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Abstract. Low-level clouds play a key role in the energy budget and hydrological cycle of the climate system. The long-term 

and accurate observation of low-level clouds is essential for understanding their climate effect and model constraints. Both 

ground-based and spaceborne millimeter-wavelength cloud radars can penetrate clouds but the detected low-level clouds are 10 

always contaminated by clutters, which needs to be removed. In this study, we develop an algorithm to accurately separate 

low-level clouds from clutters for ground-based cloud radar using multi-dimensional probability distribution functions along 

with the Bayesian method. The radar reflectivity, linear depolarization ratio, spectral width and their dependences on the time 

of the day, height and season are used as the discriminants. A low pass spatial filter is applied to the Bayesian undecided 

classification mask, considering the spatial correlation difference between clouds and clutters. The resulting feature mask 15 

shows a good agreement with lidar detection, which has a high probability of detection rate (98.45%) and a low false alarm 

rate (0.37%). This algorithm will be used to reliably detect low-level clouds at the Semi-Arid Climate and Environment 

Observatory of Lanzhou University (SACOL) site, to study their climate effect and the interaction with local abundant dust 

aerosol in semi-arid region. 

1. Introduction 20 

Clouds play a crucial role in the Earth-atmosphere system by reflecting solar radiation back to space and trapping 

outgoing terrestrial radiation (Bony et al., 2015; Fu et al., 2000, 2018; Quaas et al., 2016). Clouds also produce precipitation 
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to release large amounts of latent heat into the atmosphere, compensating the atmospheric radiative cooling, which are 

consequently closely related to the hydrological cycle and global distribution of water resources (Bala et al., 2010; Fu et al., 

2002; Nuijens et al., 2017). Low-level clouds are primarily composed of water droplets and have an overall cooling effect on 25 

the climate system. In the context of global warming, tropical low-level cloud amount decreases because of stronger surface 

turbulent fluxes and dryer planetary boundary layer, generating a positive climate feedback through a reduction in the reflection 

of short-wave radiation (Brient and Bony, 2012; Zhang et al., 2018); While the liquid water path of low-level clouds over mid- 

to high-latitude tends to increase due to a reduced conversion efficiencies of liquid water to ice and precipitation, which leads 

to a negative feedback (Ceppi et al., 2016; Terai et al., 2016). However, the magnitude of these low-level cloud feedbacks 30 

responds inconsistently in different climate models, producing a wide range of equilibrium climate sensitivity (Watanabe et 

al., 2018; Zelinka et al., 2020; Mace and Berry, 2017). To reduce this uncertainty, accurate long-term observations are 

important to characterize low-level clouds and understand their climate feedbacks (Turner et al., 2007; Garrett and Zhao, 2013; 

Toll et al., 2019).  

The ground-based cloud radars can probe the vertical structure of low-level clouds in high temporal-vertical resolution, 35 

including multi-layer clouds (Kim et al., 2011; van der Linden et al., 2015). Due to substantial progress in the development 

and application of ground-based radars, there are increasing numbers of ground-based millimeter cloud radars being deployed 

all over the word (Arulraj and Barros, 2017; Kollias et al., 2019; Huo et al., 2020). Their short wavelengths allow the radars 

to detect clouds with small droplets and infer the microphysical and dynamical cloud processes (Kollias et al., 2007a). A Ka-

band zenith radar (KAZR) has been continuously running at the Semi-Arid Climate and Environment Observatory of Lanzhou 40 

University (SACOL) since 2013 (Huang et al., 2008b; Ge et al., 2018, 2019) to investigate cloud properties over the site. 

SACOL is located in the downwind dust transport path about 2000 km to the east of the Taklimakan Desert (i.e. one of the 

most important global sources of atmospheric dust) (Su et al., 2008; Huang et al., 2007; Ge et al., 2014). Low-level clouds in 

this semi-arid region with abound dust aerosols acting as cloud condensation nuclei may contain a larger number of small 

droplets (Givati and Rosenfeld, 2004; Huang et al., 2006), which may reflect more short-wave radiation, merge more slowly 45 
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to fall as precipitation (Xue et al., 2008; Huang et al., 2014), and thus affect regional energy budget and water cycle in a 

specific way. Therefore cloud observations are vital to understand their effects on the local fragile dryland ecosystem (Fu and 

Feng, 2014; Huang et al., 2017, 2018, 2020). MMCR-observed cloud echoes in the lowest 3 km above ground level (AGL) 

are often contaminated by unwanted clutters, mostly insects for midlatitude continent (Clothiaux et al., 2000), presenting non-

Rayleigh scattering at millimeter wavelength with their large physical size, which need to be removed for the low-level cloud 50 

research. 

The most distinctive feature of clutter is the non-spherical shape, which causes larger linear depolarization ratio (LDR) 

values than that of low-level cloud droplets. Thus, a threshold of LDR can be used to separate clutters from cloud droplets. 

For instance, Görsdorf et al. (2015) chose a threshold of −20 dB in German, Zheng et al. (2016) used −16 dB in Tibetan Plateau, 

and Oh et al. (2018) took −15 dB in Korea to achieve the purpose. Although the simple threshold can remove a large part of 55 

the clutters, not all the radar range bins with high LDR are necessarily clutters. For example, the non-spherical melting 

hydrometeors also generate a significant LDR peak in the melting layer (Kowalewski and Peters, 2010). Furthermore, the 

threshold fails to separate clutters from hydrometeors when their LDR probability density function (PDF) curves are in the 

overlapping area. Instead of a single LDR threshold, using more attributes to build multi-dimensional PDFs can adequately 

describe the different properties of clouds and clutters in multi-dimensional space, thereby decrease the overlapping region 60 

and reduce the fraction of ambiguous classifications. For instance, Golbon-Haghighi et al. (2016) used three-dimensional PDFs 

and two-days training data to successfully identify fixed clutters such as buildings and trees for weather radar. The latest 

CALIPSO cloud aerosol discrimination algorithm uses five different parameters to build multi-dimensional PDFs and 

improves the previous classifications (Liu et al., 2019). However, samples are more scattered in the higher-dimensional space 

and are less likely to capture the characteristics of various insect clutters, for examples, which have unique yet complicated 65 

behaviors, using short-term data. To clearly characterize the insect’s behaviors, a large amount of long-term training data is 

required to build an accurate multi-dimensional PDF for such clutters.  

In this study, we develop a robust algorithm to distinguish low-level clouds from clutters. We first remove the 
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background noise, precipitation and melting layer from radar measurement. We then examine cloud radar observations and 

select discriminants using radar reflectivity, LDR, and spectral width (SW). Next, we utilize one-year micro pulse lidar (MPL) 70 

data to establish the multi-dimensional PDFs for clouds and clutters by noting that lidar is not susceptible to clutters and 

therefore can provide accurate cloud base measurements. The obtained PDFs are used to train the Bayesian classifier which is 

able to determine whether a radar range gate is cloud or clutter, by comparing their estimated probabilities. Finally, a low pass 

time-spatial filter is applied to the radar range gates where the Bayesian classifier does not work. Section 2 illustrates radar 

and lidar observations. The details of the algorithm are described in Sect. 3. Using the presented method, in Sect. 4, several 75 

case studies and one-year evaluation are showed. Finally, the summary and discussion are provided in Sect. 5. 

2. Instruments and datasets 

The KAZR at SACOL site (35.57° N, 104.08° E) is a zenith-pointing dual-polarization cloud radar operating at 35 GHz. 

It uses an extended interaction Klystron (EIK) amplifier with a peak power of 2.2 kW. KAZR has a narrow (0.3°) antenna 

bandwidth and high temporal (4.27 s) and vertical (30 m) resolutions. The cloud radar has been running continuously since 80 

2013 and provides radar reflectivity, doppler vertical velocity, and SW in each radar range gate from 0.9 km to 17.6 km AGL. 

The LDR is derived as the ratio of cross-polarized reflectivity to co-polarized reflectivity. More details about the KAZR are 

described in (Ge et al., 2017). In this study, we use radar reflectivity, LDR and SW as discriminants to separate low-level 

clouds and clutters. The vertical velocity is also used to identity precipitation and melting layer to reduce the potential 

misclassification. A micro pules lidar (MPL), working at 527 nm wavelength with 1-min temporal and 30-m vertical resolution, 85 

is simultaneously running near by the KAZR (Huang et al., 2008a; Xie et al., 2017; Xin et al., 2019). Since lidar is not 

susceptible to the clutters, the lidar-measured cloud base is accurate, which can be used to establish dependable multi-

dimensional PDFs for both clouds and clutters. We use one-year lidar data (August 2014 to July 2015) to build the multi-

dimensional PDFs to train the Bayesian classifier (in Sect. 3.2), and another year data (August 2013 to July 2014) to evaluate 

the algorithm (in Sect. 4.2). We choose the later year to build the PDFs because there are more observations available in that 90 
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year, which helps build reliable PDFs.  

3. Low-level cloud and clutter discrimination algorithm 

The algorithm uses radar-observed variables to describe the different characteristics of clouds and clutters. A probability 

of a radar range gate to be a cloud or clutter is estimated based on the Bayesian method using the pre-established multi-

dimensional PDFs. The step-by-step procedure of the algorithm is summarized in Figure 1. Before constructing multi-95 

dimensional PDFs of cloud and clutter, the radar echoes including background noise, precipitation and melting layer need to 

be removed from radar measurement (Sect. 3.1). We then use the simultaneous lidar measurement to distinguish clouds and 

clutters (Sect. 3.2). Any radar echoes above the lidar cloud base height are considered to be clouds, and the below are clutters. 

After the multi-dimensional PDFs are created, the Bayesian method is used to estimate the probability of any given radar 

observation being cloud or clutter (Sect. 3.3). Although the multi-dimensional PDFs do provide more comprehensive 100 

description of the difference, the Bayesian classifier can only discriminate cloud from clutter when all radar discriminants 

(radar reflectivity, LDR and SW) are given. The fact that LDR measurement can merely be derived when both co- and cross-

polarized reflectivities are available, causes non-negligible amount of undecided classification. A final time-spatial filter is 

therefore used to identify these radar range gates, considering that clouds are more spatially correlated than clutter (Sect. 3.4).  

3.1. Removing noise and non-cloud meteorological target 105 

The radar background noise is firstly removed using the noise equivalent reflectivity (NER) (Kalapureddy et al., 2018), 

that is 𝑟2 × 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒, where 𝑟 is height and 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒  is the noise equivalent reflectivity of the first range gate from the 

bottom. Here we use a 𝑍𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒  of −60𝑑𝐵𝑍, because it fits the radar noise level well after several trials. Figure 2 shows 

an example of raw and noise-removed reflectivity from local time 12:08 to 12:29 on May 28th, 2014. The reflectivity is 

irregularly dispersed below 2.6 km, which is caused by flying insects, while it is distributed more homogeneously inside the 110 

cloud layers above 2.6 km (Figure 2a). This is because clutter reflectivity is determined by the size and number of individual 
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insects in a radar range gate and is little relevant to its surrounding insects. But the reflectivity inside a cloud is largely 

controlled by environmental variables which is highly spatially correlated. The NER curve (blue dashed line in Figure 2b) fits 

well with the background noise, and almost all the background noise is removed (Figure 2c). Additionally, the flat cloud 

boundary around 4.5 km, the fluctuant cloud boundary that may be caused by gravity wave around 6.4 km, and the broken thin 115 

cirrus boundary around 9.2 km are all kept (Figure 2a and c). It is obvious that the clutter reflectivity is not necessarily less 

than the cloud reflectivity (Figure 2b). A single threshold of reflectivity cannot adequately separate clouds from clutters, and 

therefore multi-dimensional PDFs are needed to describe their differences. 

The non-cloud meteorological targets in the low-level atmosphere, such as precipitation and melting layer, usually have 

different features from cloud droplets. If we put them into the cloud category, it would affect the accuracy of the created PDFs 120 

to characterize clouds and clutters. Thus, these non-cloud meteorological targets need to be removed before establishing the 

multi-dimensional PDFs. Rain drops are normally larger than cloud droplets and have fast fall velocity, thus radar reflectivity 

and vertical velocity can be used to identify precipitation (Shupe, 2007). In some cases, the radar-measured velocity may be 

erroneously aliased (Kollias et al., 2007b; Zheng et al., 2017) when the naturally occurring velocity is larger than the maximum 

unambiguous velocity (𝑉𝑚𝑎𝑥 , ±10.38 m/s for KAZR at SACOL), as shown in Figure 3. From this heavy precipitation event, 125 

one can see that the radar reflectivity is attenuated above 3 km (Figure 3a). The velocity aliasing happens at the lower level of 

atmosphere where radar measured velocity suddenly reverses from large downwards to large upwards (harsh red area in Figure 

3b and blue dots near the right gray line in Figure 3d). The absolute value of the gate-to-gate velocity difference is used to 

check if velocity is aliased. For aliased velocity, that is when absolute velocity difference exceeds 1.5 × 𝑉𝑚𝑎𝑥 , 2 × 𝑉𝑚𝑎𝑥 is 

subtracted from (or added to) the aliased velocity if the velocity difference is positive (or negative) (Johnson et al., 2017; Sokol 130 

et al., 2018). The adjusted velocity is shown in Figure 3c, where the upwards velocity at the lower level of atmosphere is de-

aliased to downwards (smooth blue region in Figure 3c and orange dots in Figure 3d). The de-aliased velocity and reflectivity 

are then averaged over 1 minute to reduce the effect of wind drift effects to identify precipitation. These range bins with 

averaged reflectivity greater than −10 dBZ and averaged velocity lesser than −3 m/s are identified as precipitation (Chandra et 
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al., 2015). However, the drizzle with smaller sizes and lower velocity (O’Connor et al., 2005; Kollias et al., 2011) may not be 135 

identified by the above method. Thus, the radar echoes that below the lidar detected cloud base, while still being connected to 

the cloud, are marked as drizzle (Wu et al., 2015; Yang et al., 2018), and removed from the training data.  

Water coating ice particles inside the melting layer are largely non-spherical, therefore have high LDR values, similar 

with insects (Islam et al., 2012; Brandes and Ikeda, 2004). This can be seen from Figure 4c. The melting layer at around 2.8 

km has relatively higher LDRs than the precipitation below and ice particles above. Clutters near the surface before the 140 

precipitation reaching the surface at about 20:30 have similar high LDR values. Clutter layer can appear as high as 3 km AGL 

during daytime in warm season at SACOL site, which is close to or even higher than melting layer height. In order to avoid 

wrongly identifying the melting layer with high LDR as clutters, the melting layer is recognized by analyzing the gradient of 

reflectivity and velocity that has a large value associated with the melting layer (Matrosov et al., 2007; Baldini and Gorgucci, 

2006; Perry et al., 2017). The peak of reflectivity' × velocity' (Figure 4e) is located as the middle of melting layer for each 145 

identified precipitation profile, then the height of maximum (reflectivity' × velocity')' up to 500 m above (below) the peak are 

defined as the top (bottom) of melting layer as shown in Figure 4e with red dots (Khanal et al., 2019; Devisetty et al., 2019). 

The identified melting layer and precipitation are plotted in Figure 4a-c as black dots and gray shading area.  

3.2. Creating multi-dimensional PDFs  

To capture the differences between clouds and clutters as accurately as possible, we need to choose the appropriate 150 

discriminants before creating the PDFs for both. From a statistical point of view, the description of differences in higher-

dimensional space is generally more complete than in lower-dimensional space. Increasing the number of discriminants could 

decrease the overlapping region of the two PDFs, thereby reducing the fraction of ambiguous classifications (Liu et al., 2004). 

However, only when the added discriminant is largely independent of the other used, can it improve the classification 

significantly (Liu et al., 2009). After carefully examining all radar variables for many specific clutter and cloud cases, we chose 155 

radar reflectivity, LDR, SW along with their time-height and seasonal dependence as discriminants. LDR is chosen because it 
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has discrepant distributions for cloud and clutter due to their shape difference (cloud droplets are largely spherical while clutters 

are non-spherical). Insects’ number density and sizes make them often generate low radar reflectivity, which has a similar 

range with strati and broken cumuli (Luke et al., 2008), but is commonly higher in warm seasons when they swarm (Abrol, 

2015). The seasonal dependence of radar reflectivity is considered as a factor to build the PDFs. Clutters also generally have 160 

lower SW and lower vertical velocity because insects may actively oppose environmental vertical motion and control their 

own flying behavior, while cloud particles are more vulnerable to small-scale local turbulence and entrainment processes 

(Geerts and Miao, 2005). Yet after checking both variables, we found that distributions of SW for clouds and clutters are more 

discrepant than that of vertical velocity, thus SW is used to build the PDFs rather than using vertical velocity directly. One 

distinctive character of insect that differs from other fixed clutter is that their behaviors are influenced by many natural factors 165 

(Thomas et al., 2003; Johnson et al., 2016; Chapman et al., 2015). For example, insects’ number density has a high correlation 

with surface temperature (Luke et al., 2008), thus the maximum height and radar echo intensity of insects have strong diurnal 

cycles (Wood et al., 2009; Hubbert et al., 2018). The time and height variations of radar echoes are thereby considered in the 

construction of multi-dimensional PDFs. 

Once the discriminant factors are selected, the cloud and clutter samples need to be extracted for building the multi-170 

dimensional PDFs. The radar echo above the lidar cloud base height after removing noise and non-cloud meteorological targets 

are considered to be clouds, otherwise are clutters. Based on the lidar auxiliary data, all the radar echoes below 3.6 km from 

August 2014 to July 2015 are separated into cloud or clutter samples. Figs. 5 and 6 show the multi-dimensional PDFs for 

different local time and heights for warm and cold seasons, respectively. After examining one-year data, it is found that 3.6 km 

AGL is the highest level that clutters can reach at the SACOL site. As expected, clutters tend to have lower reflectivity (lower 175 

density), larger LDR (non-spherical shape) and lower SW (less turbulent motion) compared with cloud (Figure 5 and Figure 

6). Insect activities are largely influenced by temperature, thus the clutter appears mostly during daytime and its height has an 

obvious diurnal cycle. It is also notable that there are no clutters above 2.7 km during the nighttime (Figure 5c1 and d1, Figure 

6c1 and d1). The three radar variables for cloud and clutter still have contrasting distributions during cold season. Nevertheless 
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both cloud and clutter occur less frequently compared to warm season (Zhu et al., 2017). Note that some overlapping regions 180 

of cloud and clutter PDFs still occur (e.g. Figure 5b3). However, the multi-dimensional PDFs made the ambiguity area much 

smaller compared with the results by only using a single discriminant. The significant differences between clutter and cloud 

PDFs (Figs. 5 and 6) can be used to adequately separate them more accurately.  

3.3. Generating classification mask based on Bayesian method  

The obtained multi-dimension PDFs are then used to train the optimal Bayesian classifier to separate clouds and clutters 185 

for any observed discriminants (𝑿𝑂). According to Bayesian method, the probability of a radar range gate with discriminants 

𝑿 = 𝑿𝑂 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑂 , 𝐿𝐷𝑅𝑂 , 𝑆𝑊𝑂 , 𝑇𝑖𝑚𝑒𝑂, 𝐻𝑒𝑖𝑔ℎ𝑡𝑂 , 𝑆𝑒𝑎𝑠𝑜𝑛𝑂 being class 𝐶𝑖 , (𝑖 ∈ [𝑐𝑙𝑜𝑢𝑑, 𝑐𝑙𝑢𝑡𝑡𝑒𝑟]) can be estimated 

as:  

𝑝(𝐶𝑖|𝑿 = 𝑿𝑂) =
𝑝(𝑿 = 𝑿𝑂|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑿 = 𝑿𝑂)
(1) 

where the priori probabilities are assumed to be equal for all classes (Ma et al., 2019; Golbon-Haghighi et al., 2016), which 190 

means 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑) = 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟) = 1/2. Furthermore, as 𝑝(𝑿 = 𝑿𝑂) is the same for all classes, hence Eq. (1) can be rewritten 

as 

𝑝(𝐶𝑖|𝑿 = 𝑿𝑂) = 𝐾𝑝(𝑿 = 𝑿𝑂|𝐶𝑖) (2) 

where 𝐾 is constant for all classes 

𝐾 =
1

2𝑝(𝑿 = 𝑿𝑂)
(3) 195 

and 𝑝(𝑿 = 𝑿𝑂|𝐶𝑖) is the conditional probability of discriminants being 𝑿𝑂 for each class, which has been derived from one-

year training data as descript in Sect. 3.2. 

For any given observation of discriminants, the posterior probability for each class 𝑝(𝐶𝑖|𝑿 = 𝑿𝑂)  is estimated 

accordingly and compared to decide its category. The radar range gate belongs to cloud only when 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑|𝑿 = 𝑿𝑂) is larger 

than 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟|𝑿 = 𝑿𝑂). And vice versa, if 𝑝(𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟|𝑿 = 𝑿𝑂) is larger than 𝑝(𝐶𝑐𝑙𝑜𝑢𝑑|𝑿 = 𝑿𝑂), it is considered to be a 200 

clutter gate. 
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Figure 7e, f and g show an example of estimated probabilities from Bayesian classifier, and classification mask from 

local time 05:00 to 22:00 on September 24th, 2013. Unsurprisingly, these radar range bins with low reflectivity (Figure 7a), 

high LDR (Figure 7c), and low SW (Figure 7d) are considered more likely to be clutters rather than clouds (Figure 7e, f and 

g), while the high reflectivity, low LDR and high SW correspond with higher probability of being clouds (Figure 7a-g). When 205 

the individual three radar variables disagree on the classification, for example, these clutter from 12:00 to 16:00 near the 

surface with high reflectivity and high SW (likely to be clouds) and high LDR (also likely to be clutter), the Bayesian classifier 

can still correctly separate them as shown in Figure 7g. Note that the green dots in Figure 7g represents undecided classification 

mask by Bayesian classifier, which may be caused by the two equal probabilities, but more likely, the absence of either. The 

undecided mask will be discussed in Sect. 3.4.  210 

3.4. Applying low pass spatial filter to undecided mask 

Bayesian classifier is able to separate clouds and clutter in most cases when all the radar discriminants as described in 

Sect. 3.2 and 3.3 are offered. However, the cloud radar may not always provide valid observations. For example, LDR can 

only be computed when both co- and cross-polarized reflectivities are available. Figure 7a and b show the reflectivities of co- 

and the cross-polarized channels, respectively. There are some range gates where co-polarized reflectivity detected signal 215 

(cloud or clutter) while no signal detected in cross-polarized channel, which causes the missing LDR in these radar range gates 

(e.g., the rightmost range bins above the lidar cloud base and some bins scattering near-surface in Figure 7c). Without the LDR 

input data, Bayesian classifier fails to work (green dots in Figure 7g), because no conditional probability was established for 

an incomplete 𝑿𝑂 . Mathematically, there are several approaches to deal with missing data for Bayesian method, such as 

assuming a distribution of them (Linero and Daniels, 2018). However, in practice, we find it is uneconomical to solve such 220 

issue. Rather, we utilize the spatial correlation difference between clouds and clutters to process the Bayesian undecided 

classifications, which is more effective and simpler. As mentioned earlier, cloud droplets are highly correlated in time and 

space, while clutters do not have the same feature. For those radar bins cannot be identified as cloud or clutter from the 
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probability estimate, we use the neighboring range gates to provide information to help make the final decision. A spatial filter 

with five range bins in vertical and five range bins in the horizontal, which is centered at each undecided classification bin, is 225 

employed here (Marchand et al., 2008; Hu et al., 2020). Following Ge et al. (2017), if the number of cloud range bins in the 

box is less than 13, this range bin is considered to be clutter, otherwise it will be marked as a cloud bin. The final classification 

mask result is shown in Figure 7h. Comparing with lidar observation on the same day, the undecided range bins are correctly 

categorized into clutters (green dots turned to brown), and clouds (green dots turned to blue above lidar cloud base) after 

applying the low pass spatial filter. It is clear from Fig. 7h that clutter layer height has an apparent diurnal cycle and the insects’ 230 

number density is much stronger in the early afternoon near the surface (patchy high reflectivity rather dotted low reflectivity). 

This is why time and height are also chosen as the discriminants. 

4. Result 

4.1. Case study 

We apply the identification algorithm to a whole year of radar data to discriminate low-level cloud and clutter 235 

discrimination. The results are compared with the simultaneous lidar cloud base to demonstrate the performance of the 

algorithm.  

Figure 8 shows a case of broken cumulus from local time 16:27 to 17:30 on April 15th, 2014. During this period, a 

substantial presence of insects is observed below the broken cumulus. The top of the insect layer is around 1.6 km, where is 

also the cloud base height observed by lidar and detected by our algorithm (Figure 8d). From the radar reflectivity image in 240 

Figure 8a, the cloud droplets begin to dissipate due to entrainment (Chernykh et al., 2001; Pinsky and Khain, 2019) and have 

similar reflectivity values as clutters (around −50 dBZ) around cloud base. As shown in Figure 8b, clutters have the LDRs 

mostly greater than −15 dB but cloud has relatively smaller LDR values. The high SW above the cloud base (more than 0.4 

m2/s2) indicates strong turbulence inside the cumulus. Combining all these radar variables together, our clutter identification 

algorithm shows a great agreement with lidar detection (Figure 8d).  245 
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Figure 9 shows a case of stratus clouds embedded in insect layers. The reflectivity inside cloud is similar to the clutter 

reflectivity (between −40 to −20 dBZ), but is distributed more homogeneous in time and space (Figure 9a). Note that for these 

flat clouds, Kalapureddy et al. (2018) used the standard deviation of reflectivity to remove clutter. However, this method causes 

some false positives (cloud is wrongly identified as clutter) around fuzzy cloud edges. The stratus cloud typically is more 

featureless than cumulus (Fig. 8) due to the absence of active convective elements (Harrison et al., 2017), and it has lower SW 250 

values which may fall within the same range as clutter (below 0.4 m2/s2, Figure 9c). Thus, in this case, the LDR (Figure 9b) 

and spatial filter in our method made the major contribution to separate them.  

Figure 10 shows a case of precipitating stratocumulus. The drizzle droplets that fall from the cloud base are kept as clouds 

(Figure 10d), since they have relatively small falling velocity and reflectivity, and cannot be recognized as precipitation by the 

algorithm. The edge between clutter and drizzle are blurry in radar reflectivity and SW (Figure 10a and c). Under this 255 

circumstance, the algorithm identifies the clutter near the surface with large LDR (larger than −15 dB), but keeps the drizzle 

as hydrometeors with low pass filter since they are temporal and spatial correlated (Figure 10b). Note that although the bottom 

of identified hydrometeors is coincidental with the top height of clutter layer (Figure 10d), it does not mean that the drizzle 

droplets “suddenly” all evaporate when they fall into the insect layer. The drizzle may still fall toward the ground, however 

the signals are much smaller than that from the insect layer. In other words, the clutter mask does not necessarily mean only 260 

clutter being in this range bin, rather the backscattered power is largely dominated by insects. 

Figure 11 shows a case of shallow cumulus near the surface in cold season. Compared with the earlier three cases (Figure 

8-10), the clutter in this case is less organized. There is no dense insect layer gathering near the surface. The different behaviors 

of insects in warm and cold season (Figure 8-10 vs Figure 11) are why seasonal variation is chosen as a discriminant. The radar 

reflectivity in the cumulus is more homogenous than the scattering clutter (Figure 11a) and can easily be identified even though 265 

human eyes. Shallow cumulus has LDR less than −20 dB whereas clutter has higher LDR greater than −15 dB (Figure 11b). 

Higher SW values (around 0.3 m2/s2, Figure 11c) in the cumulus indicate that the cloud droplets are more affected by small-

scale local turbulence and entrainment processes. The algorithm is able to screen out the shallow cumulus in cold season and 
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filter out the clutter (Figure 11e). 

4.2. One-year evaluation 270 

To further objectively demonstrate the performance of this algorithm, probability of detection (𝑃𝐷) and false alarm rate 

(𝑃𝐹𝐴) are calculated using one-year data (August 2013 to July 2014) that are defined as: 

𝑃𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑃𝐹𝐴 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(4) 

where the number of 𝑇𝑃 (true positives), 𝑇𝑁 (true negatives), 𝐹𝑃 (false positives) and 𝐹𝑁 (false negatives) are based on 

our algorithm identified clutter (“positive” of “negative”) validated by lidar detection (“true” or “false” of clutter classification 275 

mask). Note that the evaluation is focused on the identified clutters rather than low-level clouds, because lidar power is often 

attenuated by optically thick low-level water clouds, leading to a significant discrepancy between radar- and lidar-measured 

low-level clouds, while the “true” or “false” of clutter only relies on lidar cloud base height, which would cause less uncertain 

in the assessment. 

Figure 12 illustrates the 𝑃𝐷 and 𝑃𝐹𝐴 as functions of reflectivity (a), LDR (b), SW (c), time (d) and height (e). The 𝑃𝐷 280 

(solid lines) is usually above 98%, except when reflectivity is larger than −10 dBZ (Figure 12a), LDR lower than −15 dB 

(Figure 12b), or SW larger than 0.2 m2/s2 (Figure 12c), where clutters have similar properties as clouds. From Figure 5 and 

Figure 6, one can see that these are only small portions of the data. So the seasonally- and yearly-averaged 𝑃𝐷 are all above 

98% (Figure 12f). Similarly, for the cloud with reflectivity lower than −30 dBZ (Figure 12a), LDR larger than −20 dB (Figure 

12b), and SW lower than 0.1 m2/s2 (Figure 12c), there are chances that clouds are falsely identified as clutters (higher 𝑃𝐹𝐴, 285 

dashed lines). The 𝑃𝐹𝐴 are below 0.5% in all seasons (Figure 12f). Using a single LDR threshold to filter out clutter would 

induce a sharp increase of 𝑃𝐷 from 0% to 100% at the threshold point. Very different from that, by using multi-dimensional 

PDFs with the Bayesian method, it can correctly identify cloud-like clutter and clutter-like cloud, thus increase the accuracy 

of the classification mask. Both 𝑃𝐷 and 𝑃𝐹𝐴 are less fluctuating with time (Figure 12d) and height (Figure 12e) compared 

with the three radar variables (Figure 12a-c), except for 𝑃𝐷 above 3.5 km, where the clutter is extremely rare (fewer samples). 290 
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This indicates that the time and height variations of cloud and clutter features are well captured by the multi-dimensional PDFs. 

The 𝑃𝐷 and 𝑃𝐹𝐴 of whole year (black lines) are more consistent with that of warm season (red line), because clutters are more 

frequently appear in warm season. Overall, the one-year evaluation shows that the algorithm can successfully filter clutter out 

with a high value of 𝑃𝐷 (98.45%) and a very low value of 𝑃𝐹𝐴 (0.37%) as shown in Figure 12f.  

5. Summary and discussion 295 

We develop a low-level cloud and clutter discrimination algorithm for a ground-based cloud radar based on multi-

dimensional PDFs with the Bayesian method using cloud radar reflectivity, LDR, SW and their time of the day, height and 

season dependences as discriminants. A low pass spatial filter is applied to the Bayesian undecided classification mask, 

considering the spatial correlation difference between clouds and clutters. The case studies indicate the algorithm can filter out 

most of the clutter while still maintaining the low-level clouds (including drizzle), even when they are embedded in clutter 300 

layer. Unlike the traditional way by selecting a single LDR threshold to remove the clutter, this algorithm particularly shows 

higher accuracy for clutter-like cloud or cloud-like clutter. The one-year evaluation demonstrates a good performance of this 

algorithm (98.5% detection rate and 0.4% false alarm rate). For the quantitative evaluation, the lidar detected cloud base is 

assumed to be perfectly correct, and the small temporal and spatial offsets between the radar and lidar are assumed to have 

small impact. We conclude that this algorithm satisfactorily retains low-level clouds and removes radar clutter at SACOL site. 305 

For the non-cloud low-level meteorological target, such as precipitation and melting layer, we use radar observation 

itself to identify them (Chandra et al., 2015; Matrosov et al., 2007). Although it might not be as reliable as the method by 

combining the radar with other instruments such as rain gauge, it would still be enough to effectively reduce the 

misclassification of clutter and clouds. The more accurate estimation of rain rate will be carried out in our future work, along 

with this algorithm, used to provide more reliable low-level cloud and precipitation radar data to study its climate effect and 310 

the interaction with local abundant dust aerosol in semi-arid region.  
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Figure 1. Schematic flow diagram for cloud and clutter discrimination. The right panel (connected by dashed arrow) is only 

executed once to train the Bayesian classifier.  530 
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Figure 2. (a) Raw reflectivity and (c) noise-removed reflectivity from local time 12:08 to 12:29 on May 28th, 2014. (b) 300 

reflectivity profiles of the same duration, the blue dashed line is noise equivalent reflectivity curve.   
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Figure 3. (a) Reflectivity, (b) radar measured doppler velocity and (c) de-aliased velocity from local time 18:56 to 19:10 on 535 

August 30th, 2013. (d) Raw and de-aliased velocity profile of the white dashed line in left panels, the gray dashed line is the 

maximum unambiguous velocity (±10.38 m/s for SACOL KAZR). Positive velocity represents upwards velocity.  
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Figure 4. (a) Reflectivity, (b) velocity, and (c) LDR from local time 20:15 to 20:45 on August 10th, 2013. (d) Reflectivity and 

velocity, and (e) reflectivity' × velocity' profile of the white dashed line in left panels. Black dos and gray shading area in left 540 

panels are identified melting layer and precipitation. Red dots in (e) are the identified bottom and top of melting layer.  
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Figure 5. The multi-dimensional PDFs of clutters (brown dots) and cloud droplets (blue dots) at local time 06:00-12:00 (column 

a), 12:00-18:00 (column b), 18:00-24:00 (column c) and 00:00-06:00 (column d), and height below 1.8 km (row 3), 1.8-2.7 

km (row 2) and 2.7-3.6 km (row 1) in warm season (April to September). The size of dots represents the value of probability 545 

density.   
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Figure 6. Same as Figure 5, except for cold season (October to March).  
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 550 

Figure 7. (a) Reflectivity of co-pol, (b) reflectivity of cross-pol, (c) LDR, (d) SW, (e) estimated probability of cloud, (f) 

estimated probability of clutter, (g) classification mask using Bayesian method and (h) classification mask after the spatial 

filter from local time 05:00 to 22:00 on September 24th, 2013. The black dots represent lidar detected cloud base height.  
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Figure 8. (a) Reflectivity, (b) LDR, (c) SW and (d) classification mask from local time 16:27 to 17:31 on April 15th, 2014. The 555 

black dots are lidar detected cloud base.  
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Figure 9. Same as Figure 8, except for local time 09:25 to 10:25 on October 12th, 2013. 
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Figure 10. Same as Figure 8, except from local time15:30 to 18:30 on July 7th, 2014.   
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Figure 11. Same as Figure 8, except for local time 16:00 to 22:00 on February 4th, 2014.   
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Figure 12. Probability of detection (𝑃𝐷, solid line) and false alarm rate (𝑃𝐹𝐴, dashed line) as function of reflectivity (a), LDR 565 

(b), SW (c), time (d) and height (e) for warm season (red line), cold season (blue line) and whole year (black line). The values 

of 𝑃𝐷 and 𝑃𝐹𝐴 for warm season, cold season and whole year are shown in (f).  
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