Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Preprints
https://doi.org/10.5194/amt-2020-27
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2020-27
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  26 May 2020

26 May 2020

Review status
This preprint is currently under review for the journal AMT.

Spectral correction of turbulent energy damping on wind LiDAR measurements due to range-gate averaging

Matteo Puccioni and Giacomo Valerio Iungo Matteo Puccioni and Giacomo Valerio Iungo
  • Wind Fluids and Experiments (WindFluX) Laboratory, Mechanical Engineering Department, The University of Texas at Dallas, 800 W Campbell Rd, 75080 Richardson, Texas, USA

Abstract. Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within each range gate, generally modeled as a convolution between the actual velocity projected along the LiDAR line-of-sight and a weighting function representing the energy distribution of the laser pulse along the range gate. As a result, the spectral energy of the turbulent velocity fluctuations is damped within the inertial sub-range with respective reduction of the velocity variance, and, thus, not allowing to take advantage of the achieved spatio-temporal resolution of the LiDAR technology. In this article, we propose to correct this turbulent energy damping on the LiDAR measurements by reversing the effect of a low-pass filter, which can be estimated directly from the LiDAR measurements. LiDAR data acquired from three different field campaigns are analyzed to describe the proposed technique, investigate the variability of the filter parameters and, for one dataset, assess the procedure for spectral LiDAR correction against sonic anemometer data. It is found that the order of the low-pass filter used for modeling the energy damping on the LiDAR velocity measurements has negligible effects on the correction of the second-order statistics of the wind velocity. In contrast, its cutoff frequency plays a significant role in the spectral correction encompassing the smoothing effects connected with the LiDAR gate length.

Matteo Puccioni and Giacomo Valerio Iungo

Interactive discussion

Status: open (extended)
Status: open (extended)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Matteo Puccioni and Giacomo Valerio Iungo

Matteo Puccioni and Giacomo Valerio Iungo

Viewed

Total article views: 331 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
266 50 15 331 14 9
  • HTML: 266
  • PDF: 50
  • XML: 15
  • Total: 331
  • BibTeX: 14
  • EndNote: 9
Views and downloads (calculated since 26 May 2020)
Cumulative views and downloads (calculated since 26 May 2020)

Viewed (geographical distribution)

Total article views: 311 (including HTML, PDF, and XML) Thereof 311 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 21 Sep 2020
Publications Copernicus
Download
Short summary
A procedure for correcting the turbulent-energy damping connected with the range-gate averaging of wind LiDARs is proposed. This effect of the LiDAR measuring process is modeled through a low-pass filter, whose order and cut-off frequency are estimated directly from the LiDAR data. The proposed procedure is first assessed through simultaneous and co-located LiDAR and sonic-anemometer measurements, then it is applied to several datasets collected at sites with different terrain roughness.
A procedure for correcting the turbulent-energy damping connected with the range-gate averaging...
Citation