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Abstract.

The U.S. Department of Energy Atmospheric Radiation Measurement program Tropical Western Pacific site hosted a C-

band POLarization (CPOL) radar in Darwin, Australia. It provides two decades of tropical rainfall characteristics useful for

validating global circulation models. Rainfall retrievals from radar assume characteristics about the droplet size distribution5

(DSD) that vary significantly. To minimize the uncertainty associated with DSD variability, new radar rainfall techniques

use dual polarization and specific attenuation estimates. This study challenges the applicability of several specific attenuation

and dual-polarization based rainfall estimators in tropical settings using a 4-year archive of Darwin disdrometer datasets in

conjunction with CPOL observations. This assessment is based on three metrics: statistical uncertainty estimates, principal

component analysis (PCA), and comparisons of various retrievals from CPOL data.10

The PCA shows that over 99% of the variability in estimated rainfall rate R can be explained by radar reflectivity factor for

rainfall rates 1<R < 10mmhr−1. These rates primarily originate from stratiform clouds and weak convection (median drop

diameters less than 1.5 mm). The dual-polarization specific differential phase increases in usefulness for rainfall estimators in

times withR> 10mm hr−1. Rainfall estimates during these conditions primarily originate from deep convective clouds with

median drop diameters greater than 1.5 mm. Using specific attenuation for estimating R generally does not provide additional15

skill beyond other metrics for Darwin. An uncertainty analysis and intercomparison with CPOL show that a CSU-blended

technique for tropical oceans, with modified estimators developed from VDIS observations, is most appropriate for use in all

cases, such as when 1<R< 10 mm hr−1 (stratiform rain), and when R> 10 mm hr−1 (deeper convective rain).
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1 Introduction

Accurate rainfall accumulation and rate estimates are crucial for validating global circulation model (GCM) simulations of

precipitation. A known problem of many GCMs, including the U.S. Department of Energy’s Earth Energy Exascale System

Model (E3SM) (Golaz et al., 2019), is that the phase and magnitude the diurnal cycle of precipitation are not adequately

resolved due to the parameterization of convection (Del Genio, 2012). Multidecadal datasets, such as those recorded at the5

U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program’s Tropical Western Pacific (TWP) site

in Darwin, Australia (Keenan et al., 1998; Mather et al., 2016; Long et al., 2016), provide unique opportunities to develop

climatologies and process-level parameterization constraints for GCM simulations. For example, Kumar et al. (2013), Rauniyar

and Walsh (2016) and Jackson et al. (2018) have previously developed climatologies of radar-estimated cloud top heights from

17 years C-band POLarization (CPOL) data at the ARM TWP site to be used for validation of E3SM. Dolan et al. (2013) also10

identified the hydrometeor types present in the clouds and precipitation sampled by CPOL over seven seasons.

As with the previous cloud top height and hydrometeor type constraints, accurate rainfall accumulations and rates are vital

quantities to evaluate or improve in models such as in convective parameterizations in E3SM (Tang et al., 2019) and other

general circulation models for addressing uncertainties in their predictions. However, developing a suitable rainfall rate cli-

matology or similar summary rain accumulation statistics from a single radar dataset is a nontrivial task. Several different15

methodologies exist for measuring or estimating rainfall accumulations and/or instantaneous rainfall rates. For instance, at the

ARM TWP site, rain gauges and disdrometers provide estimates of rainfall rate and collect individual particle statistics. Even

if a perfect rainfall estimation method is determined, using such data for climatological scale analysis is complicated by the

fact that the rainfall experienced at TWP is not representative of the spatial variability in rainfall rate over GCM-scale domains

O([20− 100km]). In contrast, scanning radars such as the CPOL may estimate rainfall accumulations over this wider spa-20

tial domain O([100− 150km]) with horizontal resolution of O(100m) (e.g., Keenan et al. (1998)). However, scanning radars

typically retrieve R using empirical power law relationships between R and the radar observables, which may be subject to

uncertainty contingent on the representativeness of these fits. These relations often utilize conventional radar quantities such

as the radar reflectivity factor Zh, and dual-polarization radar quantities such as specific differential phase Kdp, and differ-

ential reflectivity Zdr. Single-moment and blended empirical relationships are commonplace in the literature (i.e. Marshall25

and Palmer (1948); Aydin and Giridhar (1992); Ryzhkov and Zrnić (1995); Matrosov (2005); Matrosov et al. (2006); Wang

et al. (2013); Ryzhkov et al. (2014); Thompson et al. (2015, 2018); Wang et al. (2018); Giangrande et al. (2019)) and typ-

ically developed from simulated radar moments informed by the drop size distributions (DSDs) sampled by disdrometers at

various global locations. Recently, studies have attempted to combine the advantageous dual-polarization radar measurement

properties more seamlessly into a single radar quantity by estimating the specific attenuation Ah for similar empirical rainfall30

applications (e.g., Ryzhkov et al. (2014); Giangrande et al. (2014b)). Dual-polarization relationships have traditionally been

the preferable option for radar rainfall rate estimates, as these have been found less sensitive to potential biases owing to DSD

variability, radar miscalibration, partial beam blockage, and/or attenuation in rain (Doviak and Zrnić, 1993; Bringi and Chan-

drasekar, 2001; Ryzhkov et al., 2005). Nevertheless, single and/or dual-polarization power law relationships are often sensitive
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to the underlying differences found in the limits of the DSD observations used to develop those relationships, which vary over

different regions of the globe due to the changing nature for dominant cloud dynamical/microphysical processes (Bringi et al.,

2003, 2009; Dolan et al., 2018). Similar issues are also anticipated for newer radar-rainfall algorithm concepts such as machine

learning efforts using Neural Network or Gaussian mixtures concepts (e.g. Vulpiani et al., 2009; Li et al., 2012) that are trained

and/or validated within comparable DSD observational limitations.5

An important consideration for applying radar rainfall methods to different regions across the globe is that the majority of

aforementioned rainfall studies have emphasized the properties of midlatitude continental clouds, and often over relatively

modest data records (i.e. 10s of events). For many practical hydrological applications, the best references are those for NOAA’s

S-band (10-cm wavelength) NEXt Generation RAdar (NEXRAD), with most operational relations weighted towards Okla-

homa, Florida, Colorado and/or deeper convective cloud conditions (Ryzhkov et al., 2005). The relative absence of extended,10

ground-based rainfall retrieval validation datasets outside of midlatitude regions poses several challenges for potential global

rainfall applications and possible model evaluation. DOE ARM operates multiple fixed sites in distinct global regimes, includ-

ing the Darwin TWP, the Oklahoma Southern Great Plains (SGP) (Sisterson et al., 2016), and Eastern North Atlantic (ENA)

site in the Azores (Giangrande et al., 2019). Prior studies that focused on Darwin (Keenan et al., 1998; Bringi et al., 2003, 2009;

Thurai et al., 2010) indicate that midlatitude R esimators and DSD variability are less applicable outside of the midlatitudes.15

This study focuses on R estimators at C-band and X-band for climatological studies and model improvement over Darwin,

Australia. Specifically, the ARM TWP site hosts C/X-band (5 cm/3 cm wavelength) Scanning ARM Precipitation Radars

(C/XSAPRs) and the C-band Polarization (CPOL) radar (Keenan et al., 1998). Recently, Giangrande et al. (2014b) found that

for the ARM SGP site CSAPR during the MC3E campaign, Kdp-based retrievals generally provide an optimal estimate of

rainfall for accumulations greater than 10 mm when compared to Ah-based retrievals. For the tropical oceans, Thompson et al.20

(2018) showed that the root mean square error between the disdrometer and radar estimated R at C-band and X-band was

lowest when the Colorado State University (CSU) blended technique for tropical oceans was used with relations formed from

tropical DSD measurements. The algorithm, originally developed by Cifelli et al. (2011), uses Zh, Zdr and/or Kdp as input

depending on whether values of these fields are significantly above noise thresholds. In the same study, RMSE was slightly

higher for R estimated by Ah at these wavelengths. However, these retrievals were developed and using data over Manus and25

Gan Islands. These small atolls experience open-ocean conditions, such that large raindrops from melted hail were rare, even

in strong convection (Thompson et al., 2015). For the ARM TWP site in Darwin, deep mixed-phase convection, formed by

seabreeze convergence, is common (Rutledge et al., 1992; Williams et al., 1992; May and Rajopadhyaya, 1999; Kumar et al.,

2013; May and Ballinger, 2007; Jackson et al., 2018). Therefore, there is greater potential for the impact of cold rain processes

(melted hail or graupel that forms large droplets) on determining the surface DSD in Darwin compared to Manus and Gan30

Islands.

It remains unclear whether, or which, prior R estimators are completely suited to the challenges of creating accurate multi-

decadal, climate-research quality datasets at TWP Darwin at C- and X-band. Lately, more radar rainfall estimators at shorter

wavelengths have been developed. However, these efforts typically have access to data from relatively short field campaigns

or a handful of case studies of extreme events. In this regard, these efforts are valuable but potentially not well-matched to the35
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challenges of creating multidecadal datasets at TWP Darwin. This and the lack of studies at sites with a mixture of typical and

extreme rainfall events stresses the importance of further assessing R retrievals for CPOL and other ARM radars at the ARM

TWP site. To accomplish this task, this study uses four years of co-located two dimensional video disdrometer (VDIS) and

CPOL data at the ARM TWP site, providing a longer and therefore hopefully more representative dataset than used in prior

Darwin-based studies.5

This study is organized as follows. To assess the applicability of dual polarization quantities and an additional estimated

quantity Ah for retrieving rainfall rate R for ARM radars in Darwin, this study will use simulated radar observables generated

from the VDIS observations collected during tropical convective events over the ARM TWP site. Data and methods are intro-

duced in Section 2. Observational results from these data are shown in Section 3. Section 4 assesses the importance of Zh, Zdr,

Kdp, andAh, in determining or informing the rainfall rate estimates over this dataset using principal component analysis (PCA)10

on these quantities. These analyses are performed at the C- and X- band radar wavelengths utilized by the ARM program. To

evaluate C-band retrievals, Section 4 also compares VDIS rainfall rates against retrievals from CPOL data at the ARM Darwin

TWP site. Section 5 includes the main conclusions of this study.

2 Datasets

2.1 CPOL15

The C-band polarization radar (CPOL) (Keenan et al., 1998) provided plan position indicator (PPI) scans of Z, Zdr, and

differential phase φdp at elevations of 0.5°, 0.9°, 1.3°, 1.8°, 2.4°, 3.1°, 4.2°, 5.6°, 7.4°, 10.0°, 13.3°, 17.9°, 23.9°, 32.0°, and

43.1° every 10 minutes from 1998 until 2017 except during 2008 and 2009. Data from the 2011 to 2015 seasons are used in

this study, which correspond to the times VDIS observations were available at the ARM TWP site in Darwin. In total, these

datasets correspond to a window in time over which the Darwin location recorded 4884 mm of rainfall. CPOL provides radar20

variables at a 250 m along-gate resolution and a 1° azimuthal resolution. The maximum unambiguous range of CPOL is 150

km. The Python ARM Radar Toolkit (Py-ART) was used to process and visualize the CPOL data (Helmus and Collis, 2016).

Clutter and second trip echoes were removed using a technique based on the texture of the Doppler velocity field previously

applied to CPOL data by Jackson et al. (2018).

For rainfall retrievals, a robust calibration and attenuation correction of Zh and Zdr are paramount. Therefore, in this study,25

Zh was calibrated using the Relative Calibration Adjustment technique (Wolff et al., 2015), previously applied to CPOL data,

that integrates the use of ground clutter with space borne radar observations and the self consistency of the polarimetric radar

moments to monitor for changes in the radar calibration (as for Darwin CPOL, see Louf et al. (2019)). In addition, Zh and Zdr

at C-band are prone to (differential) attenuation from heavy rainfall which may bias (underestimate)R. Therefore, we apply the

Z-PHI method in order to adjust Zh and Zdr for attenuation due to heavy rain. This Z-PHI approach also provides an estimate30

of the specific attenuation Ah (Gu et al., 2011). The φdp was dealiased in order to ensure that it monotonically increases with

range. We then applied a linear programming phase processing technique of Giangrande et al. (2013) to estimate the Kdp from

these dealiased φdp profiles.
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2.2 Disdrometers

Disdrometers are the primary method by which rainfall rates and DSDs parameters are recorded in this study. Previous dis-

drometer efforts at the ARM TWP Darwin site have explored the extended Darwin Joss-Waldovel (J-W) disdrometer record

(e.g. Giangrande et al., 2014a). However, J-W disdrometers are potentially less optimal for assessing dual-polarization radar

efforts in lighter rain and/or small-drop conditions. Recently, ARM ENA disdrometer comparisons suggested that the 2D5

Video Disdrometer (VDIS, also referred to as 2DVD) provided improved estimates of the DSD in light rain (Giangrande et al.,

2019) compared to the J-W disdrometer. Therefore, we opt to explore the VDIS record to characterize the DSDs and perform

subsequent dual-polarization radar quantity calculations from them. In order to ensure quality DSDs, artifacts that are due to

splashing or other causes need to be removed. Following Giangrande et al. (2019) and Wang et al. (2018)’s analysis of VDIS

DSDs, thresholds that check drop fall speed and particle diameter were applied to filter out splashing. After that, the DSDs were10

averaged to 1 minute to reduce noise and then fitted to a normalized gamma distribution of the form N(D) =NwF (D/D0)

determined by two parameters Nw and D0 (Testud et al., 2001). These fits were produced using the method of moments tech-

nique in PyDSD (Ulbrich and Atlas, 1998; Hardin and Guy, 2017) utilized in past ARM efforts analyzing VDIS and J-W DSDs

(Giangrande et al., 2014a, 2019; Wang et al., 2018). In order to ensure a statistically significant sample required to calculate

the gamma distribution parameters, only DSDs with greater than 100 drops and rainfall rates greater than 0.5 mm hr−1 were15

included. After these thresholds, 35 211 raining minutes of rain rate and DSD data remained available for use in this study.

Changing the drop number threshold to 50, 200, and 500 did not significantly impact the results that follow.

2.3 Radar moment simulations from DSD

For each of the 1-minute DSDs in the VDIS dataset shown in Figure 1, the simulated observables Zh, Zdr, Kdp and Ah were

calculated by performing T-matrix scattering simulations (Mishchenko et al., 1996) at C and X-band using Py-TMatrix and20

PyDSD (Leinonen, 2014; Hardin and Guy, 2017) that has been utilized in past ARM efforts Wang et al. (2018); Giangrande

et al. (2019). A drop shape model is required for these simulations. We used Brandes et al. (2002)’s drop size model and

a standard deviation of the canting angle of 12°, following Louf et al. (2019)’s CPOL Zh calibration. The air temperature

was assumed to be 20°C for all of the simulations similar to tropical surface air conditions at Darwin. Ah estimates appeared

physically consistent with measurements of liquid water content W , which are related to either nearly or exactly the 3rd25

moment of the DSD, respectively.

3 DSD observations and simulated radar variables from DSD

3.1 DSD parameters

Figure 1 showsNw,D0, andR estimated from the VDIS for all DSDs considered. TheD0 distribution is right-tailed, and spans

values from 0.5 mm up to 4.5 mm. 90% of the D0 values are less than 1.8 mm. The Nw spans 5 orders of magnitude and R30

reached up to 150 mm hr−1. Much of this DSD variability is typically attributable to differences in whether the precipitation
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originates from stratiform or convective clouds and how great of a role is played by ice-based or mixed phase precipitation

(i.e. Tokay and Short, 1996; Bringi et al., 2003, 2009; Thompson et al., 2015; Dolan et al., 2018). Therefore, it is important

to stratify the DSD data by whether they were produced by stratiform and convective clouds. However, different studies have

defined stratiform and convective clouds using different thresholds for classification depending on cloud conditions. Bringi

et al. (2003), Bringi et al. (2009), and Giangrande et al. (2014a), applied a two-moment DSD-based classification to Darwin5

datasets such that any DSD having log10Nw > 6.3− 1.6D0 is labelled as convective, whereas remaining DSDs are marked

as stratiform. This relationship (herein, BR09) was developed using disdrometer data in Darwin, Colorado, and other land

locations, enabling deep convective rainfall to be distinguished from widespread stratiform precipitation.

More recently, Thompson et al. (2015) (T15) proposed a definition for Manus and Gan Island that classifies all DSDs with

log10Nw > 3.8 as convective, which was consistent with prior work by Bringi et al. (2003, 2009) and Thurai et al. (2010).10

The T15 definition separated the full range of tropical oceanic convection (weak to strong) from stratiform precipitation.

Confirmation for these T15 DSD separations have been subsequently reported by Giangrande et al. (2019) using disdrometers

coupled with cloud radar over the ARM oceanic-mid-latitude ENA facility and by Dolan et al. (2018) with other datasets around

the world. Nevertheless, both Thompson et al. (2015)’s oceanic dataset and recent ENA findings do not cover continental-based,

deep ice-based convection with hail. Such mixed-phase deep convection and organized convective systems are common over15

the Darwin region (Williams et al., 1992; Rutledge et al., 1992; May and Rajopadhyaya, 1999; May and Ballinger, 2007;

Bringi et al., 2009; Thurai et al., 2010; Jackson et al., 2018). Prior studies find that tropical-oceanic cloud behaviors do not

solely drive most of the surface rainfall here, particularly when air flow is from land-to-sea or has significant land-influence.

These considerations may be analogous to other displays for tropical-continental conditions (Tokay and Short, 1996; Wang

et al., 2018), wherein BR09 is typically sufficient to distinguish deeper convective cores from other forms of precipitation.20

Therefore, this study applies the BR09 convective-stratiform classification to distinguish between the strong convective DSDs

and other rain types. We isolate and focus on deep convection in order to study the phenomena most likely to contribute

to strong magnitude variability in R. As shown by Thompson et al. (2015) and Dolan et al. (2018), DSDs not classified as

convection by BR09 could include contributions from both weak ocean-based convection in addition to stratiform clouds.

Here, we simply refer to all non-convective rain classified by BR09 as stratiform.25

Figure 2 shows normalized frequency histograms of Nw, D0, and W , separated by the B09 classification. In addition,

summary statistics of these variables are given in Table 1. There are 35 211 DSDs in total that fit the filtering criteria used to

generate Figure 1. The BR09 classification indicated that 26 131 of these DSDs were not convection. In total, 750 mm, or 21%

of the total rainfall accumulation, originated from stratiform rain (Table 1). Past studies in Darwin by Tokay and Short (1996)

and Giangrande et al. (2014b) reported that about 30% of the total rainfall accumulation originated from stratiform clouds.30

Their data and the data here are consistent with the notion that rainfall in Darwin primarily originates from convection. For

these stratiform DSDs, W is generally less than 1 g m−3 (Figure 2 and Table 1), from which less attenuation of the radar beam

by liquid water is expected and quantified by T18. The W and D0 values in Table 1 are lower in stratiform DSDs compared to

convective DSDs. The smaller drops in stratiform DSDs for givenR shows that these DSDs more likely originated from crystal
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aggregation aloft in stratiform rain devoid of melting hail (Thurai et al., 2010; Dolan et al., 2018). These relative differences in

W , D0 and N0 have been shown in Darwin previously (Thurai et al., 2010; Giangrande et al., 2014a).

Convective DSDs exhibited right-tailed distributions of D0 and left tailed distributions of N0 and W (Figure 2). In Figure 1,

the right tail of D0 is associated with lower N0 and W , consistent with fewer and larger drops. This tail has been observed in

previous studies in Darwin (Giangrande et al., 2014a) as well as in other regions such as the Amazon (Wang et al., 2018) and5

the ARM ENA site (Giangrande et al., 2019). This tail is likely caused by different stages of deep convection being sampled.

Large hail grown by accretion that then melts and falls to the ground has very low N0 and very high D0 (Bringi et al., 2003,

2009). At the edges of deep convective clouds, size sorting favors fewer, but much larger drops hitting the ground before

the more numerous smaller drops do (Gunn and Marshall, 1955; Thompson et al., 2015). In addition, for given ranges of R,

there are lower values of Nw and higher values of D0 in Table 1 for convective DSDs compared to stratiform DSDs. This10

is consistent with land-based convective-stratiform classification proposed by BR09 using data from Darwin and also other

mid-latitude regions such as Colorado.

When looking at histograms of R in Figure 2, it is clear that there is some overlap between convective and stratiform rain

DSDs (the stratiform category of BR09 could also include weak oceanic convection, T15). We find that, 95.7% of the DSDs

with R> 10 mm hr−1 are classified as convective, while 9.7% of the DSDs with R< 10 mm hr−1 are convective. This is15

consistent with prior studies of tropical rain (T15, Rutledge et al., 2019). Therefore this Darwin data shows that the majority of

cases withR< 10mmhr−1 are likely produced by stratiform rain and weak convection while the casesR> 10mmhr−1 are

likely the result of deep convection. Therefore, the DSDs collected here are the result of different modes of rain drop formation.

Warm rain processes in narrower DSDs are more likely present when R< 10mm hr−1 (T15). Meanwhile, deeper convection

where cold rain processes (melting hail) occur is more likely to be present during times when R> 10 mm hr−1. Past studies20

have used R= 10 mm hr−1 as a threshold for separating convective and stratiform DSDs (Tokay and Short, 1996; Nzeukou

et al., 2004), so this separation threshold is consistent with past literature examining DSDs in Darwin. However, as shown here

and in Giangrande et al. (2014a), thresholds based on R exclude some weak convective events and the lateral edges of strong

convection when number concentration is still low.

3.2 Simulated radar moments from DSD25

Figure 3 shows scatter plots of R as a function of simulated Zh, Kdp, and Ah at C- and X-band from the VDIS DSDs in Figure

1. In addition, consistent with what has been done in many past studies (i.e. Marshall and Palmer (1948); Aydin and Giridhar

(1992); Matrosov (2005); Matrosov et al. (2006); Wang et al. (2013); Ryzhkov et al. (2014); Thompson et al. (2015, 2018);

Wang et al. (2018); Giangrande et al. (2019)), Figure 3 and Table 2 show power law fit relationships in the form of R= aXb

or R= aXbY c. The fits in Table 2 take the linear forms of Zh, Zdr, and Ah as inputs, denoted as zh, zdr, and ah respectively.30

A bootstrap approach where 1000 fits from 10,000 randomly chosen DSDs, with replacement, from the VDIS dataset, similar

to the approach taken by Wang et al. (2018), provided confidence intervals for each fit. The fit curve from each of the 1000

fits is plotted in Figure 3. The width of the 95% confidence intervals of a, b, and c of each fit (Table 2) are less than 5% of the
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mean a, b, and c for each randomly generated fit. Furthermore, the randomly generated fits are overlapping in Figure 3, with

differences in R less than 10%. This therefore shows that the generated fits are robust.

4 Assessment of applicability of different power law retrievals

Using the 4-year Darwin dataset of DSDs, R, and simulated radar moment data shown in Section 3.2, this section assesses the

applicability of dual polarization moments and specific attenuation forR estimation in Darwin. Three criteria will be examined.5

First, this study estimates the spread in the p.d.f. of R for given radar moments in order to estimate their potential uncertainty

incurred in a power-law fit of R from using these moments as input data. Secondly, a principal component analysis (PCA)

is conducted to determine whether dual polarization moments or specific attenuation best contribute to the variability in R.

This exercise is designed to guide R retrieval development. Finally, the R estimators developed in Section 3.2 are applied to

the CPOL dataset and compared against VDIS-observed R in order to test the performance of these retrievals with observed10

C-band radar data.

4.1 Uncertainty due to use of fit

One metric by which the applicability of given radar retrievals can be assessed is by examining the uncertainty, or potential

for uncertainty, of the retrieval by considering the spread of R. While in Section 3.2 the bootstrap approach showed that the

there is little difference in the power law fits due simply to random sampling, there can be an order of magnitude variability15

in the distribution of R for a given Zh, Kdp, Zdr, or Ah, creating an uncertainty due to the use of a fit. This is why many

studies used multiple linear regression, with multiple input variables, to form more constrained power-law R estimators. To

define a metric for potential uncertainty in R, this study calculates the spread in the p.d.f of R for a given radar observable

by subtracting the first quartile of R from the third quartile of R taken over 40 log-uniformly spaced bins of the given radar

observable (Kirstetter et al., 2015). The range of these bins are 0 to 70 dBZ for Zh, 10−3dB km−1 to 100dB km−1 for Ah,20

10−3◦ km−1 to 10◦ km−1 for Kdp, and 0 to 10 dB for Zdr. The results of these p.d.f spread calculations as a function of the

mean R over each radar observable bin are shown in Figure 4 for the C- and-X band simulated radar quantities.

In Figures 4ab, theAh-based estimators give the lowest spreads, followed byKdp- then Zh-based estimators for time periods

when R< 10mm hr−1. However, it is important to note that, at these R< 10mm hr−1, the noisier nature of Kdp, and hence

Ah makes the applicability of these quantities to R estimators questionable. In fact, numerous past studies using CSAPR and25

XSAPR have found the use of Kdp- and Ah-based estimators to be only applicable or preferable only for conditions with

Zh > 35-40 dBZ, present at rainfall rates greater than roughly 10 mm hr−1 (Park et al., 2005b, a; Ryzhkov et al., 2005;

Giangrande et al., 2014b). Algorithms by Cifelli et al. (2011) and Thompson et al. (2018) use data quality thresholds to avoid

use of noisy input data in R estimators. Given that Table 1 shows that the mean Zh is under 40 dBZ for R< 10mm hr−1, this

suggests that using the Zh-based estimators is the most viable option when 1<R< 10 mm hr−1, similar to results using the30

CSU blended algorithm in Cifelli et al. (2011), Thompson et al. (2018), and Rutledge et al. (2019). However, these Zh-based

estimators produced the highest p.d.f. spreads and greatest R uncertainty, shown in Figure 4 and also quantified by Thompson
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et al. (2018). The current analysis and these prior studies highlight limitations in estimating light rainfall rates from scanning

radars, since they must rely on Zh in 1<R< 10 mm hr−1.

Looking at R> 10 mm hr−1, the p.d.f.s of R from Kdp-based estimators have the lowest spread at both C and X band in

Figure 4. In the blended algorithm used by Cifelli et al. (2011), Thompson et al. (2018), and Rutledge et al. (2019),Kdp is used

much more frequently for R estimation at R>> 10 mm hr−1 because it exceeds necessary data quality thresholds. The D05

was higher in convective DSDs with R> 10 mm hr−1 (Table 1), meaning the drop populations were more oblate, produced

more total liquid water and rain, and therefore produced significantKdp (Bringi and Chandrasekar, 2001). For instance, in Table

1, D0 increases from 1.54 mm to 1.77 mm with increasing R when R> 10mm hr−1 for the convective DSDs, also shown by

Thompson et al. (2018). By definition,Kdp becomes proportional toW andR once drops are large enough to be oblate (Bringi

and Chandrasekar, 2001). This is consistent with results that show Kdp is highly correlated with R when large, oblate drops10

are present and therefore when R> 10mm hr−1. The spread in R vs Kdp is lower for ranges of R> 10mm hr−1 compared

to the other observables at the ARM TWP Darwin site.

Figure 4 shows that the spread in the p.d.f is lower when multiple radar observables are considered over the entire range of

R compared to when a single observable is used. In particular, the spread in the p.d.f. of R is lowest when Kdp and Zdr are

constrained for time periods whenR> 1.5mmhr−1. Even the use of Zh, and Zdr as constraints lowers the spread in the p.d.f.15

of R compared to using a single radar observable. (Kdp, Zdr)-based estimators are used to estimate R when R> 10mm hr−1

in the blended algorithm used by Cifelli et al. (2011), Thompson et al. (2018), and Rutledge et al. (2019). Therefore, similar to

past studies in Colorado, Oklahoma, and Manus and Gan Island, this shows that using multiple linear regression reduces the

uncertainty in R due to the use of fits for the CPOL data in Darwin.

4.2 Principal component analysis20

The previous subsection revealed which rainfall rate estimators most minimize the spread in the p.d.f. of R for these Darwin

datasets. Now, this section explores the utility of using Zh, Zdr, Kdp, or Ah to estimate R. To do this, this section shows a

PCA conducted on the simulated VDIS radar moments and Ah. The first two components explained over 99% of the variance

in R. The PCA was applied to Ah, Zh, and Zdr, in order to minimize variability due to the many orders of magnitude that

these variables span. The results of this PCA are shown in Figure 5 for C-band and 6 for X-band. The explanatory power of the25

second principal component was small compared to the first, only becoming non-negligible at R> 100 mm hr−1 in Figure 5

and at R> 10 mm hr−1 Figure 6.

The previous analysis in Table 1 and Figure 2 shows that stratiform and possible weak convective clouds primarily contribute

to rainfall for times when R< 10 mm hr−1 while stronger convective rain classified by BR98 had higher R. Since we expect

rainfall from stratiform and convective clouds to have DSDs with different characteristics for a givenR, andR= 10mm hr−130

was a suitable threshold to distinguish deep convection from weaker convection and stratiform rain, the PCA in Figure 5 and

6 is further stratified by R in order to account for this DSD variability. When restricting the PCA to 1<R< 10 mm hr−1,

only Zh explains any of the variance of R in Figure 5 and 6. This is again consistent with past efforts that have preferred Zh
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estimators for estimating these lighter rainfall rates from scanning radars (Cifelli et al., 2011; Park et al., 2005b; Ryzhkov et al.,

2005; Giangrande et al., 2014a, 2019; Thompson et al., 2018; Wang et al., 2018; Rutledge et al., 2019).

The second principal component has high absolute values in the Kdp and Zdr directions at 10<R< 100 mm hr−1. The

variance due to the second principal component with higher absolute values in the Kdp and Zdr directions starts to exceed 1%,

for R> 100mm hr−1. Thus, Kdp and Zdr become better suited for R estimation as R increases, which confirms prior studies5

(e.g. Bringi and Chandrasekar (2001)). The first principal component in the Kdp direction is 0.25 at 1<R< 10 mm hr−1,

and 0.7 at R> 100 mm hr−1. Therefore, it is clear from this analysis that Kdp has more predictive power for R at these

higher rainfall rates. This further confirms and quantifies prior studies that showed Kdp-based estimators for R are successful

at higher rain rates (Sachidananda and Zrnic’, 1985; Sachidananda and Zrnić, 1987). This is also consistent with previous

studies recommending the use of Kdp-based estimators over Ah-based estimators for CSAPR and XSAPR at the ARM SGP10

site to sample deep convection (Giangrande et al., 2014b).

The PCA shows that Ah has little predictive capability for R beyond the other observables for DSDs in Darwin except for

R > 100 mm hr−1 at X-band in Figure 6a. Past ARM efforts at SGP have shown that, for XSAPR radars, severe attenuation

prohibited accurate rainfall estimation for this range ofR (Giangrande et al., 2014b). So, whileAh may provide more predictive

capability at X-band at R> 100 mm hr−1, it is unlikely that XSAPRs could utilize Ah in these conditions for practice.15

Therefore, this and the PCA shows that using Ah for developing R estimators for Darwin ARM radars and CPOL, in coastal

tropical regions provides no advantage over using other radar observables.

5 Comparisons of CPOL retrievals with VDIS

As a final metric for evaluating the applicability of various radar quantities to the development of R estimators for ARM

radars deployed at the TWP ARM site, the R estimators for C-band radars in Section 2.2 were applied to the gate immediately20

over the VDIS at 0.51 km altitude above ground level. First, in order to compare the estimators, Figure 7 shows scatter

plots of R observed from VDIS compared to observed Zh, Kdp and Ah from CPOL with the R estimator developed from

the VDIS data overlaid on the scatter plot. It is apparent that there is one-to-two orders of magnitude of scatter in R, and

(RMSE > 8.5 mm hr−1), in all panels of Figure 7. For Figures 7ac, the Zh values are generally lower than the fit- produced

values for R> 50 mm hr−1. While the Zh are, to the best of possible efforts, adjusted for attenuation, there is still the25

possibility that Zh remains affected by attenuation at these high R that was uncorrectable. In addition, factors including the

horizontal advection and breakup of drops as they travel from the CPOL sample gate to the VDIS, as well as noise in the

Kdp and Ah fields at R< 10 mm hr−1, are likely inducing scatter. Figure 7 therefore shows that a single radar observable

does not adequately describe the full variability of R. As shown in many prior studies, R estimation could be improved by

applying a blend of R estimators depending on rain conditions or radar multivariable conditions, or by employing multiple30

linear regression with more variables in each R estimator.

In order to determine the blend, or set of R estimators based on rain conditions, that can provide the best agreement with

VDIS observations, Figure 8 shows comparisons of 10-minute averages of R estimated from CPOL Zh, Ah, and Kdp. The
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input data to theR estimators are from the CPOL gate immediately over VDIS. The rain-branch of the CSU-blended technique,

originally developed for Colorado by Cifelli et al. (2011), and then subsequently modified for the tropical oceans by Thompson

et al. (2018), is also included in Figure 8. The CSU-blended technique uses a decision tree based on data quality thresholds

for Zh, Kdp, and Zdr to select an R estimator. The modifications by Thompson et al. (2018) were developed for conditions

in Manus and Gan Island where stronger convection that produces hail that can further melt into large surface raindrops is5

not common. Therefore, since such convection is common in Darwin, the estimators used by the CSU-blended technique to

generate Figure 8 were changed to those in Table 2 in order to more accurately represent the local DSDs sampled in Darwin

over several years. The data quality thresholds used by (Thompson et al., 2018) for tropical oceans were also used here, so only

the coefficients of the R estimators were changed.

The analysis, here, and in previous studies shows that different microphysical processes likely occur at different ranges of10

R. Namely, raindrops forming from melting hail are unlikely at 1<R< 10 mm hr−1, but more likely during times when

R> 10 mm hr−1. Therefore, in order to analyze how the agreement between estimated R and VDIS-observed R changes for

these different conditions, the mean, 5th, and 95th percentiles of the CPOL estimated R for log-uniformly spaced intervals of

VDIS-observed R are shown in Figure 8. The first focus is on time periods with 1<R< 10 mm hr−1 where stratiform rain

and weaker convection are more likely present. It is clear that the mean R estimated by the Kdp-, (Kdp,Zdr)- and Ah-based15

estimators greatly overestimate the mean VDIS observed R by over a factor of 10 for these conditions (Figure 8bce). However,

the mean R from both the CSU-blended technique and the Zh-based estimators are on average 12% higher than the mean

VDIS-observed R (Figure 8af). Consistent with the previous analysis, this again supports the notion that Zh-based estimators,

and the modified CSU-blended technique, are most appropriate for use in these conditions characterized by stratiform and

weak convective rainfall.20

Switching focus to analyzing conditions ofR> 10mmhr−1, in which strong convection that is capable of forming hail that

melts into raindrops is much more likely, R from CPOL calculated from Zh- and (Zh,Zdr)-based estimators underestimate

the VDIS-observed R (Figure 7ae). On average, the mean estimated R from the modified CSU-blended technique is 17%

lower than the mean observed R (Figure 8f), while the Kdp-estimated R is 21% higher (Figure 8c), Ar-estimated R is 22%

higher (Figure 8d), and Kdp,Zdr-estimated R is 36% higher (Figure 8d) for these time periods. This demonstrates that R25

estimated from the CSU-blended technique, on average, provides the best agreement with VDIS-observed R for these time

periods dominated by stronger convection. The CSU-blended technique also gave estimates of R in best agreement with

VDIS-observed R for the time periods dominated by stratiform rain and weaker convection. Therefore, this demonstrates that

the use of CSU-blended technique, with modifications to the coefficients of the R estimators for Darwin DSDs, provides the

optimal estimate of R for the CPOL data in Darwin.30

6 Conclusions

The C-band POLarization (CPOL) Radar at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM)

Tropical Western Pacific (TWP) site in Darwin has been operating for over a decade and thus provides an ample dataset for
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developing essential rainfall climatologies. These are important for understanding rainfall variability and for validation of

global climate models. A crucial quantity in this dataset includes the rainfall rate R. R is not detected directly by radars, but is

retrieved from radar observables such as radar reflectivity factorZh, differential reflectivityZdr, specific differential phaseKdp,

and specific horizontal attenuation Ah. Algorithms using Ah at S-band have been successful for the NOAA NEXRAD radars,

but studies utilizing ARM C- and X-band scanning radars at the ARM Southern Great Plains site have shown that retrievals5

using Kdp without Zdr are most successful. Most prior studies are based off of limited data compared to the four year dataset

available from ARM TWP Darwin site. This therefore motivated a study to determine which of these radar observables are

most applicable for retrieving rainfall retrievals for the CPOL and ARM radars in Darwin. We use a much larger dataset than

previous efforts. We first developed R estimators from simulated Zh, Zdr, Kdp, and Ah from video disdrometer (VDIS) data

in Darwin for C- and X-band radar wavelengths. The VDIS observations generally showed that Darwin rainfall is typically10

stratiform (in terms of frequency), having median drop diameters D0 less than 1.5 mm at R< 10 mm hr−1. Rainfall here

contributed by convection had D0 > 1.5 mm for R> 10 mm hr−1, consistent with past observations in Darwin.

In order to determine the applicability of Zh, Zdr, Kdp, and Ah a principal component analysis (PCA) was conducted on

Zh, Zdr, Kdp, and Ah simulated from the VDIS DSDs. The majority of the variability in R was attributable to variations in Zh

for 1<R< 10 mm hr−1, with Kdp becoming increasingly important for explaining R variability at R> 10 mm hr−1. Ah15

provided little additional predictive capability beyond the other observables for R observed by the VDIS for convection over

Darwin. The uncertainty in R estimators fitted to these radar inputs was estimated. It was shown that the use of Kdp-based

estimators, as well as estimators based on multiple observables, minimizes this uncertainty, similar to results from prior studies.

To further assess the applicability of the various radar observables to estimating R, these different R estimators (formed

from simulated VDIS radar variables) were tested on CPOL observations at the radar gate about 0.56 km over the VDIS.20

Each R estimator was tested individually, and also in the rain-based branch of the CSU Blended algorithm that chooses

between estimators based on data quality thresholds (Cifelli et al., 2011; Thompson et al., 2018; Rutledge et al., 2019). The

highest-performing estimation techniques for X- and C- band at Darwin were the CSU-blended technique for rainfall rates

of 1<R< 10 mm hr−1 as well as when R> 10 mm hr−1. This demonstrates that the CSU-blended technique is best for

stratiform and weak convective rain as well as strong convection in Darwin. Local R estimators were used in the blended25

algorithm to more accurately represent DSDs in Darwin. The methodology used in this study could be used in future studies

to quantify uncertainty in R estimation methods.

Code and data availability. The code used for the analysis of the CPOL data is available at http://www.github.com/EVS-ATMOS/cmdv-

rrm-anl/. The CPOL data can be downloaded from the Atmospheric Radiation Measurement Facility archive.
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Table 1. Mean DSD parameters for given R ranges and BR09 convective-stratiform classification.

R range [mm hr−1] No DSD Mean R [mm hr−1] log10 Nw [m−3 mm−1] D0 [mm] Zh [dBZ] W [g m−3]

C S C S C S C S C S C S

0.5-2 679 15052 1.06 1.07 2.40 1.17 2.29 3.38 4.0 24.8 0.06 0.05

2-4 443 6568 2.97 2.85 3.08 3.66 1.96 1.26 32.1 30.5 0.14 0.13

4-6 436 2694 5.00 4.84 3.38 3.89 1.79 1.27 34.8 33.2 0.24 0.23

6-10 1216 1536 8.08 7.36 3.85 4.13 1.54 1.23 36.3 35.2 0.39 0.36

10-20 2422 257 14.3 12.6 4.07 4.34 1.52 1.24 39.5 39.7 0.69 0.60

20-40 2036 24 28.5 25.4 4.19 4.53 1.66 1.32 44.2 48.3 1.33 1.24

40-60 956 0 48.9 n/a 4.32 n/a 1.75 n/a 48.1 n/a 2.30 n/a

60+ 887 0 85.9 n/a 4.54 n/a 1.77 n/a 51.5 n/a 4.11 n/a
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Table 2. 95% confidence intervals of the generated fit parameters, RMSE, and correlation coefficient for each fit.

Relationship a b c RMSE [mm hr−1] Correlation coefficient

C-band

R(zh) 0.0208± 0.00 0.70 ± 0.0002 16.66 0.95

R(zh) convective 0.0520 ±0.00002 0.62 ±0.0001 35.30 0.91

R(zh) stratiform 0.0307 ±0.00005 0.63 ±0.0002 2.75 0.90

R(Kdp) 26.116± 0.01 0.77± 0.0001 4.67 0.96

R(ah) 258.89± 0.31 0.87± 0.0002 12.76 0.79

R(zh, zdr) 0.0122± 0.0000 0.85± 0.0002 −4.25± 0.006 4.09 0.97

R(Kdp,zdr) 46.2347± 0.06 0.90± 0.0002 −1.69 ± 0.006 3.86 0.99

X-band

R(zh) 0.0207 ±0.00004 0.66 ±0.000 16.03 0.94

R(zh) convective 0.0853 ±0.00003 0.56 ±0.000 35.2 0.88

R(zh) stratiform 0.0360 ±0.00006 0.61 ±0.000 2.79 0.89

R(Kdp) 17.5432 ±0.006 0.77 ±0.0001 4.38 0.97

R(ah) 49.54 ±0.027 0.80 ±0.0001 5.56 0.79

R(zh,zdr) 0.011 ±0.00001 0.89 ±0.0001 -5.35 ±0.002 4.20 0.98

R(Kdp,zdr) 31.794 ±0.017 0.94 ±0.0001 -1.99 ±0.002 3.88 0.98
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Figure 1. Frequency histogram of (a) Nw and D0, (b) R and D0, and (c) R and Nw from the VDIS for all of the DSDs containing more

than 100 drops in each sample. The criteria used to classify stratiform and convective DSDs from Bringi et al. (2009) (BR09) and Thompson

et al. (2015) (T15) are shown by the lines.
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Figure 2. Normalized frequency histograms of (a) Nw, (b) D0, (c) W , and (d) R separated by the BR09 stratiform-convective classification.
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Figure 3. R from VDIS as a function of (a) Zh, (b) Ah, (c) Kdp, for the simulated radar moments from VDIS at C-band. (d-f) as in (a-c)

but for X-band. Each colored line represents a power law best fit of the variables. Each black line represents a fit produced by the bootstrap

technique applied to the data in each panel.
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Figure 4. The spread in the p.d.f. of R estimated using the methodology of Kirstetter et al. (2015) as a function of mean R for given ranges

of radar moments at C-band (a), and X-band (b)

.
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Figure 5. The first (a) and second (b) principal components of the simulated moments in (Ah, Zh, Kdp, Zdr) phase space for S-band. (c)

shows the variance in R explained by each principal component for the C-band simulated moments.
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Figure 6. As Figure 5 but for X-band.
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Figure 7. R from the VDIS as a function of (a) Zh for convective DSDs, (b) Kdp, (c) Zh for stratiform DSDs, and (d) Ah from CPOL.

Solid lines are the R estimators in Figure 3.

27

https://doi.org/10.5194/amt-2020-253
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 8. Normalized frequency distributions 10 minute averages of R estimated from the lowest gate from CPOL over VDIS using given

estimators in Figure 3 as a function of 10 minute averages of R recorded by the VDIS. Estimators used to estimate R from CPOL are shown

in each panel. Solid lines denote medians, dashed lines are the 5th and 95th percentiles of the estimated R from CPOL.
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