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Abstract. In this paper we evaluate characteristics of three optical particulate matter sensors/sizers (OPS): high-end spec-

trometer 11-D (Grimm, Germany), low-cost sensor OPC-N2 (Alphasense, United Kingdom) and in-house developed MAQS

(Mobile Air Quality System) which is based on another low-cost sensor – PMS5003 (Plantower, China), under realistic con-

ditions of strong and mild urban pollution. Results were compared against a reference gravimetric system, based on Gemini

(Dadolab, Italy), 2.3 m3/h air sampler, with two channels (simultaneously measuring PM2.5 and PM10 concentrations). The5

measurements were performed in Sarajevo, the capital of Bosnia-Herzegovina, from December 2019 until May 2020. This

interval is divided into period 1 - strong pollution and period 2 - mild pollution. The city of Sarajevo is one of the most polluted

cities in Europe in terms of aerosols: the average concentration of PM2.5 during the period 1 was 83µg/m3, with daily average

values exceeding 500µg/m3. During period 2, the average concentration of PM2.5 was 20µg/m3. These conditions represent

a good opportunity to test optical devices against reference instrument in a wide range of ambient particulate matter (PM)10

concentrations. The effect of an in-house developed diffusion dryer for 11-D is discussed as well. In order to analyze the mass

distribution of particles, a scanning mobility particle sizer (SMPS), which together with the 11-D spectrometer gives the full

spectrum from nanoparticles of diameter 10 nm to coarse particles of diameter 35µm, was used. All tested devices showed

excellent correlation with the reference instrument in period 1, with R2 values between 0.90 and 0.99 for daily average PM

concentrations. However, in period 2, where the range of concentrations was much narrower,R2 values decreased significantly,15

to values from 0.28 to 0.92. We have also included results of a 13.5 month long-term comparison of our MAQS sensor with

a nearby beta attenuation monitor (BAM) 1020 (Met One Instruments, USA) operated by the United States Environmental

Protection Agency (US EPA), which showed similar correlation and no observable change of performance over time.

1 Introduction

Analysis of particulate matter represents a key element for the studies of air pollution. Various studies shed light on their effect20

on health (Downward et al., 2018) and climate (Zhao et al., 2019). In many cases particulate matter is a dominant pollutant

among other components of pollution. Therefore, developing a strategy for reliable quantification of particulate matter in

ambient air is necessary. The traditional and most accurate approach to measuring the particulate matter concentration in the

air is the reference method, based on gravimetric measurements, after the collection of particulate matter by air samplers.
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The typical time resolution of such measurements is 24 hours. Although there are portable air samplers, these measurements25

are usually performed at fixed locations, such as research supersites. Reference systems are expensive and require a lot of

laboratory work. Results are not immediately available, because of the time-consuming process of filter treatment. Taking that

into account, various governmental institutions usually opt for more affordable and easier to use and maintain – equivalent

methods. These are usually fixed, semi-automatic stations equipped with beta attenuation monitors (BAMs). The typical time

resolution of such stations is 1 hour. If maintained and calibrated properly, the equivalent methods should achieve an acceptable30

level of agreement with the reference. For example, one long-term comprehensive study (Hafkenscheid and Vonk, 2014)

performed at 14 different locations across Netherlands, showed that a linear correction y = 0.91x−1.6, applied on raw readings

from BAM, was necessary to achieve the requirements of the Guide to the Demonstration of Equivalence (ECWG, 2010).

Newer methods, based on optical particle sensors (OPS), are nowadays increasingly more popular, particularly low-cost

variants (Zheng et al., 2019; Mukherjee et al., 2019; Tanzer et al., 2019; Morawska et al., 2018). Their typical time resolution35

is between 1 s and 1 min, and because of their price and size, they can be used in networks to provide better spatial coverage

(Martin et al., 2019; Li et al., 2019). Furthermore, they provide information about multiple mass fractions of particulate matter

simultaneously, unlike the concentration of single fraction in gravimetric system or BAM. However, there are concerns about

their suitability for measuring mass concentrations of ambient PM, since there is a significant measurement uncertainty arising

from the principles of their operation.40

Most commercially available OPS use the Mie scattering theory (Mie, 1908) to determine the size and number of particles

within the unit volume of air. The Mie theory provides the solution of the Maxwell equations for the scattering of plane waves

on spherical particles. The Mie solution is rather complex, but in order to illustrate the non-linearity of the theory, it will suffice

to consider the case where particles are much smaller than the wavelength (of light, since a red laser is commonly used in

practice). In that case the intensity of scattered radiation is given by45
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where I0 is intensity of the incident radiation, θ is the scattering angle, R is the distance between the particle and the observing

point, λ is the wavelength, d is the particle diameter and m is the refractive index of the particle. Thus, in order to calculate the

diameter of the particle by measuring the intensity of the scattered radiation, one must assume a value for the refractive index

of the particle. If the particle absorbs nothing from incoming radiation, its refractive index will be real, otherwise it is written50

in the form

m= n+ iκ, (2)

where κ is called the extinction coefficient and is related to the absorption coefficient α:

α=
4πκ

λ
. (3)

Once the size distribution is calculated accross K channels (bins), the total mass concentration of particles will be55

cm =

K∑
i=1

wiρiViNi, (4)
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where Vi is the (average) volume, ρi is the density of the particles, Ni is the number of particles per unit volume and wi is

the weighting factor for channel i. Here we have another cause of OPS uncertainty: the density of particles must be assumed.

Regarding the weighting factors, sensor manufacturers calculate values to correct for certain effects, such as the fact that OPS

cannot detect particles which are too small.60

Laboratory tests and calibrations of OPS are performed under controlled conditions with known particles, such as polystyrene

latex spheres (Walser et al., 2017; Bezantakos et al., 2018), continuously changing monodisperse, particles (Kuula et al., 2017,

2020) or multi-modal particles (Cai et al., 2019). Burning chamber is used in some investigations as well (Wang et al., 2015).

However, equation (1) is strongly non-linear in terms of refractive index, and in most practical cases corrections for different

particles’ optical properties are impossible to implement. Furthermore, densities appearing in equation (4) are not known a65

priori. That explains why it is difficult to calibrate OPS for realistic ambient PM concentration measurements: any laboratory

calibration may or may not be applicable to the changing outdoor conditions (Tryner et al., 2020; Crilley et al., 2020).

For outdoor applications, there is an additional problem: hygroscopic growth of particles (Jayaratne et al., 2018; Granados-

Muñoz et al., 2015; Di Antonio et al., 2018), which leads to overshoots of OPS if the ambient air humidity is (too) high. An

obvious solution is to dry the air. However, any proper drying system would cost more than many models of OPS and it is70

rarely seen in combination with low-cost sensors. Analytical corrections are often used: humidity sensors are used to measure

the relative humidity of ambient air and some analytical model, like Kohler’s theory (Castarède and Thomson, 2018) or Hänel

equation (Hänel, 1976), is applied. Later in this paper we will make some observations on this issue.

Due to all the above-mentioned factors, it is always interesting to check how OPS perform in different realistic scenarios.

Numerous papers deal with laboratory calibrations and outdoor evaluations of OPS (Karagulian et al., 2019; Borghi et al., 2018;75

Chatzidiakou et al., 2019; Magi et al., 2020; Sousan et al., 2016b; Malings et al., 2020; Kelly et al., 2017; Sayahi et al., 2019;

Crilley et al., 2018; Zheng et al., 2018; Tasic et al., 2012; Cavaliere et al., 2018; Mukherjee et al., 2017; Sousan et al., 2016a;

Zhang et al., 2018; Holstius et al., 2014; Badura et al., 2018). Reported results vary depending on the composition of particulate

matter pollution, range of concentrations and meteorological factors. In (Mukherjee et al., 2017) OPC-N2, PMS7003 and 11-R

were compared against BAM-1020 during 12 weeks in the Cuyama Valley, California, USA. Grimm 11-R performed well,80

while both OPC-N2 and PMS7003 (which is a miniaturized version of PMS5003) produced mediocre performance with heavy

low bias. PurpleAir (PMS5003) was tested in (Tryner et al., 2020) using laboratory and field tests. High bias of PMS5003 was

observed. In (Magi et al., 2020) PurpleAir (PMS5003) was analyzed for 16 months in Charlotte, North Carolina, USA against

BAM-1022, high bias of PMS5003 that increases with humidity was reported. High mean bias of PurpleAir (PMS5003) was

reported in (Kosmopoulos et al., 2020) as well.85

The novelty of this research is a unique combination of instruments and conditions of extremely high urban pollution. The

city of Sarajevo is situated in a valley and is affected by strong temperature inversions that appear typically 150 m-300 m

above ground level with a very strong temperature gradient in the inversion layer, exceeding 30 K/km (Masic et al., 2019).

The inversion episodes were present during most of January 2020. As a consequence, the average monthly concentration of

PM2.5 was very high: 167.3µg/m3. In contrast to that, monthly average values for March and April 2020 were 21.6µg/m3 and90

19.6µg/m3, respectively. This presented an excellent opportunity to test the performance of OPS in very different pollution
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levels. Simultaneously with OPS and reference gravimetric measurements, an SMPS was employed to detect nanoparticles.

It can detect particles with diameters from few nm up to 1µm. While SMPS can count very small particles, 11-D can count

larger particles, from 0.25µm to 35µm in diameter. When they work simultaneously, they can detect (almost) the full range of

particles’ diameters, with a span of more than three orders of magnitude. This will give detailed insights on the mass distribution95

of particles.

2 Methodology and experimental setup

The experimental facility was located at the Faculty of Mechanical Engineering in the central part of Sarajevo valley (N

43.85424, E 18.39607, 540 m above sea level) and represents well the overall conditions in the city. The reference instrument

for measurements of PM concentrations was a Dadolab Gemini air sampler (Figure 1). It is a single device with two completely100

independent channels (PM2.5 and PM10 in this campaign). The filter preparation and gravimetric analysis are performed in

separate laboratory of Faculty of Science, Department of Chemistry. The air sampler, gravimetric laboratory and all filter

procedures satisfied requirements of the standard EN 12341:2014. According to requirements of the standard, all filters were

conditioned at relative humidity between 45% and 50%, and temperature between 19 and 21 0C.

Grimm 11-D is a high-end optical particle sizer, with sophisticated construction and ability to count individual particles105

from 250 nm to 35µm in 31 equidistant (on logarithmic scale) channels. It uses a proprietary algorithm and the manufacturer

does not share information about the refractive index, density or weighting factors. It was factory calibrated, and equipped with

firmware version 12.50. Data was recorded in 1 minute intervals (6 seconds is also possible). Since we use the common term

OPS occasionally, it should be noted that 11-D belongs to different category of devices (in comparison to low-cost sensors).

Alphasense OPC-N2 belongs to the category of low-cost sensors. The manufacturer transparently shared most specifications.110

It has a much simpler construction than 11-D: instead of regulated pump, air flow is provided by 25 mm fan. The device has

16 channels, from 380 nm to 17µm. Firmware version 18.2 was used. Refractive index was n= 1.50+ i0 and density was

1.65 g/cm3. All other parameters, including weighting factors, were used as firmware default values.

The Plantower PMS5003 could be termed a very low-cost sensor, since its price is lower by an order of magnitude than that

of the OPC-N2. Limited specifications don’t reveal all operating parameters. From the specification sheet we can conclude115

that the device uses Mie scattering theory, with detection limit of 300 nm, and has 6 channels. It uses red semiconductor laser,

photodetector at 900 scattering angle (Kuula et al., 2020) and 32-bit processor (Cypress CY8C4245, 48 MHz). According

to (Tanzer et al., 2019) PMS5003 is a nephelometer, not the particle counter. Air flow is provided by a 20 mm fan. The

PMS5003 has two data outputs, one is called SM (standard material, CF = 1), and another AE (atmospheric environment).

The latter mode is used in our work, since the manufacturer recommends AE mode for ambient air measurements, without120

further explanation. Figure 2 shows results from our laboratory test using the incense scents as the source of PM. Based on
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these results, the relationships between SM and AE modes are

SMPM2.5 =


AEPM2.5 for AEPM2.5 ≤ 30

nonlinear for 30<AEPM2.5 ≤ 50

1.5×AEPM2.5 for AEPM2.5 > 50

SMPM10 =


AEPM10 for AEPM10 ≤ 43

nonlinear for 43<AEPM10 ≤ 77

1.5×AEPM10 for AEPM10 > 77

(5)

Based on PMS5003, we have designed MAQS (Mobile Air Quality System) smart sensor. Essentially, it is a modular platform125

for PMS5003, with options for additional sensors (pressure, temperature, humidity, carbon dioxide, wind speed), GNSS re-

ceiver, flash memory, Wi-Fi module and 3D-printed enclosure. Eight MAQS sensors were made and tested prior to the main

campaign in order to evaluate consistency between units. Figure 1 shows the results of preliminary outdoor measurements

for a batch of 8 MAQS sensors. They showed very good consistency: the coefficient of determination, R2, between any two

sensors from the batch was greater than 0.99 and average readings from all sensors are within ±10% from the average value of130

the batch of sensors. Data was recorded every minute on a local SD card and remote cloud server simultaneously. Recording

interval can be as short as 1 second, but there was no need for that.

Grimm 11-D and Alphasense OPC-N2 could not be used outdoors without shelter, while MAQS has a special case which

provides basic protection for outdoor use. Furthermore, netbook PC was used to record data from the OPC-N2. Outdoor shelter

had to be constructed to accommodate 11-D with power supply, OPC-N2 with PC and SPI adapter, and MAQS (for better135

protection). Stevenson screen like wooden structure was designed for that purpose. Another MAQS sensor was used at a

remote location, for reasons that will be explained later.

For low-cost sensors (OPC-N2 and MAQS) there was no air dryer or heater, since they are typically used in such condi-

tions. We have designed and constructed diffusion dryer for application on 11-D, which consists of porous stainless steel tube

surrounded with 1 kg of silica gel. The dryer is compact, 25 cm in length with 8 cm external diameter and does not reduce the140

mobility of the instrument. It was installed only during the period of mild pollution.

Meteorological parameters were measured using Vantage Pro2 (Davis Instruments, USA) weather station with recording

intervals of 15 minutes.

SMPS is a complex system which consists of a condensation particle counter (CPC), a differential mobility analyzer (DMA)

and a charge conditioner (often inadequately called “neutralizer”). Depending on the characteristics of the DMA, the SMPS145

can be configured for certain span of particle diameters. We have used Grimm 5.416 high-end SMPS with long DMA which

is able to separate particles from 10 nm to 1000 nm in 129 channels, equidistant on a logarithmic scale. Despite the fact that

particles with diameter below 10 nm play an important role in nucleation and growth studies (Tiszenkel et al., 2019), their

contribution to the mass budget is negligible. Another (larger) in-house developed diffusion dryer was installed at the inlet of

SMPS. A soft X-ray device was used as the charge conditioner. Scanning mode (alternating upscan and downscan) was used150

for all measurements. One scan takes about 4 minutes (8 minutes for both upscan and downscan). When working parallelly,
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SMPS and 11-D form a powerful wide-range spectrometer, which covers a range of particle diameters from 10 nm to 35µm

in 160 channels. Additionally, there is an overlapping area between 250 nm and 1000 nm where we can see how well these

two instruments match. The complex SMPS system was kept indoors (an unavoidable necessity, since both X-ray charger and

DMA use very high operating voltages). The air was sampled from outside using a conductive tube of shortest possible length,155

to avoid particle losses. It was running continuously, except for the periods of maintenance.

A rigorous data validation procedure was used. All instruments were inspected periodically and data logs were analyzed

thoroughly. When calculating daily average values, complete and consistent data series were required.

3 Results and discussion

During this campaign 296 filters were used in the reference air sampler. After the removal of several blank filters used for160

periodic verification and those with incomplete sampling (pneumatic system of air sampler failed to load new filters automati-

cally couple of times), 288 filters remained: 143 PM2.5 and 145 PM10 samples. Figure 2 shows PM2.5 and PM10 daily average

concentrations, together with hourly and daily values of ambient air temperature and relative humidity.

Some modifications of the shelter for 11-D and OPC-N2 were necessary, making those instruments unavailable periodically

during December and January. Additionally, more frequent maintenance, such as cleaning of 11-D, was needed when working165

in extreme conditions. The same stands for SMPS, which was maintained according to the recommendations of the manufac-

turer. Taking into account difficult operating conditions, the amount of data collected is satisfactory during the period of strong

pollution and excellent during the period of mild pollution. The lower limit of detection (LLoD) of PM2.5 concentration for

evaluated optical aerosol devices is estimated based on their actual field performance. Standard deviation (σ) was calculated

for periods with near-zero ambient PM concentration and average value of 3σ is estimated LLoD. For PMS5003 our final170

estimation is 5µg/m3. The same value is an estimation of (Magi et al., 2020), calculated by averaging segmented regressions

and (Bulot et al., 2019) by combining results from several previous studies. This method applied on OPC-N2 yields LLoD

of 2µg/m3 and 1µg/m3 for 11-D. For reference gravimetric system LLoD was calculated using the blank filters, which were

treated exactly the same way as real samples (except the sampling of particulate matter), and the calculated value of LLoD is

0.7µg/m3. All measurements below LLoD were discarded during the quality assurance phase.175

3.1 Strong urban pollution

During the period of strong urban pollution (12/2/2019–3/12/2020), the average value of PM2.5 concentration was 82.9µg/m3,

with minimum daily average value 1.3µg/m3 and maximum value 504.9µg/m3. In the same period, the average PM10 con-

centration was 95.5 µg/m3, with minimum value 3.6µg/m3 and maximum value 549.0µg/m3. The ratio of average values of

concentrations PM2.5/PM10 was 0.87. Very good correlations were observed for all three OPS against the reference instrument180

(Figure 5). Such a range of ambient PM concentrations was favorable for achievement of highR2 values, but non-linear effects

of low-cost sensors were observed too.
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Grimm 11-D produced results with R2 values 0.988 and 0.985 for PM2.5 and PM10 concentrations, respectively. Absolute

values were larger than the reference, on average 17.6% for PM2.5 and 25.5% for PM10. The average ratio PM2.5/PM10

measured by 11-D was 0.93. Mean absolute error (MAE) was 13.4µg/m3 for PM2.5 and 10.8µg/m3 for PM10. Alphasense185

OPC-N2 undershoots with respect to the reference values, on average 31.0% for PM2.5 and 36.8% for PM10, butR2 coefficients

are relatively high: 0.903 and 0.920 for PM2.5 and PM10 respectively. The OPC-N2 measured the ratio PM2.5/PM10 to be 0.97.

MAE for this sensor was 29.4µg/m3 for PM2.5 and 34.8µg/m3 for PM10. MAQS sensor produced surprisingly good R2

values of 0.975 for PM2.5 and 0.950 for PM10. In terms of absolute values, it overshoots by 31.9% for PM2.5 and 49.3% for

PM10 (on average). The calculated ratio PM2.5/PM10 was 0.76. MAE was 35.9µg/m3 for PM2.5 and 55.2µg/m3 for PM10. It190

seems that the Plantower PMS5003 can not accurately determine the PM10 fraction. One possible explanation is provided by

a laboratory test of PMS5003, where it was found that its size bin [2.5µm-10µm] is noisy and inaccurate (Kuula et al., 2020).

Further investigation of this behavior would be useful.

None of the tested OPS were equipped with an air dryer, and this certainly contributes to overprediction. Yet, Alphasense

OPC-N2 with default firmware settings underpredicts values, despite the particle hygroscopic growth effect.195

3.2 Mild urban pollution

The correlation coefficients changed dramatically in the period of mild pollution (3/13/2020–5/4/2020), as Figure 6 shows.

The much narrower range of particulate matter concentrations plays an important role, and even the reference method is less

accurate, since the mass difference of loaded and blank filters becomes very small (smaller than 1 mg for 24 h sampling period

if PM concentration is below 18µg/m3). The average concentration of PM2.5 was 19.7µg/m3 with a minimum daily average200

value of 7.1µg/m3 and a maximum value of 39.3µg/m3. During this period, the average value of PM10 concentration was

24.2µg/m3, with minimum and maximum values of 7.6µg/m3 and 48.8µg/m3, respectively. The ratio PM2.5/PM10 was 0.81

on average.

This time Grimm 11-D was equipped with a dryer, whose effects will be discussed in the next subsection. The device

produced relatively high R2 values 0.868 for PM2.5 and 0.917 for PM10. The absolute readings underestimated concentrations205

of PM2.5 by 16.3% on average, while PM10 were underestimated by 10.9% on average. The PM2.5/PM10 ratio was 0.87. This

test clearly shows that 11-D is a completely different class of instrument (in comparison to low-cost sensors). When equipped

with dryer, 11-D shows level of performance comparable to BAM, at least those reported by Hafkenscheid and Vonk (2014).

MAE was 3.0µg/m3 for PM2.5 and 4.1µg/m3 for PM10.

Alphasense OPC-N2 did not perform well during the period of mild pollution. Coefficients of determination, R2, were only210

0.284 for PM2.5 and 0.525 for PM10. Absolute readings are worrying: the OPC-N2 underpredicted PM2.5 by 67.6% and PM10

by 71.6% on average. The ratio PM2.5/PM10 was 0.73. MAE was 13.8µg/m3 for PM2.5 and 15.8µg/m3 for PM10.

MAQS sensor demonstrated mediocre performance, withR2 values of 0.730 for PM2.5 and 0.718 for PM10. On average, this

sensor overpredicted PM2.5 by 30.5% and PM10 by 32.6%. The PM2.5/PM10 ratio was 0.83, very close to the reference value

(contrary to the performance of the sensor in the period of strong pollution). MAE was 7.1µg/m3 for PM2.5 and 8.2µg/m3 for215

PM10.
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It would be interesting to test low-cost sensors with a proper dryer as well, but that combination is rarely seen in practice.

3.3 Humidity influence

One of the important factors in ambient measurements of PM concentrations is humidity, since the particles reflect more light

(i.e. appear larger) during measurements due to hygroscopic growth. This can be described using Hänel equation:220

fζ(RH) =

(
1−RH

1−RHref

)−γ

, (6)

where fζ is enhancement factor for particle property ζ. Here RH represents the relative humidity and RHref is a reference

relative humidity:

fζ(RH) =
ζ(RH)

ζ(RHref)
. (7)

It is important to note that the coefficient γ, which is an indicator of the hygroscopicity of particles, depends on the type of225

particles (and changes whenever composition of ambient particles is changed).

If we compare results produced by 11-D relative to the reference, during period 1 (without dryer) and period 2 (with dryer),

we can see that readings of the 11-D were reduced by more than 30%. However, we can not conclude whether it was the

effect of the dryer or the consequence of significantly different ambient conditions. Unfortunately, we have only one 11-D,

so we couldn’t measure simultaneously with and without dryer (that’s the reason why we used the instrument with the dryer230

only in one of the two periods). If we take into account two intervals with similar ambient conditions, with and without dryer

we get following values: from 2/27/2020 to 3/12/2020 average ambient concentration of PM2.5 was 21.1µg/m3 while 11-D

(without dryer) measured 21.5% more. In the second interval, from 3/13/2020 to 4/1/2020, ambient concentration was similar,

21.0µg/m3 while 11-D (with dryer) measured 1.4% smaller value. This comparison indicates that the effect of the dryer could

be around 23%. A similar analysis for PM10 concentrations gives an estimate of about 20% for the dryer effect.235

Grimm 11-D has a very useful feature: internal temperature and humidity sensor. Figure 7 shows self-heating and diffusion

dryer effect on 11-D, by comparing internal and external measurements of temperature and humidity. The average ambient

air temperature from 2/27/2020 to 4/1/2020 was 7.02 0C while the average 11-D internal temperature was 14.27 0C, which

shows a significant difference of 7.25 0C. This self-heating effect reduces internal humidity significantly, and we can see that it

rarely goes beyond 50%. Once the dryer is installed, internal relative humidity is further reduced: the average value of internal240

humidity without dryer (2/27/2020-3/12/2020) was 36.2% and with dryer (3/13/2020-4/1/2020) was 21.8% (the ambient air

humidity also dropped in the later period, but nevertheless the effect of the dryer is evident).

After roughly a month, the dryer’s performance degraded and the silica gel needed a regeneration (but it wasn’t performed

since we didn’t want to interrupt measurements when the end of the campaign was near).

Figure 8 shows the long-term (13.5 months) comparison of MAQS and BAM-1020 with time resolution of 1 hour, together245

with measured values of ambient air humidity. By averaging all this data we can estimate the influence of humidity on the

MAQS sensor: if we sort the measurements by humidity, subset of points where humidity is below 50% has average bias of

14.3%, for humidity range 50%-70%, bias is 16.5%; for humidity range 70%-85% bias is 31.6% and for humidity rang 85%-
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100% bias is 37.3%. If we subtract bias of least humidity subset from bias of highest humidity subset, we can estimate that

humidity influence adds up to 23% on PM2.5 readings from MAQS sensor, which is similar result to the analysis of humidity250

influence on our 11-D with dryer installed. While this influence can not be neglected, it is still relatively modest. Reason for

this is the composition of particles, where we have mostly fine particles below 300 nm, for which hygroscopic growth is less

pronounced (Kosmopoulos 2020).

3.4 SMPS data and wide-range spectrometer

The wide-range spectrometer (SMPS+11D) produced very valuable results. Figure 6 shows the continuous concentration and255

mass distributions. It is created from hourly average measurements from SMPS and 11-D. A relative density of 1.65 was

applied in SMPS software (based on LabVIEW) for the mass calculation. No other corrections were performed and all settings

were factory defaults. Selected histograms (hourly average values) are shown in Figure 7. What we can see from figures 6 and

7 is that in the period of strong pollution the dominant mass contribution comes from particles with diameters around 300 nm.

In terms of concentrations, particles around 100 nm appear in greatest numbers, with occasional secondary peaks coming from260

even smaller particles.

In the period of mild pollution, however, we can see that particles larger than 2.5µm often appear on histograms (usually

about 3µm in diameter). Number concentrations still have peaks about 100 nm, but sometimes the distribution is different in

favor of even smaller particles, as Figure 7 shows. Again, the largest mass contribution comes from particles around 300 nm.

In the overlapping area, SMPS and 11-D matched very well, almost perfectly for concentrations. Their match was not as265

good for mass calculations, but that is understandable, taking into account all the factors explained in section 1. Overall, the

combination of SMPS and 11-D worked very well and gave the full spectrum of particles, both for number concentrations and

mass distribution.

The obtained mass distribution of particles, especially during the period of strong pollution, rises the question on suitability

of OPS for measurements of mass concentrations, and resolving different fractions, since they cannot detect small particles270

that significantly contribute to the total mass. For example, the Alphasense OPC-N2 has a detection limit of 380 nm, and is

likely to miss the particles around 300 nm which form the dominant contribution to the mass budget. The Grimm 11-D, with a

detection limit of 250 nm, has a far better potential to resolve mass fractions.

3.5 OPS histograms and Aralkum Desert dust

All tested OPS have data bins, with different number of channels, as described in section 2. Figure 11 shows histograms that275

compare data bins from 11-D, OPC-N2 and MAQS on 1/18/2020 (strong pollution) and 4/16/2020 (mild pollution). It should be

noted that we compare here data bins from devices with different specifications and category. As expected, 11-D has ability to

count particles below 300 nm, which appear in greatest numbers. Counting efficiency of OPC-N2 is investigated in laboratory

conditions using PSL particles in (Sousan et al., 2016a), and the results were good for particles larger than 0.8 µm while for

particles with diameter of 0.5 µm OPC-N2 the device showed lower detection efficiency (detection limit of OPC-N2 is 0.38280
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µm). In our realistic scenario, dominant contribution to the mass comes from particles much smaller than 0.8 µm (Figures 9

and 10) which is not favorable to OPC-N2.

Contrary to OPC-N2, PMS5003 has problems with coarse particle, as indicated in laboratory test (Kuula et al., 2020). If the

fraction of coarse particles is small and steady, PMS5003 performs much better. Ambient conditions in Bosnia-Herzegovina are

such most of the time, since the primary source of PM is combustion of coal and biomass. That could explain why PMS5003285

performs better than OPC-N2 most of the time. However, different conditions were observed on 3/27/2000 when the dust from

Aralkum Desert covered part of Europe, including our test location. During this episode, OPC-N2 performed much better than

PMS5003, which wasn’t able to determine large fraction of coarse particles correctly (Figure 11). Similar observation about

PMS5003 was reported by (Kosmopoulos et al., 2020), when Sahara dust covered Greece.

3.6 Long-term performance290

Another question about OPS, especially low-cost types, is the drift of performance over time. The PMS5003 sensor uses a

semiconductor laser (diode laser) which has a limited lifetime. We have some long-term comparisons of the MAQS sensor

with MetOne BAM-1020 operated at a nearby location by the US EPA. Strictly speaking, their station is not collocated with

our equipment, but for the distance of only 300 m it is reasonable to assume that the air composition is very similar at these two

points, since they are located in the same neighborhood. In order to verify that assumption, we have installed another MAQS295

sensor at the location of Faculty of Electrical Engineering, University of Sarajevo, which is in immediate vicinity of the US

EPA site, and at the same distance from us (about 300 m). Figure 8 shows long-term comparisons of MAQS sensor and BAM-

1020, and additional verification of correlation between readings of two MAQS sensors, which was very high (R2 = 0.970,

MAE= 4.7µg/m3 for hourly average values and R2 = 0.994, MAE= 2.9µg/m3 for daily average values) confirming our

assumption that these two locations share the same air, in terms of PM concentrations and properties.300

Based on 13.5 months of continuous comparison of MAQS and BAM-1020, hourly average values give R2 coefficient 0.919

and MAE 16.7µg/m3. Daily average values produce R2 coefficient 0.980 and MAE 12.2µg/m3, while the monthly average

values give R2 = 0.998 and MAE= 11.4µg/m3 (Figure 8).

This leads us to the conclusion that time averaging reduces a lot the influence of variation of PM composition and mete-

orological variations. If we use a longer time average period, we lose one of the major advantages of low-cost sensors (time305

resolution), but it is a more natural approach to correcting readings compared to using artificial algorithms like neural networks

(Badura et al., 2019) or machine learning (Si et al., 2020). An excellent viewpoint of this issue is given by Hagler et al. (2018).

The calibration of a larger number of low-cost sensors can be simplified if they show similar relative performance (to each

other) in laboratory and field (Sousan et al., 2018). Floating corrections, even physically justifiable interventions, such as the

instantaneous correction for humidity growth of particles, insert a lot of noise, and the benefit is questionable. Depending on310

ambient conditions, self-heating of the sensor and some other factors, relative humidity may not be accurately determined. Even

if we have a very accurate humidity measurement, the hygroscopic growth coefficient will change whenever the composition

of PM changes, inevitably injecting noise into the results.
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We can also see strong non-linear effects at very high concentrations, above 500µg/m3. In that case a quadratic regression

fit will be more suitable.315

During this period of 13.5 months of continuous outdoor operation, the MAQS sensor worked flawlessly without perfor-

mance drifts. Designed enclosure sufficiently protected the sensor outdoors, while not obstructing air sampling.

4 Conclusions

A comprehensive experimental study was carried out with the aim of evaluating the performance of three very different OPS:

high-end Grimm 11-D, low-cost Alphasense OPC-N2 and in-house developed MAQS sensor, which is based on another low-320

cost sensor, the Plantower PMS5003 sensor. The study was performed in realistic conditions of strong and mild urban pollution.

The reference instrument was a dual-channel air sampler with gravimetric analysis in separate laboratory. In total 288 filters

were collected from 12/2/2019 to 5/4/2020.

During the period of strong urban pollution all three instruments produced very high R2 values. However, during the period

of mild urban pollution, these correlation factors dropped significantly, especially for Alphasense OPC-N2 sensor measuring325

PM2.5 parameter. The OPC-N2 underestimated the mass concentrations badly, especially during the period of mild pollution.

MAQS sensor overshoots PM2.5 concentrations by approximately 30% on average, which is likely to be partially caused by

hygroscopic growth.

The wide-range spectrometer, which consists of SMPS and 11-D, produced valuable information about distribution of par-

ticles, both in number and mass concentrations. Particles with diameters around 100 nm (and sometimes below) represent the330

dominant fraction in pure numbers, while particles with diameter of around 300 nm give the highest contribution to mass. In

the period of mild pollution, particles larger then 2.5 µm gave a larger contribution than in the period of strong pollution.

Grimm 11-D performed well in all conditions, and when equipped with dryer, it performed at a comparable level to the

beta attenuation monitor. For the calibration of low-cost sensors, especially those based on PMS5003, we propose a linear or

quadratic correction (in case of high pollution levels) with steady coefficients, since the instantaneous corrections insert noise335

into results.

Future measurements should further investigate characteristics of OPS in different ambient conditions, influence of humidity

and effect of micro-dryers specifically designed for low-cost sensors and mass distributions by means of wide-range spectrom-

eter.

Data availability. The underlying datasets for this publication are available at https://doi.org/10.5281/zenodo.3897379340

Furthermore, data from the BAM measurements by US EPA are availble at https://cfpub.epa.gov/airnow
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(a) Air sampler and Stevenson screen. (b) Devices under test.

(c) SMPS with dryer.

Figure 1. Experimental setup: a) colocated air sampler and Stevenson screen, b) devices under test inside of Stevenson screen: 11-D with

dryer, OPC-N2 with SPI adapter and (white-orange) enclosure, MAQS (white enclosure with grey front panel), and c) indoors SMPS with

dryer.
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Figure 2. AE and SM modes of PMS5003 sensor.
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Figure 3. Preliminary test of 8 MAQS sensors, outdoor measurements.
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Figure 4. Reference PM concentrations with ambient air temperature and humidity.
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Figure 5. OPS performance during the period of strong pollution (12/2/2019–3/12/2020).
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Figure 6. OPS performance during the period of mild pollution (3/13/2020–5/4/2020).
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Figure 9. Wide-range spectrometer (SMPS+11D), hourly average values. Relative density 1.65 was applied on SMPS to calculate mass of

particles.
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Figure 10. Wide-range histograms, hourly average values. Relative density 1.65 was applied on SMPS to calculate mass of particles.
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Figure 11. OPS histograms and Aralkum Desert dust episode, hourly average values.
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