- Preprint
(1356 KB) - Metadata XML
- Articles & preprints
- Submission
- Policies
- Peer review
- Editorial board
- About
- EGU publications
- Manuscript tracking
21 Jul 2020
21 Jul 2020
Abstract. Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used in atmospheric sciences for measuring volatile organic compounds in real time. In the most widely used type of PTR-MS instruments, air is directly introduced into a chemical ionization reactor via an inlet capillary system. The reactor has a volumetric exchange time of ~ 0.1 s enabling PTR-MS analyzers to measure at a frequency of 10 Hz. The time response does, however, deteriorate if low-volatility analytes interact with surfaces in the inlet or in the instrument. Herein, we present the “Extended Volatility Range” (EVR) PTR-MS instrument which mitigates this issue. In the EVR configuration, inlet capillaries are made of passivated stainless steel and all wetted metal parts in the chemical ionization reactor are surface-passivated with a functionalized hydrogenated amorphous silicon coating. Heating the entire set-up to 120 °C further improves the time-response performance.
We carried out time-response performance tests on a set of 29 analytes having saturation mass concentrations C0 in the range between 10−3 and 105 µg m−3. 1/e-signal decay times after instant removal of the analyte from the sampling flow were between 0.2 and 90 s for gaseous analytes. We also tested the EVR PTR-MS instrument in combination with the CHARON particle inlet, and 1/e-signal decay times were in the range between 5 and 35 s for particulate analytes. We show on a set of exemplary compounds that the time-response performance of the EVR PTR-MS instrument is comparable to that of fastest flow tube chemical ionization mass spectrometers that are currently in use. The fast time response can be used for rapid (~ 1 min equilibration time) switching between gas and particle measurements. The CHARON EVR PTR-MS instrument can thus be used for real-time monitoring of both gaseous and particulate organics in the atmosphere. Finally, we show that the CHARON EVR PTR-MS instrument is capable of detecting highly oxygenated species (with up to eight oxygen atoms) in particles formed by limonene ozonolysis.
Felix Piel et al.
Felix Piel et al.
Felix Piel et al.
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
201 | 151 | 13 | 365 | 41 | 13 | 20 |
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
An interactive open-access journal of the European Geosciences Union