing multi-dimensional PDFs of cloud and clutter, the
radar echoes including background noise, precipitation and
melting layer need to be removed from radar measurement15

(Sect. 3.1). We then use the simultaneous lidar measurement
to distinguish clouds and clutter (Sect. 3.2). Any radar echoes
above the lidar cloud base height are considered to be clouds,
and those below are clutter. After the multi-dimensional
PDFs are created, the Bayesian method is used to estimate20

the probability of any given radar observation being a cloud
or clutter (Sect. 3.3). Although the multi-dimensional PDFs
do provide a more comprehensive description of the differ-
ence, the Bayesian classifier can only discriminate clouds
from clutter when all radar discriminants (radar reflectivity,25

LDR and SW) are available. The fact that LDR measurement
can merely be derived when both co- and cross-polarized re-
flectivities are available causes a non-negligible amount of
undecided classification. A final time–space filter is there-
fore used to identify these radar range gates, considering that30

clouds are more spatially correlated than clutter (Sect. 3.4).

3.1 Removing noise and non-cloud meteorological
target

The radar background noise is firstly removed using the
noise-equivalent reflectivity (NER) (Kalapureddy et al.,35

2018), which is r2
×Zstart range, where r is height and

Zstart range is the noise-equivalent reflectivity of the first range
gate from the bottom. Here, we use a Zstart range of −60dBZ,
because it fits the radar noise level well after several trials.
Figure 2 shows an example of raw and noise-removed reflec-40

tivity from 12:08 to 12:29 LT on 28 May 2014. The reflectiv-
ity is irregularly dispersed below 2.6 km, which is caused by
flying insects, while it is distributed more homogeneously in-
side the cloud layers above 2.6 km (Fig. 2a). This is because
clutter reflectivity is determined by the size and number of45

individual insects in a radar range gate and is hardly rele-
vant to its surrounding insects. But the reflectivity inside a
cloud is largely controlled by environmental variables which
are highly spatially correlated. The NER curve (dashed blue
line in Fig. 2b) fits well with the background noise, and al-50

Figure 1. Schematic flow diagram for cloud and clutter discrimina-
tion. The right panel (connected by dashed arrows) is only executed
once to train the Bayesian classifier.

most all the background noise is removed (Fig. 2c). Addition-
ally, the slanted cloud boundary around 4.5 km, the fluctuant
cloud boundary that may be caused by gravity waves around
6.4 km, and the broken thin cirrus boundary around 9.2 km
are all kept (Fig. 2a and c). It is obvious that the clutter re- 55

flectivity is not necessarily lower than the cloud reflectivity
(Fig. 2b). A single threshold of reflectivity cannot adequately
separate clouds from clutter, and therefore multi-dimensional
PDFs are needed to describe their differences.

The non-cloud meteorological targets in the low-level at- 60

mosphere, such as precipitation and melting layer, usually
have different features from cloud droplets. If we put them
into the cloud category, it would affect the accuracy of the
created PDFs to characterize clouds and clutter. Thus, these
non-cloud meteorological targets need to be removed before 65

establishing the multi-dimensional PDFs. Raindrops are nor-
mally larger than cloud droplets and have fast fall veloc-
ity; thus, radar reflectivity and vertical velocity can be used
to identify precipitation (Shupe, 2007). In some cases, the
radar-measured velocity may be erroneously aliased (Kol- 70

lias et al., 2007b; Zheng et al., 2017) when the naturally
occurring velocity is larger than the maximum unambigu-
ous velocity (Vmax, ±10.38 ms−1 for KAZR at SACOL), as
shown in Fig. 3. From this heavy precipitation event, one
can see that the radar reflectivity is attenuated above 3 km 75

(Fig. 3a). The velocity aliasing happens at the lower level
of atmosphere, where radar-measured velocity suddenly re-
verses from large downwards to large upwards (dark red area
in Fig. 3b and blue dots near the right gray line in Fig. 3d).
The absolute value of the gate-to-gate velocity difference 80

is used to check if velocity is aliased. For aliased velocity,
that is when absolute velocity difference exceeds 1.5×Vmax,
2×Vmax is subtracted from (or added to) the aliased veloc-
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Figure 2. (a) Raw reflectivity and (c) noise-removed reflectivity from 12:08 to 12:29 LT on 28 May 2014. (b) The 300 reflectivity profiles of
the same duration; the dashed blue line is noise-equivalent reflectivity curve.

ity if the velocity difference is positive (or negative) (John-
son et al., 2017; Sokol et al., 2018). The adjusted velocity is
shown in Fig. 3c, where the upwards velocity at the lower
level of atmosphere is de-aliased to downwards (smooth blue
region in Fig. 3c and orange dots in Fig. 3d). The de-aliased5

velocity and reflectivity are then averaged over 1 min to re-
duce the effect of wind drift. These range bins with averaged
reflectivity greater than 10 dBZ and averaged velocity lower
than −3 ms−1 are identified as precipitation (Chandra et al.,
2015). However, the drizzle with smaller sizes and lower ve-10

locity (Kollias et al., 2011; O’Connor et al., 2005) may not be
identified by the above method. Thus, the radar echoes that
below the lidar-detected cloud base, while still being con-
nected to the cloud, are marked as drizzle (Wu et al., 2015;
Yang et al., 2018) and removed from the training data.15

Water-coated ice particles inside the melting layer are
largely non-spherical; therefore, they have high LDR val-
ues, similar to insects (Brandes and Ikeda, 2004; Islam et al.,
2012). This can be seen in Fig. 4c. The melting layer around

2.8 km has relatively higher LDRs than the precipitation be- 20

low and the ice particles above. Clutter near the surface be-
fore the precipitation reaches the surface at about 20:30 LT
has similar high LDR values. Clutter layer can appear as
high as 3 kma.g.l. during daytime in the warm season at the
SACOL site, which is close to or even higher than melt- 25

ing layer height. In order to avoid wrongly identifying the
melting layer with high LDR as clutter, the melting layer
is recognized by analyzing the gradient of reflectivity and
velocity that has a large value associated with the melting
layer (Baldini and Gorgucci, 2006; Matrosov et al., 2007; 30

Perry et al., 2017). The peak of |reflectivity′| × |velocity′|
(Fig. 4e) is located as the middle of the melting layer for each
identified precipitation profile; then the height of maximum
(|reflectivity′| × |velocity′|)′′ up to 500 m above (below) the
peak is defined as the top (bottom) of melting layer as shown 35

in Fig. 4e with red dots (Devisetty et al., 2019; Khanal et al.,
2019). The identified melting layer and precipitation are plot-
ted in Fig. 4a–c as black dots and the slashed shading area.
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Figure 3. (a) Reflectivity, (b) radar-measured Doppler velocity, and (c) de-aliased velocity from 18:56 to 19:10 LT on 30 August 2013. (d)
Raw and de-aliased velocity profile of the dashed white line in the left panels; the dashed gray line is the maximum unambiguous velocity
(±10.38 ms−1 for SACOL KAZR). Positive velocity represents upwards velocity.

3.2 Creating multi-dimensional PDFs

To capture the differences between clouds and clutter as ac-
curately as possible, we need to choose the appropriate dis-
criminants before creating the PDFs for both. From a statis-
tical point of view, the description of differences in higher-5

dimensional space is generally more complete than in lower-
dimensional space. Increasing the number of discriminants
could decrease the overlapping region of the two PDFs,
thereby reducing the fraction of ambiguous classifications
(Liu et al., 2004). However, only when the added discrimi-10

nant is largely independent of the other used, can it improve
the classification significantly (Liu et al., 2009). After care-
fully examining all radar variables for many specific clut-
ter and cloud cases, we chose radar reflectivity, LDR, and
SW along with their time–height and seasonal dependence15

as discriminants. LDR is chosen because it has distinct dis-
tributions for clouds and clutter due to their shape difference
(cloud droplets are largely spherical, while clutter is non-
spherical). Insects’ number density and sizes make them of-
ten generate low radar reflectivity, which has a similar range20

with strati and broken cumuli (Luke et al., 2008) but is com-

monly higher in the warm seasons when they swarm (Abrol,
2015). The seasonal dependence of radar reflectivity is con-
sidered as a factor to build the PDFs. Clutter also generally
has lower SW and lower vertical velocity because insects 25

may actively oppose environmental vertical motion and con-
trol their own flying behavior, while cloud particles are more
vulnerable to small-scale local turbulence and entrainment
processes (Geerts and Miao, 2005). Yet after checking both
variables, we found that distributions of SW for clouds and 30

clutter are more discrepant than that of vertical velocity; thus,
SW is used to build the PDFs rather than using vertical ve-
locity directly. One distinctive characteristic of insects that
differs from other fixed clutter is that their behavior is influ-
enced by many natural factors (Chapman et al., 2015; John- 35

son et al., 2016; Thomas et al., 2003). For example, insects’
number density has a high correlation with surface tempera-
ture (Luke et al., 2008); thus, the maximum height and radar
echo intensity of insects have strong diurnal cycles (Hubbert
et al., 2018; Wood et al., 2009). The time and height varia- 40

tions of radar echoes are thereby considered in the construc-
tion of multi-dimensional PDFs.
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Figure 4. (a) Reflectivity, (b) velocity, and (c) LDR from 20:15 to 20:45 LT on 10 August 2013. (d) Reflectivity and velocity, and (e)
|reflectivity′| × |velocity′| profile of the dashed white line in panels (a–b). Black dots and the slashed shading area in panels (a–c) are the
identified melting layer and precipitation. Red dots in panel (e) are the identified bottom and top of the melting layer.

Once the discriminant factors are selected, the cloud and
clutter samples need to be extracted for building the multi-
dimensional PDFs. The radar echoes above the lidar cloud
base height after removing noise and non-cloud meteorolog-
ical targets are considered to be clouds; otherwise, they are5

clutter. Based on the lidar auxiliary data, all the radar echoes
below 3.6 km from August 2014 to July 2015 are separated
into cloud or clutter samples. Figures 5 and 6 show the multi-
dimensional PDFs for different local times and heights for
the warm and cold seasons, respectively, which is calculated10

as the number of samples in each discriminant range for each
class (clouds or clutter), divided by the total number of sam-
ples in each discriminant range for all classes. After exam-
ining 1-year data, it is found that 3.6 kma.g.l. is the highest
level that clutter can reach at the SACOL site. As expected,15

clutter tends to have lower reflectivity (lower density), larger
LDR (non-spherical shape) and lower SW (less turbulent mo-
tion) compared with clouds (Figs. 5 and 6). Insect activities
are largely influenced by temperature; thus, the clutter ap-
pears mostly during daytime and its height has an obvious20

diurnal cycle. It is also notable that there is no clutter above
2.7 km during nighttime (Figs. 5c1, d1 and 6c1, d1). The
three radar variables for clouds and clutter still have con-

trasting distributions during the cold season. Nevertheless,
both clouds and clutter occur less frequently compared to the 25

warm season (Zhu et al., 2017). Note that some overlapping
regions of cloud and clutter PDFs still occur (e.g., Fig. 5b3).
However, the multi-dimensional PDFs made the ambiguity
area much smaller compared with the results by only using a
single discriminant. The significant differences between clut- 30

ter and cloud PDFs (Figs. 5 and 6) can be used to adequately
separate them more accurately.

3.3 Generating classification mask based on Bayesian
method

The obtained multi-dimensional PDFs are then used to train 35

the optimal Bayesian classifier to separate clouds and clutter
for any observed discriminants (XO). According to Bayesian
method, the probability of a radar range gate with dis-
criminants X =XO

= ReflectivityO, LDRO, SWO, timeO,
heightO, seasonO being class Ci, (i ∈ [cloud, clutter]) can be 40

estimated as

p
(
Ci |X =XO

)
=

p
(
X =XO

|Ci

)
p(Ci)

p
(
X =XO) , (1)
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Figure 5. The multi-dimensional PDFs of clutter (brown dots) and cloud droplets (blue dots) at 06:00–12:00 (column a), 12:00–18:00
(column b), 18:00–24:00 (column c), and 00:00–06:00 LT (column d), and height below 1.8 km (row 3), 1.8–2.7 km (row 2) and 2.7–3.6 km
(row 1) in the warm season (April to September). The size of dots represents the value of probability density.

where the priori probabilities are assumed to be equal
for all classes (Golbon-Haghighi et al., 2016; Ma et al.,
2019), which means p(Ccloud)= p(Cclutter)= 1/2. Further-
more, p(X =XO) is the same for all classes; hence, Eq. (1)
can be rewritten as5

p
(
Ci |X =XO

)
=Kp

(
X =XO

|Ci

)
, (2)

where K is constant for all classes

K =
1

2p
(
X =XO) , (3)

and p(X =XO
|Ci) is the conditional probability of discrim-

inants being XO for each class, which has been derived from10

1-year training data as described in Sect. 3.2.
For any given observation of discriminants, the posterior

probability for each class p(Ci |X =XO) is estimated ac-
cordingly and compared to decide its category. The radar
range gate belongs to clouds only when p(Ccloud|X =15

XO) is larger than p(Cclutter|X =XO). And vice versa, if
p(Cclutter|X =XO) is larger than p(Ccloud|X =XO), it is
considered to be a clutter gate.

3.4 Applying a low-pass spatial filter to undecided
mask 20

The Bayesian classifier is able to separate clouds and clutter
in most cases when all the radar discriminants as described in
Sect. 3.2 and 3.3 are offered. Figure 7 shows such a case from
05:00 to 22:00 LT on 24 September 2013. Unsurprisingly,
these radar range bins with low reflectivity (Fig. 7a), high 25

LDR (Fig. 7c), and low SW (Fig. 7d) are considered more
likely to be clutter rather than clouds (Fig. 7e, f and g), while
high reflectivity, low LDR, and high SW have higher prob-
ability to be clouds (Fig. 7a–g). When the individual three
radar variables disagree on the classification, for example, 30

this clutter from 12:00 to 16:00 LT near the surface with high
reflectivity and high SW (likely to be clouds) and high LDR
(also likely to be clutter), the Bayesian classifier can still cor-
rectly separate them, as shown in Fig. 7g. However, the cloud
radar may not always provide valid observations. For exam- 35

ple, LDR can only be computed when both co- and cross-
polarized reflectivities are available. Figure 7a and b show
the reflectivities of co- and the cross-polarized channels, re-
spectively. There are some range gates where co-polarized
reflectivity detects signal (cloud or clutter), while no signal 40

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–17, 2021
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Figure 6. Same as Fig. 5 but for the cold season (October to March).

is detected in the cross-polarized channel, which causes the
missing LDR in these radar range gates (e.g., the rightmost
range bins above the lidar cloud base and some bins scat-
tering near-surface in Fig. 7c). Without the LDR input data,
the Bayesian classifier fails to work (green dots in Fig. 7g),5

because no conditional probability was established for an in-
complete XO. Mathematically, there are several approaches
to deal with missing data for the Bayesian method, such as
assuming a distribution of them (Linero and Daniels, 2018).
However, in practice, we find it is uneconomical to solve10

such an issue. Rather, we utilize the spatial correlation differ-
ence between clouds and clutter to process the Bayesian un-
decided classifications, which is more effective and simpler.
As mentioned earlier, cloud droplets are highly correlated in
time and space, while clutter does not have the same feature.15

For those radar bins that cannot be identified as clouds or
clutter from the probability estimate, we use their neighbor-
ing range gates to provide information to help make the final
decision. A spatial filter with five range bins respecting to
height (150 m) and five range bins concerning time (21.4 s),20

which is centered at each undecided classification bin, is em-
ployed here (Hu et al., 2020; Marchand et al., 2008). Fol-
lowing Ge et al. (2017), if the number of cloud range bins
in the box is less than 13, this range bin is considered to be
clutter; otherwise, it will be marked as a cloud bin. The fi-25

nal classification mask result is shown in Fig. 7h. Comparing
with lidar observation on the same day, the undecided range
bins are correctly categorized into clutter (green dots turned
to brown) and clouds (green dots turned to blue above li-
dar cloud base) after applying the low-pass spatial filter. It is 30

clear from Fig. 7h that clutter layer height has an apparent di-
urnal cycle and the insects’ number density is much stronger
in the early afternoon near the surface (patchy high reflectiv-
ity rather than dotted low reflectivity). This is why time and
height are also chosen as the discriminants. 35

4 Result

4.1 Case study

We apply the identification algorithm to a whole year of
radar data to discriminate low-level clouds and clutter. The
results are compared with the simultaneous lidar cloud base 40

to demonstrate the performance of the algorithm.
Figure 8 shows a case of broken cumulus from 16:27 to

17:30 LT on 15 April 2014. During this period, a substan-
tial presence of insects is observed below the broken cu-
mulus. The top of the insect layer is around 1.6 km, where 45

there is also the cloud base height detected by lidar and
our algorithm (Fig. 8d). From the radar reflectivity image in

Atmos. Meas. Tech., 14, 1–17, 2021 https://doi.org/10.5194/amt-14-1-2021
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Figure 7. (a) Reflectivity of co-polarized (co-pol), (b) reflectivity of cross-polarized (cross-pol), (c) LDR, (d) SW, (e) estimated probability
of cloud, (f) estimated probability of clutter, (g) classification mask using the Bayesian method, and (h) classification mask after the spatial
filter from 05:00 to 22:00 LT on 24 September 2013. The black dots represent lidar-detected cloud base height.

Fig. 8a, the cloud droplets begin to dissipate due to entrain-
ment (Chernykh et al., 2001; Pinsky and Khain, 2019) and
have similar reflectivity values as clutter (around −50 dBZ)
around the cloud base. As shown in Fig. 8b, clutter has the
LDRs mostly greater than −15 dB but clouds have relatively5

smaller LDR values. The high SW above the cloud base
(more than 0.4 m2 s−2) indicates strong turbulence inside the
cumulus. Combining all these radar variables together, our
clutter identification algorithm shows a great agreement with
lidar detection (Fig. 8d).10

Figure 9 shows a case of stratus clouds embedded in insect
layers. The reflectivity inside clouds is similar to the clut-
ter reflectivity (between −40 to −20 dBZ) but is distributed
more homogeneously in time and space (Fig. 9a). Note that
for these flat clouds, Kalapureddy et al. (2018) used the stan-15

dard deviation of reflectivity to remove clutter. However,
this method causes some false positives (clouds are wrongly
identified as clutter) around fuzzy cloud edges. The stratus
cloud is typically more featureless than the cumulus (Fig. 8)
due to the absence of active convective elements (Harrison20

et al., 2017), and it has lower SW values which may fall
within the same range as clutter (below 0.4 m2 s−2; Fig. 9c).
Thus, in this case, the LDR (Fig. 9b) and spatial filter in our
method made the major contribution to separate them.

Figure 10 shows a case of precipitating stratocumulus. 25

The drizzle droplets that fall from the cloud base are kept
as clouds (Fig. 10d), since they have relatively small falling
velocity and reflectivity, and cannot be recognized as pre-
cipitation by the algorithm. The edges between clutter and
drizzle are blurry in radar reflectivity and SW (Fig. 10a and 30

c). Under this circumstance, the algorithm identifies the clut-
ter near the surface with large LDR (larger than −15 dB) but
keeps the drizzle as hydrometeors with a low-pass filter since
they are temporally and spatially correlated (Fig. 10b). Note
that although the bottom of identified hydrometeors is coin- 35

cidental with the top height of the clutter layer (Fig. 10d), it
does not mean that the drizzle droplets “suddenly” all evap-
orate when they fall into the insect layer. The drizzle may
still fall toward the ground; however, the signals are much
smaller than that from the insect layer. In other words, the 40

clutter mask does not necessarily mean only clutter can be
in this range bin; rather, the backscattered power is largely
dominated by insects.

Figure 11 shows a case of broken cumulus and shallow
convective clouds under stratus. One can see a few thin 45

clouds (less than 300 m) below 1.5 kma.g.l. during 04:30
to 05:10 LTTS1 and some broken cumulus from 04:30 to
04:50 LT like the case shown in Fig. 8 but with lower cloud
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Figure 8. (a) Reflectivity, (b) LDR, (c) SW, and (d) classification
mask from 16:27 to 17:31 LT on 15 April 2014. The black dots are
lidar-detected cloud base.

top and base heights (“more deeply buried” in the clut-
ter layer). There may be many insets in the cloud, causing
the large radar-observed LDR, e.g., from 04:30 to 04:40 LT
(greater than −15 dB; Fig. 11b); therefore, these range gates
are classified as clutter by our algorithm (Fig. 11d). The5

clouds, which are less affected by insects from 04:40 to
04:50 LT (lower LDR than −15 dB and higher SW than
0.4 m2 s−2), are identified as clouds without doubt. Note the
occurrence of interlaced blocky appearance of classification
masks around 04:40 LT (Fig. 11d). There are only few avail-10

able LDR range gates there (Fig. 11b), meaning the clas-
sification masks are mostly achieved by the spatial filter
(Sect. 3.4), which causes some misclassification (e.g., from
04:30 to 04:40 LT) because the spatial correlation of clouds is
reduced since they are largely contaminated by clutter. Dur-15

ing 04:55 to 05:15 LT, a few broken clouds higher away from
the clutter layer are successfully identified by the algorithm,
which is in accordance with the MPL lidar detection, indi-
cating the spatial filter does work well when clouds are not
adjacent to falsely identified masks. The shallow convective20

clouds after 05:15 LT are more turbulent (SW greater than
0.6 m2 s−2; Fig. 11c) than these broken cumuli; thus, they
are effectively identified as clouds even with a dense clutter

Figure 9. Same as Fig. 8 but for 09:25 to 10:25 LT on 12 October
2013.

layer below. We believe the identified cloud masks below li-
dar cloud base from 05:15 to 05:30 LT are drizzle particles 25

because of the virga reflectivity during that time (Fig. 11a).
Figure 12 shows a case of low-level clouds completely sur-

rounded by intense insects. This is the most difficult case
to discriminate, because cloud signals are heavily contami-
nated by clutter. Figure 12d shows that the identified cloud 30

masks correspond well with lidar cloud base during 14:15 to
16:00 LT, due to lower LDR (less than −15 dB; Fig. 12b)
and higher SW (greater than 0.4 m2 s−2; Fig. 12c) of the
cloud particles. However, the algorithm misses some clouds
with low SW (around 0.2 m2 s−2; Fig. 12c) from 16:00 to 35

16:40 LT. Note that a large number of LDRs are unavailable
for this cloud (Fig. 12b) and its structure is loose (Fig. 12a),
especially around cloud edges where clutter signals are even
stronger than clouds. In this circumstance, the algorithm can
only identify a part of the cloud. 40

Figure 13 shows a case of shallow cumulus near the sur-
face in the cold season. Compared with the earlier cases
(Figs. 8–12), the clutter in this case is less organized. There
is no dense insect layer gathering near the surface. The dif-
ferent behavior of insects in the warm and cold seasons is 45

why seasonal variation is chosen as a discriminant. The radar
reflectivity in the cumulus is more homogenous than that
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Figure 10. Same as Fig. 8 but from 15:30 to 18:30 LT on 7 July
2014.

from the scattering clutter (Fig. 13a) and can easily be identi-
fied even through human eyes. Shallow cumulus clouds have
LDR of less than −20 dB, whereas clutter has higher LDR
greater than −15 dB (Fig. 13b). Higher SW values (around
0.6 m2 s−2; Fig. 13c) in the cumulus during 18:00 to 20:30 LT5

indicate that the cloud droplets are more affected by small-
scale local turbulence and entrainment processes. The algo-
rithm can screen out the shallow cumulus in the cold season
and filter out the clutter (Fig. 13e).

4.2 The 1-year evaluation10

To further objectively demonstrate the performance of this
algorithm, probability of detection (PD) and false alarm rate
(PFA) are calculated using 1-year data (August 2013 to July
2014) that are defined as

PD =
TP

TP+FN

PFA =
FP

FP+TN
, (4)15

where the number of TP (true positives), TN (true negatives),
FP (false positives) and FN (false negatives) is based on our
algorithm-identified clutter (“positive” of “negative”) vali-

Figure 11. Same as Fig. 8 but for 04:18 to 05:45 LT on 20 July
2014.

dated by lidar detection (“true” or “false” clutter classifica-
tion mask). Note that the evaluation is focused on the identi- 20

fied clutter rather than low-level clouds, because lidar power
is often attenuated by optically thick low-level water clouds,
leading to a significant discrepancy between radar- and lidar-
measured low-level clouds, while the “true” or “false” clutter
only relies on lidar cloud base height, which would cause less 25

uncertainty in the assessment.
Figure 14 illustrates the PD and PFA as functions of reflec-

tivity (a), LDR (b), SW (c), time (d), and height (e). The PD
(solid lines) is usually above 98 %, except when reflectivity
is larger than −10 dBZ (Fig. 14a), LDR lower than −15 dB 30

(Fig. 14b), or SW larger than 0.2 m2 s−2 (Fig. 14c), where
clutter has similar properties to clouds, however, which are
only small portions of the whole dataset, as shown in Figs. 5
and 6. So the seasonally and yearly averaged PD values are
all near or above 98 % (Fig. 14f). Similarly, for the cloud with 35

reflectivity lower than −30 dBZ (Fig. 14a), LDR larger than
−20 dB (Fig. 14b), and SW lower than 0.1 m2 s−2 (Fig. 14c),
there are chances that clouds are falsely identified as clut-
ter (higher PFA, dashed lines). The PFA values are below
0.5 % in all seasons (Fig. 14f). Using a single LDR thresh- 40

old to filter out clutter would induce a sharp increase of
PD from 0 % to 100 % at the threshold point. Very differ-
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Figure 12. Same as Fig. 8 but for 14:16TS2 to 17:00 LT on 19 Au-
gust 2013.

ent from that, by using multi-dimensional PDFs with the
Bayesian method, it can correctly identify cloud-like clut-
ter and clutter-like cloud; thus, they increase the accuracy of
the classification mask. Both PD and PFA are less fluctuat-
ing with time (Fig. 14d) and height (Fig. 14e) compared with5

the three radar variables (Fig. 14a–c), except for PD above
3.2 km, where the clutter is extremely rare (fewer samples).
This indicates that the time and height variations of cloud and
clutter features are well captured by the multi-dimensional
PDFs. The PD and PFA of the whole year (black lines) are10

more consistent with that of warm season (red line), because
clutter more frequently appears in the warm season. Overall,
the 1-year evaluation shows that the algorithm can success-
fully filter clutter out with a high value of PD (98.45 %) and
a very low value of PFA (0.37 %), as shown in Fig. 14f.15

5 Summary and discussion

We develop a low-level cloud and clutter discrimination al-
gorithm for a ground-based cloud radar based on multi-
dimensional PDFs with the Bayesian method using cloud
radar reflectivity, LDR, SW, and their time of the day, height,20

and season dependence as discriminants. A low-pass spa-

Figure 13. Same as Fig. 8 but for 16:00 to 22:00 LT on 4 February
2014. Note that the lidar observation is missed that day.

tial filter is applied to the Bayesian undecided classification
mask, considering the spatial correlation difference between
clouds and clutter. The case studies indicate the algorithm
can filter out most of the clutter while still maintaining the 25

low-level clouds (including drizzle), even when they are em-
bedded in clutter layer. Unlike the traditional way of select-
ing a single LDR threshold to remove the clutter, this al-
gorithm particularly shows higher accuracy for clutter-like
clouds or cloud-like clutter. The 1-year evaluation demon- 30

strates the good performance of this algorithm (98.5 % de-
tection rate and 0.4 % false alarm rate). For the quantitative
evaluation, the lidar-detected cloud base is assumed to be
perfectly correct, and the small temporal and spatial offsets
between the radar and lidar are assumed to have a small im- 35

pact. We conclude that this algorithm satisfactorily retains
low-level clouds and removes radar clutter at the SACOL
site.

For the non-cloud low-level meteorological target, such as
precipitation and melting layer, we use radar observation it- 40

self to identify them (Chandra et al., 2015; Matrosov et al.,
2007). Although it might not be as reliable as the method
by combining the radar with other instruments such as rain
gauge, it would still be enough to effectively reduce the mis-
classification of clutter and clouds. The more accurate esti- 45
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Figure 14. Probability of detection (PD, solid line) and false alarm rate (PFA, dashed line) as function of reflectivity (a), LDR (b), SW (c),
time (d), and height (e) for the warm season (red line), cold season (blue line), and whole year (black line). The values of PD and PFA for
the warm season, cold season, and whole year are shown in panel (f).

mation of rain rate will be carried out in our future work,
along with this algorithm, used to provide more reliable low-
level cloud and precipitation radar data to study its climate
effect and the interaction with local abundant dust aerosol in
semi-arid regions.5
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