
manuscript submitted to Atmospheric Measurement Techniques

Assimilation of lidar planetary boundary layer height1

observations.2

Andrew Tangborn1, Belay Demoz1,2, Brian J. Carroll2, Joseph Santanello3and3

Jeffrey L. Anderson4
4

1Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD,5

USA6

2Dept. of Physics, University of Maryland Baltimore County, Baltimore, MD, USA7

3Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA8

4National Center for Atmospheric Research, Boulder, CO, USA9

Corresponding author: Andrew Tangborn, tangborn@umbc.edu

–1–



manuscript submitted to Atmospheric Measurement Techniques

Abstract10

Lidar backscatter and wind retrievals of the planetary boundary layer height (PBLH)11

are assimilated into 22 hourly forecasts from the NASA Unified - Weather and Research12

Forecast (NU-WRF) model during the Plains Elevated Convection Convection at Night13

(PECAN) campaign on July 11, 2015 in Greensburg, Kansas, using error statistics col-14

lected from the model profiles to compute the necessary covariance matrices. Two sep-15

arate forecast runs using different PBL physics schemes were employed, and comparisons16

with 6 independent radiosonde profiles were made for each run. Both of the forecast runs17

accurately predicted the PBLH and the state variable profiles within the planetary bound-18

ary layer during the early morning, and the assimilation had a small impact during this19

time. In the late afternoon, the forecast runs showed decreased accuracy as the convec-20

tive boundary layer developed. However, assimilation of the Doppler lidar PBLH obser-21

vations were found to improve the temperature and V velocity profiles relative to inde-22

pendent radiosonde profiles. Water vapor was overcorrected, leading to increased differ-23

ences with independent data. Errors in the U velocity were made slightly larger. The24

computed forecast error covariances between the PBLH and state variables were found25

to rise in the late afternoon, leading to the larger improvements in the afternoon. This26

work represents the first effort to assimilate PBLH into forecast states using ensemble27

methods.28

1 Introduction29

The planetary boundary layer (PBL) plays an important role in weather, climate30

and pollution through its role in land-atmosphere interactions and mediation of Earth’s31

water and energy cycles (Santanello et al. 2018). This layer is where the Earth’s surface32

interacts with the atmosphere, exchanging momentum, heat, moisture and pollutants.33

The PBL height (PBLH) is central to these interactions and is controlled by the energy34

flux from the surface. Under certain conditions during daytime it defines the convective35

boundary layer (CBL) and during nighttime it is the stable (non-convective) boundary36

layer (SBL). Trace gases and aerosols emitted from the surface are rapidly transported37

within the CBL by turbulent atmospheric motion, and transfer of energy and mass into38

the free troposphere occurs across an interfacial layer at the top of the PBL. The PBL39

affects convection in the troposphere, which is generally initiated within the boundary40

layer and then penetrates its top (Hong and Pan, 1998; Browning, et al. 2007). Thus,41
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accurate knowledge of the PBLH is essential for both weather, pollution and climate fore-42

casting.43

The PBLH is defined by thermodynamic properties such as a temperature inver-44

sion or hydrolapse which can be measured by radiosonde. Alternatively, the drop off in45

aerosol concentration that occurs across the top of the PBL is used, since aerosols are46

well mixed throughout the PBL when the CBL is present (Hicks, et al., 2019). Atmo-47

spheric models rely on parameterization schemes to define the structure of the PBL and48

compute PBLH. These are generally either local mixing schemes that use local turbu-49

lent kinetic energy (TKE, Janjic, 1994) or non-local flux schemes (Hong and Pan, 1996).50

Generally, these PBL parameterizations have systematically higher PBLH relative to ob-51

served values (Hegarty et al., 2018), and also have difficulties modeling the growth of the52

convective layer during the morning. The variety of definitions of PBLH make it diffi-53

cult to effectively evaluate existing models or develop new ones.54

Observations of PBLH are traditionally made by radiosonde measurements, which55

have high vertical resolution but are expensive to launch frequently and are thus lim-56

ited to special experiments and/or ill-timed launches (e.g. 00/12 UTC National Weather57

Service launches) with respect to convective and stable PBL development. Likewise, space-58

borne measurements of the lower troposphere from passive and active instruments are59

severely limited in vertical, spatial, and/or temporal resolution (Wulfmeyer et al. 2015).60

Ground based measurement of PBLH has been proposed for an extensive network of ceilome-61

ters by adding to the functionality of instruments that were designed for measuring cloud62

heights (Hicks et al., 2016). The ceilometer measures the time required for a laser pulse63

to return to a receiver, from which the height of the scattering is determined. The in-64

tensity of the backscatter is correlated with the density of aerosols at a given height and65

the PBLH is inferred from the location of the maximum negative gradient of the backscat-66

ter intensity. Several algorithms employ wavelet transforms to identify the location of67

the negative gradient (e.g. Brooks, 2003; Knepp, et al., 2017). This existing network of68

ceilometers could be used to create a relatively dense network of frequent PBLH obser-69

vations, as was recommended by the 2009 study from the National Research Council (NRC,70

2009) and the Thermodynamic Profiling Technologies Workshop (NCAR, 2012).71

Since the ceilometer PBLH observations were not yet available for the time period72

we are studying, we employ Doppler lidar observations made at the Plains Elevated Con-73
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vection at Night (PECAN) site in Greensburg, Kansas, to demonstrate the methodol-74

ogy. PECAN was an intensive campaign to study organized Mesoscale convection sys-75

tems (MCSs) during the period June 1-July 15, 2015. It employed three aircraft and a76

large array of ground based lidar, radar and ground weather stations. The data we are77

using is from a Leosphere WINDCUBE-200S Doppler lidar owned and operated by the78

University of Maryland, Baltimore County (Delgado et al., 2016). This lidar operates79

at an infrared wavelength, and hence receives its strongest backscattered signal within80

the aerosol-laden PBL and is often below the measurement noise floor above the PBL.81

The Doppler shift of the backscattered signal is used to calculate wind speed as a func-82

tion of range, which can then be used to produce a multitude of wind and turbulence83

variables useful for PBL characterization (e.g. vertical velocity variance and signal-to-84

noise ratio variance). While Doppler lidars and ceilometers are similar in aerosol detec-85

tion, a Doppler lidar’s additional wind measurement capability makes it more broadly86

applicable and at times more accurate than a ceilometer for PBLH retrievals. The PBLH87

algorithm applied for this study combines several such aerosol and wind variables and88

each PBLH retrieval involves measurement of turbulence intensity, horizontal wind pro-89

files and backscatter intensity. The heights of steep gradients in these quantities are de-90

termined using empirical thresholds and wavelet transform techniques, and the three es-91

timates are combined using fuzzy logic. This is described at length in Bonin et al. (2018).92

Additional lidar parameters and the application of the algorithm to PECAN data were93

presented in Carroll et al. (2019). The PBLH retrievals were made from a repeating 25-94

minute lidar scan cycle. This Doppler lidar and PBLH algorithm combination are gen-95

erally well-suited for accurate and precise measurement of the PBLH during the daytime96

boundary layer, nocturnal boundary layer, and morning transition period (Bonin et al.97

2018, Carroll et al. 2019). The evening transition is the most challenging for this setup98

due to due to difficulties in defining a clear mixing layer during the decay of a turbulent99

daytime PBL (Lothon et al. 2014).100

The question remaining is how to assimilate these observations into a numerical101

weather prediction (NWP) model. A number of studies have explored assimilating bound-102

ary layer wind profile measurements from lidar (Hu et al. 2019, Coniglio et al. 2019, Degelia103

et al. 2019) and have shown that this increases the accuracy of forecasts due to improve-104

ments within the PBL. And further studies (Degelia et al. 2020; Chipilski et al. 2020)105

found that convective initiation (CI) was enhanced through the assimilation of thermo-106
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dynamic profiles within the PBL, though the former found that CI was degraded by the107

assimilation of kinematic (velocity) profiles. This work highlights the important role that108

the PBL plays in forecasting convective events, so that any observations that can im-109

prove estimation of the model state should be an important source of new information.110

We are interested assimilating the PBLH observations directly because the ceilometer111

network described above will focus on these retrievals, and satellite missions which mea-112

sure PBLH are also planned. PBLH is a diagnostic variable in NWP parameterized physics113

models. This means any correction to PBLH will be lost during the model forecast un-114

less the PBLH height observation is used to correct state variables such as temperature115

and moisture. This could be done either by adopting a variational data assimilation scheme,116

or through the use of an ensemble Kalman filter which would determine the error covari-117

ances between PBLH and state variables in the model. We choose the latter so as to avoid118

the task of linearizing the model physics. The structure of the covariance, and how the119

state variables are changed by assimilating PBLH, will depend on which PBL scheme120

is used. We will show how such a system could work by conducting a posteriori lidar PBLH121

observation impact experiments using forecast fields from a NASA Unified - Weather and122

Research Forecast (NU-WRF, Lidard-Peters, 2015) model runs for one day during the123

Plains Elevated Convection at Night (PECAN) campaign on July 11, 2015. The assim-124

ilation is done on 22 hourly WRF forecast fields throughout the day without cycling the125

analysis fields back into the model, using two different PBL parameterizations. In this126

paper, we demonstrate a new and promising method that uses the lidar-based aerosol127

backscatter and wind derived PBLH to correct model forecasted state variables. The pur-128

pose here is to show how ensemble computed error covariance can transfer observational129

information from PBLH to the state variable profiles.130

2 Methodology131

The assimilation methodology is based on the ensemble Kalman filter (EnKF)(Evenensen,132

1994; Burgers, et al. 1998; Evensen, 2009), where the analysis state is the estimate with133

a minimized error norm, relative to the given error statistics. It differs from the EnKF134

in that the analysis is not used as an initial state for the next model forecast. Rather,135

two existing one day NU-WRF forecasts, with different PBL physics schemes, are used136

when lidar measurements are available at a single location. These forecasts were produced137

as a part of the PECAN campaign in 2015, and we resuse them here to demonstrate the138
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assimilation algorithm that we have developed. These were not ensemble forecasts so we139

cannot build a standard ensemble Kalman filter from them. Instead we use Ensemble140

Optimal Interpolation (EnOI), in which profiles from neighboring model gridpoints are141

used to obtain an estimate of error statistics (Oke, et al., Evensen, 2003; 2010; Keppenne,142

et al., 2014). This approach will allow for the construction of the vertical component of143

covariance, which is needed in order to understand how PBLH can be used to correct144

atmospheric profiles through the use of profile and PBLH statistics. We use profiles from145

nearby model grid points and have tested the system with varying numbers of grid points146

in the ensemble. An ensemble Kalman filter would likely give different covariance infor-147

mation, but the basic relationship between the state variable profiles and the PBLH are148

determined by the model in the same manner here.149

The NU-WRF simulations, taken from existing forecast runs used for the PECAN150

campaign (Santanello et al., 2019) are initialized using a National Center for Environ-151

mental Prediction (NCEP) Global Forecast System (GFS) reanalysis. The two NU-WRF152

simulations use the Mellor–Yamada–Janjic (MYJ)[Mellor and Yamada, 1974, 1982; Jan-153

jic, 2002] and Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN) [Nakanishi and Niino,154

2009] which are local 1.5 and 2.5 order turbulence closure schemes respectively. The PBLH155

in each of these models is estimated using the turbulent kinetic energy (TKE) method.156

The NU-WRF forecast state variables are temperature (T), specific humidity (Q) and157

velocity (U,V), and we define the forecast vector xf = [T f Qf Uf V f (PBLH)f ], where158

we have combined PBLH with the state variables to enable the covariance calculation159

between them. The vector x is a column vector, so that the error covariance defined be-160

low only includes vertical covariances. The forecast runs are initiated from the NOAA161

global forecast system (GFS) reanalysis interpolated to the local domain of 30-48N and162

84-110 W, with 220×220 lat/lon and 54 vertical levels, at 0 UTC. At this time, the ini-163

tial state has assimilated all of the convential and satellite observations globally. The two164

WRF forecast experiments start at 0 UTC, and are run for 22 and 23 hours for the MYJ165

and MYNN experiments, respectively. We use an ensemble of the 20×20 nearest grid-166

points, so that all of the ensemble members are within about 30 km of the lidar obser-167

vations (since the grid spacing is about 3 km). Generally, larger ensembles using grid-168

points farther away will result in larger forecast error covariance because the geographic169

variability. So this ensemble size was chosen as a balance between ensemble size and ge-170

ographic localization. The forecast standard deviation for PBLH on the chosen ensem-171
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ble was around 27 m at 22 UTC. Lidar PBLH observations were made every 25 minutes172

on that day in Greensburg, KS (37.6 N, 99.3 W), while balloon soundings were launched173

from that location 6 times as part of the Plains Elevated Convection At Night (PECAN;174

Gerts et al. 2017).175

For an EnKF the generalized analysis equations are:176

xa = xf + K(yo − H (xf )) (1)

where xa is the analysis state, xf is the forecast state, yo is the observation vector and177

H is the non-linear observation operator. The gain matrix, K is defined by:178

K = PfHT (HPfHT + (R)−1, (2)

and Pf is the forecast error covariance, R is the observation error covariance and H is179

the linearized observation operator. The matrices PfHT and HPfHT are formed from180

the ensemble of forecasts. In the present work, we use the EnOI method, and assimilate181

observations one at a time using the the ensemble of profiles described above. In this case,182

xa and xf depend only only vertical level, and yo = yo, R = (σo)2 and HPfHT =183

(σf )2 become scaler quantities. The analysis equations are then184

xa = xf + K(yo − H (xf )) (3)

and185

K = PfHT ((σf )2 + (σo)2)−1, (4)

The observation error standard deviation supplied by the lidar retrieval is σo, which is186

determined from the combined uncertainty of the vertical velocity variance, velocity gra-187

dient and backscatter gradient. Generally, when these quantities change rapidly at the188

top of the PBL, then the estimated error is small. The error estimates are larger when189

(during the evening), the gradients are much more gradual. H is the linearized obser-190

vation operator for PBLH. Because the PBLH is related to the state variables via the191

two PBL physics schemes, determining H would require linearizing the PBL physics at192

every analysis time. Rather, here we use the EnOI described above to get:193

PfHT ≈
〈
(xf − µx

f ) (H (xf − µx
f ))T

〉
(5)

and194

HPfHT = (σf )2 ≈
〈
H (xf − µx

f ) (H (xf − µx
f ))T

〉
(6)
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where µx
f is the mean forecast state of the ensemble of profiles. See Houtekamer and195

Zhang (2016) for a review of ensemble Kalman filter techniques.196

We expect the correlation between the airmass within the PBL and the free tro-197

posphere to drop away rapidly, because of limited intereactions between them. We found198

that this can cause errors in the analysis profiles if error covariance between the state199

variables and PBLH is allowed to continue into the troposphere. To reduce these errors200

we have added an exponential decay starting at the model level closest to the PBLH (kPBLH)201

to define a vertical localization factor:202

Cloc = exp

[
−α(

k − kPBLH

kPBLH
)2
]

(7)

where k is the model level and α = 8 is an experimentally determined factor. The fac-203

tor Cloc is multiplied by the vertical covariance in (5) to ensure that the covariance be-204

tween the PBLH and the state variables becomes small within a couple of model levels205

into the free troposphere.206

Equations 3-4 are solved at each hour using the nearest lidar profile observation207

in time, and the resulting analysis fields are compared to radiosonde profiles when the208

latter are also available. There are 22 or 23 analyses (for each forecast run), and 6 times209

where comparison with radiosonde profiles are made. We focus on the impact of the as-210

similation on the state variables T, Q, U and V rather than the PBLH because only the211

state variables would be retained by a forecast.212

3 Results213

This section describes the NU-WRF simulation results, the assimilation of PBLH214

into these forecasts, and the relationship between the assimilation impact and the time215

varying forecast and observation error covariances.216

3.1 NU-WRF simulations217

The one day NU-WRF simulations are presented in this section. Figure 1 shows218

the PBLH during that day, derived from the two NU-WRF forecasts, lidar observations219

and soundings. We have determined the sounding PBLH using the parcel method (Holz-220

worth, 1964), which defines the top as the height where the potential temperature first221

exceeds the ground temperature. The lidar PBLH (black *, derived using the method222
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reported in Bonin, 2018) closely matches the radiosonde estimates (green triangles) in223

the late evening to nighttime (2-7 UTC), while it is somewhat lower late afternoon to224

early evening (18-24 UTC). The two NU-WRF forecasts differ from the observations de-225

pending on the time of day. During nighttime and early morning the MYJ (red trian-226

gles) and MYNN (blue squares) forecasts are higher than the observations, then rise less227

than the lidar observations in the late morning and early afternoon (12-17 UTC, there228

are no radiosonde measurements to compare to here) before rising much higher than the229

observations in the late afternoon (18-24 UTC).230

c
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Figure 1. PBLH vs UTC time for July 11, 2015 for lidar backscatter (black *), WRF model

- MYJ (red triangles), WRF model - MYNN (blue squares), and radiosonde observations using

parcel method (green triangles).

3.2 Impact of assimilation on state variables231

Since we are primarily interested in the impact of the assimilation on state vari-232

ables within the boundary layer, in Figures 2 and 3 we plot the RMS difference between233

the model and the independent (unassimilated) radiosonde profiles from the surface to234

roughly the top of the boundary layer in the late afternoon. This corresponds to the first235
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8 layers, or about 800 mb. We use a fixed number of layers so as to make the compar-236

isons of the RMS differences consistent during the day, rather than computing the RMS237

over a different number of layers as the PBL grows during the day. For the temperature238

forecast, the RMS difference would is239

RMS(ta) =

[
1

8

8∑
i=1

(T f
i − T sonde

i )2

]1/2
(8)

where ta is the analysis time and ”i” represents the model level. Figures 2 and 3 show240

the RMS differences with the radiosonde profiles throughout the day for the forecasts241

(blue x) and analyses (red squares) for potential temperature (a), water vapor mixing242

ratio WV (b) and the U (c) and V (d) components of velocity.243

During the night (2-9 UTC), the assimilation has a relatively smaller impact on244

the potential temperature RMS differences (upper left) in the early morning (6 and 8245

UTC), and the two forecasts have similar accuracy. By late afternoon (22 and 23 UTC,246

note that the MYJ forecast stops at 22 UTC) the radiosonde comparisons show that the247

assimilation reduces RMS differences in the potential temperatures by around 1.5K for248

MYJ and 2K for MYNN. The water vapor mixing ratio (upper right) also has little im-249

pact from the assimilation between 2 and 8 UTC, but at 22 UTC (the next radiosonde250

profile) the RMS differences for both MYJ and MYNN analyses increase by at least 1.5×251

10−3kg/kg in the late afternoon. The U-velocity profiles (lower right) show small dif-252

ferences between the MYJ and MYNN through 8 UTC (3 a.m. local time) and the as-253

similation increases the RMS differences with radiosonde profiles by nearly 1m/s start-254

ing at 22 UTC for both models. The V-velocity profiles (d) begin to differ between MYJ255

and MYNN for the forecasts at 8 UTC (0.5m/s decrease), and assimilation also decreases256

the RMS differences with radiosondes in late afternoon by 1.5 − 2m/s.257

We would like to understand why there is a smaller impact during night time and258

early morning, whereas there are decreases in the RMS differences in temperature and259

V velocity and increases in moisture and U velocity in the late afternoon. To this end,260

we plot the forecast, analysis and radiosonde profiles (T, Q, U and V) at 4 UTC (11 p.m.261

local time) and 22 UTC (5 p.m. local time) in Figures 4-7. At 4 UTC, (Figures 4,5) these262

clearly indicate that there are small corrections made by the assimilation, as the red and263
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Figure 2. RMS difference for lowest 8 layers, vs. time of forecast (blue x) and analysis (red

square) with radiosonde profiles for potential temperature (a), water vapor (b), U velocity (c)

and V velocity (d).
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Figure 3. Same as Figure 2, but for MYNN PBL model, with forecast (black x) and analysis

(blue square).
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blue profiles closely overlap. But it also shows that the profiles (particularly tempera-264

ture and moisture) more accurately follow the radiosonde profiles (except for the U ve-265

locity above the PBL), meaning that that any substantial corrections would have made266

the profiles worse relative the the radiosonde profiles and ultimately degrade the next267

PBLH forecast. In contrast, Figure (1) shows that the forecast PBLH (particularly MYJ)268

is quite a bit higher than the lidar observation at 4 UTC. In the late afternoon Figures269

6 and 7 indicate that there are large differences between the forecasts and radiosonde270

profiles for all of the state variables. The forecast PBLH values differ substantially from271

the lidar measurements as well. The correction to the forecast profiles generally pushes272

the analyses towards the independent radiosonde profiles, particularly for temperature273

and V velocity. So the forecasts that predicted both PBLH and state variables with rel-274

atively greater accuracy in the early morning were not corrected, while the less accurate275

afternoon forecast was drawn towards the independent radiosonde measurements. The276

assimilation also made changes to the vertical velocity (W) in the afternoon, but there277

is no independent data to compare with so we have not included it.278

The WV is shown to be increased by the assimilation (since WV and PBLH are279

negatively correlated and higher PBLH corresponds to lower WV levels in the PBL mod-280

els), but the analysis overshoots the radiosonde WV profile for MYNN, hence causing281

the increase in the water vapor RMS difference in Figures 2 and 3. The MYJ forecast282

for WV is mostly too high, so the analysis also increases the RMS difference. Compared283

to temperature, WV is highly variable in time and space and it has been shown in the284

past that slanted balloon trajectories underestimate the WV present (Demoz et al 2006;285

Crook, 1996). The U velocity difference with the radiosonde is larger for the analysis,286

but this correction is more difficult because the differences (at least for MYJ) are both287

positive and negative and the PBLH observation only contains a single piece of infor-288

mation. The V velocity is, on the other hand, greatly improved by the assimilation. These289

analysis profiles show that, for this one analysis time, the assimilation is pushing the state290

variables in the proper direction for temperature, V velocity and moisture, though the291

moisture correction overshoots the readiosonde profile. PBLH is not a prognostic vari-292

able, so that the analysis PBLH values are not retained and therefore cannot directly293

affect the next forecast. But it is important to note that the temperature and moisture294

profiles are changed by the assimilation in a way that indicates that the next forecast295

is likely to have a more accurate PBLH estimate. Figures 6 and 7 both show that the296

–13–



manuscript submitted to Atmospheric Measurement Techniques

level at which the potential temperature begins to rise and the WV mixing ratio begins297

to drop has been moved to a level much closer to that observed by the lidar. We do not298

make forecasts from the analysis fields, but these profiles show promise for improved PBLH299

forecasts when cycling experiments are done in a future implementation.300

Figure 4. Profiles from radiosonde (green), forecast (blue) and analysis (red) for potential

temperature (a), water vapor mixing ratio (b), u-velocity (c) and v-velocity (d) at 4 UTC, July

11, 2015 in Greensburg, KS. The model uses the MYJ physics parameterization.

3.3 Ensemble error covariances301

The increasing differences between PBLH and profile forecasts from early morn-302

ing to late afternoon only partly explain the much larger impact of the assimilation at303

22 UTC. We can also analyze the assimilation by investigating the error covariance be-304

–14–



manuscript submitted to Atmospheric Measurement Techniques

306 308 310 312 314 316

Potential Temperature (K)

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)

Potential Temperature at 4 UTC

Sonde

Forecast

Analysis

Lidar PBLH

Forecast PBLH

5 10 15

WV Mixing ratio (kg/kg) 10
-3

650

700

750

800

850

900

950
P

re
s
s
u

re
 (

m
b

)

WV Mixing Ratio at 4 UTC

0 2 4 6 8 10

U velocity (m/s)

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)

U Velocity at 4 UTC

(a) (b)

(c) (d)

0 5 10 15 20

V velocity (m/s)

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)

V Velocity at 4 UTC

Figure 5. Same as figure 4 except using MYNN model.
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Figure 6. Same as figure 4 except using except at time 22 UTC.
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Figure 7. Same as figure 6 except using MYNN model.
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tween PBLH and each of the state variables (PfHT ) and the relative error variances in305

observation space (HPfHT and R). We show PfHT in Figure 8 for the MYNN PBL306

physics model at the 6 radiosonde times. The covariance with temperature is always pos-307

itive, and grows by a factor of 4 by late afternoon near the surface. The covariance with308

WV is mostly negative and grows by roughly a factor of 5, while the covariance with the309

two components of velocity oscillate between positive and negative and shows less con-310

sistent growth. Thus, the largest impact of assimilation on temperature and moisture311

occurs in late afternoon while more limited velocity corrections are largely constrained312

by the correlations determined by the ensemble of model forecast states. In addition, the313

covariance between PBLH and the U velocity are substantially smaller than those with314

the V velocity. This means that spurious correlations between PBLH and U might be315

present, given the relatively small ensemble and the geographic variation of the ensem-316

ble members. The error variances are also plotted at the radiosonde times in Figure 9,317

which shows that the observation errors are much larger than the forecast errors dur-318

ing evening and early morning times (2,4,6,8 UTC) and then become relatively smaller319

in the late afternoon (22,23 UTC). This is an additional contributing factor to the min-320

imal impact of PBLH observations early in the day and the much larger impact in the321

afternoon.322

4 Discussion and Conclusions323

These offline data assimilation experiments indicate that assimilating ground based324

lidar backscatter and wind measurements of PBLH into a regional NWP model will likely325

lead to corrections to profiles within the PBL, particularly when, in the future, this ap-326

proach is applied to an EnKF assimilation system with cycling. Using two NU-WRF fore-327

casts over a period of one day with different PBL physics models, we show how the state328

variables, T, WV, U and V can be corrected using an assimilation system with ensem-329

ble based error covariances. During the night and early morning the assimilation has rel-330

atively little impact on the state variables, but by late afternoon the temperature field331

is drawn closer to independent radiosonde measurements. We have shown that the lack332

of data impact early in the day is the due to the relatively higher accuracy of the model333

and lack of correlation between the forecast PBLH and temperature profiles at that time.334

Later in the day, when the model is less accurate in predicting the growth of the bound-335

ary layer, the data begins to draw the analyses mostly toward the independent radiosonde336
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Figure 8. Covariance PfHT between PBLH and temperature (a), water vapor (b), U velocity

(c) and V velocity (d), at times 4, 8, 22 and 23 UTC, for PBL physics model MYHH.
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Figure 9. Forecast (HPfHt) and observation (R) error covariance for the PBL physics model

MYHH at the 6 radiosonde times.

profiles. The assimilation overcorrected the water vapor mixing ratio in the direction of337

radiosonde data, and this could likely be tuned in an assimilation system. And it cor-338

rected the the V velocity component by a smaller amount, and reduced differences with339

the radiosonde profiles for the V velocity. These corrections are the result of ensemble340

computed error covariances between the PBLH and the state variable profiles within the341

PBL. The results here indicate that this approach has some potential to be used in a fore-342

cast system in a way that that the PBLH observational information could be carried for-343

ward in time so as to impact the forecast accuracy within the PBL. An additional value344

of assimilating PBLH is its close connection with the PBL scheme used in the model.345

The ensemble covariances between PBLH and the different state variables are controlled346

through the PBL physics scheme. This has an impact on the corrections made to the347

profiles within the PBL, which can be used as another way to evaluate the physics pa-348

rameterizations. For example, the MYJ and MYNN result in forecast profiles that dif-349

fer, particularly in WV in the late afternoon. And the differences in reponse to assim-350

ilation are an indication of how the two different PBL schemes affect the covariance be-351

tween PBLH and the state variables. However, a full evaluation would require that the352

assimilation be implemented into a cycling data assimilation system.353
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This work is intended only to demonstrate a necessary first step in terms of how354

ensemble statistics can help to constrain profiles within the PBL by assimilating PBLH355

observations. A more complete demonstration of this approach will require the construc-356

tion of an EnKF, which should be run over many days with a variety of weather patterns,357

including significantly warmer(cooler) and wetter(drier) days. This is needed to show358

how the assimilated PBLH observations will impact future forecasts within the PBL. More359

of the PBL physics schemes need to be investigated as well, since the correlation between360

PBLH and state variables will vary widely depending on which scheme is used. An es-361

timate of the forward operator error should be included in the algorithm as well. There362

are also differences in the way PBLH is computed in the PBL physics schemes, and the363

methods used for radiosonde observations (see Hegarty, et al., 2018). This will impact364

the manner in which the assimilation and resulting forecasts are validated. The larger365

uncertainty in the lidar PBLH retrievals during nighttime (Figure 9) mean that the as-366

similation will not significantly constrain the model state within the PBL during this pe-367

riod. So it would be very helpful to complement PBLH observations with thermodynamic368

and kinematic profile observations, partuculary overnight. The fact that PBLH is a non-369

negative variable means that the O-F statistics will likely be non-Gaussion so that the370

assimilation algorithm would need to include an extension to handle this possibility (e.g.371

Cohn, 1997).372

In addition, a cycling EnKF will involve spatial covariances in both horizontal and373

vertical directions, and will allow for both inflation and horizontal localization. This will374

enable further tuning of the system to optimize the analysis state relative to the inde-375

pendent radiosonde observations. The PBLH assimilation withn the EnKF framework376

could be done in any of numerous existing EnKF assimilation systems that connect with377

WRF, including NU-WRF (Lidard-Peters et al., 2015) and WRF-DART (Anderson et378

al., 2009). Future development of PBLH assimilation algorithms will also need to ad-379

dress the effect of the different definitions of PBLH, such as the TKE method used the380

physics schemes and the backscatter and wind profile method used in the retrievals.381
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