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Abstract. Global Navigation Satellite Systems (GNSS) have been proved to be an excellent technology for retrieving
precipitable water vapor (PWV). In GNSS meteorology, PWV at a station is obtained from a conversion of the zenith wet
delay (ZWD) of GNSS signals received at the station using a conversion factor which is a function of weighted mean
temperature (T,,,) along the vertical direction in the atmosphere over the site. Thus, the accuracy of T, directly affects the
quality of the GNSS-derived PWV. Currently, the T,, value at a target height level is commonly modelled using the T,
value at a specific height and a simple linear decay function, whilst the vertical nonlinear variation in T, is neglected. This
may result in large errors in the T,, result for the target height level, as the variation trend in the vertical direction of T,,
may not be linear. In this research, a new global grid-based T,, empirical model with a horizontal resolution of 1°x 1°, named
GGNTm, was constructed using ECMWF ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017. A
three-order polynomial function was utilized to fit the vertical nonlinear variation in T,, at the grid points, and the temporal
variation in each of the four coefficients in the T, fitting function was also modelled with the variables of the mean, annual
and semi-annual amplitudes of the 10-year time series coefficients. The performance of the new model was evaluated using
its predicted T, values in 2018 to compare with the following two references in the same year 1) T,, from ERA5 hourly
reanalysis with the horizontal resolution of 5°x 5°; 2) T,,, from atmospheric profiles from 428 globally distributed radiosonde
stations. Compared to the first reference, the mean RMSEs of the model predicted T,, values over all global grid points at the
950hPa and 500hPa pressure levels were 3.35K and 3.94K respectively. Compared to the second reference, the mean bias and
mean RMSE of the model predicted T,, values over the 428 radiosonde stations at the surface level were 0.34K and 3.89K
respectively; the mean bias and mean RMSE of the model’s T,, values over all pressure levels in the height range from the
surface to 10 km altitude were —0.16K and 4.20K respectively. The new model results were also compared with that of the
GTrop and GWMT _D models in which different height correction methods were also applied. Results indicated that significant
improvements made by the new model were at high-altitude pressure levels; in all five height ranges, GGNTm results were
generally unbiased, and their accuracy varied little with height. The improvement in PWV brought by GGNTm was also
evaluated. These results suggest that considering the vertical nonlinear variation in T,, and the temporal variation in the
coefficients of the T,, model can significantly improve the accuracy of model-predicted Tm for a GNSS receiver that is
located in anywhere below the tropopause (assumed to be 10 km), which has significance for applications requiring real-time

or near real-time PWV converted from GNSS signals.
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1 Introduction

Water vapor, as an important greenhouse gas, is tightly related to weather variations, hence, it is crucial to monitor the
water vapor content in the atmosphere for reliable weather forecast. The meteorological parameter that is closely related to
water vapor is precipitable water vapor (PWV) and it can be measured by various technologies such as radiosondes, remote
sensing satellites and water vapor radiometers. Global Navigation Satellite Systems (GNSS), which were initially designed for
positioning, navigation, and timing, can be used to retrieve the zenith tropospheric delay (ZTD) of the GNSS signal over an
observation station. The ZTD can be divided into zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD). The ZHD can
usually be obtained at a high accuracy from the Saastamoinen model together with measured meteorological data at the station.
The atmospheric water vapor information is contained in the GNSS-ZTD, more precisely, in the GNSS-ZWD, which can be
converted into PWV. Different from the other atmospheric measurement techniques, GNSS receivers are regarded as cost-
effective equipment for meteorological research, the main advantage of the GNSS-based method is its real-time, stable, high-
temporal-resolution and relative long-term capabilities. The GNSS were first applied to meteorological research in the 1990s
(Bevis et al., 1992). Some preliminary research in relation to the long-term feature of the GNSS ZTD/PWYV series and the
relationship between GNSS-PWV and weather or climate issues have already been carried out (Bianchi et al., 2016; Bonafoni
and Biondi, 2016; Calori et al., 2016; Chen et al., 2018; Choy et al., 2013; He et al., 2019; Junbo Shi et al., 2015; Rohm et al.,
2014a; Wang et al., 2016, 2018; Zhang et al., 2015). Near real-time GNSS-ZTD products estimated from GNSS data processing
have been routinely assimilated into numerical weather models (NWM) for improving the performance of weather forecast
(Bennitt and Jupp, 2012; Dousa and Vaclavovic, 2014; Guerova et al., 2016; Le Marshall et al., 2012, 2019).

To obtain GNSS-PWYV over a station, the first step is to estimate the ZTD of the station from GNSS data processing, and
the two most common data processing strategies are the network approach and precise point positioning (PPP) approach (Ding
et al., 2017; Dousa et al., 2016; Guerova et al., 2016; Li et al., 2015; Lu et al., 2015; Rohm et al., 2014b; Yuan et al., 2014;
Zhou et al., 2020). The former uses double-differenced observations, while the latter uses un-differenced observations in the
observation equation system. The ZWD can be obtained from subtracting the ZHD from the GNSS-ZTD, or directly estimated
if the ZHD has been corrected in the GNSS observation equation system, depending on the processing strategies adopted. Then
the GNSS-PWV can be converted by:

PWV =1-ZWD (1)
where [ is the conversion factor (Askne and Nordius, 1987; Bevis et al., 1992), which is given by:
10°

M=——p—
PRy + K5)
m

2
where p,, is the density of liquid water; R, = 461.5]/(kg*K) is the specific gas constant for water vapor; kj =
22.1 K/hPa and k; = 373900 K% /hPa are atmospheric refractivity constants; T, is the weighted mean temperature over
the GNSS site, which is defined and approximated through the following equation (Davis et al., 1985):
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where e and T are the water vapor pressure (hPa) and absolute temperature (K) respectively; n is the number of the layers;
e, T; and Ah; are the mean water vapor pressure, mean temperature, and thickness of the ith layer respectively.

From Eq. (2), one can see that T, is a crucial variable for the determination of the conversion factor [1, which in turn
affects the determination of PWV expressed by Eq. (1). The significance of obtaining accurate T,, values has been
demonstrated by previous researches (Bevis, 1994; Jiang et al., 2019a; Ning et al., 2016; Wang et al., 2005, 2016). T,, can be
calculated from an observed atmospheric profile. This observed atmospheric profile can be acquired from a radiosonde station,
which is valid only for the sounding site. In fact, for GNSS stations, they are usually not co-located with any regional
radiosonde stations, i.e. observed atmospheric profiles are unavailable, as a result, equation (3) is not applicable for GNSS
stations. Moreover, even a GNSS station is co-located with a radiosonde station, due to the low temporal and spatial resolution
of radiosonde data, the temporal resolution of its resultant T, is also low, which cannot meet the requirements of GNSS near
real-time/real-time (NRT/RT) applications such as the conversion of GNSS-ZWD time series into PWV time series. The
atmospheric profiles from NWM data can be obtained for T,, determination (Wang et al., 2005, 2016). However, for some
time-critical applications, NRT/RT Tm is essential for NRT/RT GNSS-PWYV determination, thus the main drawback in using
the reanalysis data is its latency issue, and it is still difficult for most users to obtain predicted results to obtain from the NWM
data. Thus, it is of great importance to develop empirical T,, models for time-critical applications. Some T,, models have
been developed with a focus of improving the accuracy of the T,,, and these empirical models can be classified into two
categories. One category is such a model that depends on in situ surface temperature observation T, like the Bevis model,
which is a simple linear function expressed as: T,, = a + bTy; (Bevis et al., 1992). The two coefficients of such a linear
function can be determined from the linear regression method based on long-term regional radiosonde data. However, the
deployment of radiosonde stations is geographically sparse due to their high cost, and even worse is that there are no radiosonde
stations at all in some areas. One of the possible ways to solve the availability issue is to use reanalysis data to develop Ts-Tm
models. However, such a reanalysis-based Ts-Tm model may not be as accurate as that derived from local radiosonde profiles.
Yao et al. (2014a) developed a global latitude-dependent T,, — T, linear model using T,, data from the global geodetic
observing system (GGOS) and T, data from the European center for medium-range weather forecasts (ECMWF). Jiang
developed a time-varying global gridded T,, —T; model using both T,, and T, derived from ERA-Interim(Jiang et al.,
2019a). Ding (2018, 2020) developed two generations of global T,, models using the neural network algorithm, in which
temperature observations were required for the input and the models performed well. The T,, models mentioned above need
in situ meteorological observations (mainly T;) as the model’s input. However, for GNSS stations, not all stations are equipped
with meteorological sensors. Although the meteorological parameters at the user station can also be interpolated using the

actual meteorological measurements nearby, the interpolation error depends on the terrain difference between the
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meteorological sensor’s location and the point of interest in addition the interpolation methods used.

To address the above-mentioned issues, the type of empirical models that are independent of meteorological observations
had to be constructed. Yao et al. (2014b, 2012, 2013) used spherical harmonics to develop the GWMT, GTM-II and GTM-III
models, in which both the height and the periodicity of T,, were taken into account. Huang et al. (2019a) established a global
T,, model using the sliding window algorithm, which was based on varying latitude and altitude. The widely used GPT2w
model (B&hm et al., 2015) and its successor, GPT3 (Landskron and B&hm, 2018), provided gridded results with both 1°x1°and
5°%x5° horizontal resolutions and the models also contain a few terms related to temporal variations in T,,, including the mean,
annual and semiannual amplitudes. However, the height differences between the user site, e.g. a GNSS station, and its nearest
four surrounding grid points were not considered. Recent studies have overcome this problem by providing T, values at
various heights ranging from ground surface to the upper troposphere. He et al. (2017) developed a voxel-based global model,
named GWMT-D, using the T,,values at four height levels of reanalysis data from the National Centers for Environmental
Prediction (NCEP) to construct the voxels. The T, predicted for the user site can be obtained from an interpolation of the T,
values at the eight grid points of the voxel that contains the user site. In recent studies, some researchers used a T,, lapse-rate,
the rate of change in T,, with altitude, to correct the effect of the height element on T,,,, e.g. IGPT2w (Huang et al., 2019b),
GTm_R (Li et al., 2020) and GPT2wh (Yang et al., 2020). The GTrop model (Sun et al., 2019), developed for predicting both
ZTD and T,,, also took into account the T, lapse-rate, and it outperforms GPT2w obviously at altitudes under 10 km.

We have noticed that some studies have extended the GNSS-PWYV sensing to a shipborne GNSS receiver, or GNSS
receiver that onboard other moving vehicles (Fan et al., 2016; Wang et al., 2019; Webb et al., 2016). Thus, we concentrated
on developing a high-accuracy unbiased empirical model for predicting Tm values in any possible places, which is
meaningful for GNSS meteorology. As previously discussed, considering the lapse-rate in a T,, model can improve the
model’s accuracy. However, the assumption that T,, linearly varies with height, which many recently developed models
were based on, may not agree well with the truth. In this research, a new global grid-based empirical T,, model, named
GGNTm, in which the vertical nonlinear variation of T,, was taken into account, was developed using a three-order
polynomial function and ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017, and the temporal
variation in each of the four coefficients in the T, fitting function was also modelled with the variables of the mean, annual
and semi-annual amplitudes of the 10-year time series coefficient.

The outline of the paper is as follows. The features of the vertical nonlinear variation in T,, were investigated in Sect.
2.2, then a three-order polynomial function fitting the 10-year T,,, profiles obtained from ERA-5 monthly mean reanalysis
data was developed for the GGNTm model. In Sect.3, the performance of GGNTm was validated using the T,,, values from
ERAS hourly reanalysis and globally distributed radiosonde profiles in 2018 as the references. Conclusions are summarized

in the final section.

2 Methodology for new model construction
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2.1 Data Source

ERAS reanalysis data were the latest reanalysis data developed by the ECMWEF. In this research, ERAS monthly mean
reanalysis data in the 10-year period from 2008 to 2017containing geopotential heights, temperatures, and specific humidity
at 37 pressure levels with a horizontal resolution of 1°x 1° were downloaded from the web server of the Copernicus Climate

Change Service (C3S, https://climate.copernicus.eu/climate-reanalysis). The geopotential heights, which are often used in

meteorology, were then converted to WGS-84 ellipsoidal heights. Water vapor pressure was calculated by (Nafisi et al.,
2012):
e =qp/(0.622 4+ 0.378q) 4

where q is the specific humidity, which can be obtained from NWM data; p is the atmospheric pressure.

2.2 Vertical variation of T,,

The ERAS monthly mean products were used to analyze the vertical variation of T,. As defined in Eq. (3), T;,, isa
function of water vaper pressure and temperature. The variation in water vapor pressure in the vertical direction has been
known nonlinear, while the vertical variation in temperature is often assumed to be a linear decay function (Dousa and Elias,
2014). In fact, there is such a phenomenon that temperature increases with the increase in height, the so-called temperature
inversion, which occurs in both the upper atmosphere and near ground surface, meaning that the vertical variation in
temperature is complex. As aresult, T, in the vertical direction varies nonlinearly due to the irregular variations in both
water vapor pressure and temperature in the vertical direction. Fig. 1 shows four vertical profiles of water vapor pressure,
temperature, and T, at the pressure levels that were under a 10 km ellipsoidal height at four grid points obtained from
ERAS monthly mean reanalysis in December 2017. It should be noted that the surface heights of the four grid points were
different, and they were 0 m, 301 m, 13 m, and 180 m respectively. Sub-figures (a) and (b) show that, in the height range
near the surface, temperature increases with the increase in height. In addition, all the four T, profiles (the black curves
with dots) in these sub-figures show a nonlinear variation trend. This implies that using a constant lapse-rate to model the
vertical T, variation trend will result in large errors, i.e. the T, profiles cannot be accurately modelled through a constant

T,, lapse-rate. This finding aligns well with other researchers (e.g. (Yao et al., 2018)).

2.3 Three-order polynomial function for T,, vertical fitting

A linear T,, decay function with a constant T, lapse-rate can be expressed as:

Ty =a+ B(H = ho) )
where a isthe T,, value at the reference height hy; S isthe T,, lapse-rate and H is the ellipsoidal height (km) of the user
site. An equivalent expression of Eq. (5) is:

Tn,=a +pB'H (6)

where a' denotes the T,value at 0 km ellipsoidal height. Some T,, models were constructed based on this linear T, decay
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function. T,, values from different height ranges can be used to calculate the T,, lapse-rate. However, if T,, varies
nonlinearly in the vertical direction, the calculated T, lapse-rate values would have large errors. To overcome this problem,
in this research, a three-order polynomial function was selected for a new T,, model:

T,=a+bH+cH?+ dH? (7
where a,b,c,d are the four unknown coefficient parameters of the fitting function.

For the estimation of the two sets of unknown coefficient parameters expressed in equations (6) and (7), two schemes,
named scheme-1 and scheme-2, were for the two functions fitting the sample data of T, profiles of the 120 monthly mean
reanalysis data over the 10-year period from 2008 to 2017 at each grid point. It should be noted that, only those T,, values
from the heights under 10 km were selected for the sample data. For measuring how well the fitting function fits the sample
data, the root mean square (RMS) of the differences between the T, values resulting from the fitting function and the sample

data was calculated by:

®)

where 4; isthe residual of T, atthe ith pressure level over the grid point. Fig. 2 shows the map for the mean of the RMSs
of the fitting residuals of the T,, from the aforementioned 120 monthly mean T, profiles (the samples) at each of the grid
points. The mean of the mean RMSs at all global grid points for scheme-1 and scheme-2 were 1.26 K and 0.30 K respectively.
In addition, the RMS results in the left sub-figure (for linear function) were latitude-dependent, and small RMSs (blue) were
in mid-latitude regions; large RMS values in both sub-figures were in Antarctica. Comparing the two subfigures, we could find
that the RMS values shown in the right sub-figure were all very small and significantly smaller than that of the left sub-figure,

meaning that the three-order polynomial fitting function superior to the linear fitting function.

2.4 T,, temporal fitting for the new model

In the previous section, the 10-year time series of coefficients in the three-order polynomial function expressed in Eq. (7) at
each of the grid points were obtained from the least-squares estimation. Since they were not constant values, the temporal
variation in each coefficient at each grid point needs to be further modelled for the new grid-based empirical T,, model
proposed in this study, GGNTm. The seasonal variation reflected in the 10-year time series of each of the coefficients r =
a, b, c,d was analyzed using the fast Fourier transform (FFT), and results for seasonality and periodicity at point 60°N,120°E
are shown in Fig. 3, which presented noticeable annual and semi-annual amplitudes. Similar periodicities were also found at
other grid points. According to these characteristics, the fitting model for GGNTm containing three terms including mean,
annual and semi-annual amplitudes for each coefficient time series at each grid point expressed by the following was adopted

in this study:

r=A4,+ 4, COS(%ZTE) + A4, cos(%%r) 9)
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where A,, A; and A, are the mean, annual and semi-annual amplitudes respectively; doy denotes “day of year”; d; and
d, are the initial phases of the annual and semi-annual periodicities, which are estimated together with the mean and
amplitudes.

Then, the mean, annual and semi-annual amplitudes, and initial phases for each coefficient at each of the grid points over
the globe (with the resolution of 1°x 1°) were determined using the least squares estimation method and the 10-year time series
of the coefficient. To calculate T,, for a specific site and time, e.g. for a GNSS station at an observing time, the following 3-
step procedure needs to be carried out:

1) using Eq. (9) to calculate each of the four coefficients at each of the four grid points surrounding the user site;

2) using Eq. (7) to calculate the T,, values at the height of the user site at each of the above four grid points (which is

for the height dimension);

3) using an interpolation method, such as the inverse distance weighting or bilinear interpolation, on the four T,, values

from step 2) to obtain the T,, value for the user site (which is for the horizontal dimension, as is shown in Fig. 4).

Till now the new model has been developed based on the 10-year sample data from 2008 to 2017. This model will be

validated using the model predicted T,, results in 2018 compared against the same year’s (i.e. out-of-sample) reference data.

Results will be discussed in the next section.

3 Evaluation of GGNTm

For the performance assessment of our newly developed T,, model, T,, values over different pressure levels obtained
from both ERA-5 hourly reanalysis (at UTC 12:00) and globally distributed radiosonde profiles in 2018 were selected as the
references. Thus, both 24-hour and 12-hour variations of Tm have been contained in the reference data for the evaluation of
our new model. The two statistics, bias and RMSE, were utilized to measure the systematic discrepancy and the accuracy of

the model results. Their formulas are:

n

1
bias = ;Z(Tm}""de’ —Tml*) (10)
i=1
1% ’
RMSE = EZ(Tm{""del —Tm]*") (11)
i=1

where i is the index of the data element; Tm™%¢denotes the model resultant T,, value; Tmiref denotes the reference T,

value; n is the number of the T, values in the statistics.

3.1 Comparison with ERAS hourly data

As the first set of the reference selected for the evaluation of the new model, ERA-5 hourly data (with the resolution of
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5°x 5°) at 12:00 UTC on each day in 2018, which were out-of-sample data, were downloaded from the C3S. Then they were
converted to T, profiles, and T,, values at each of five pressure levels: 950hPa, 800hPa, 650hPa, 500hPa and 350hPa were
used to calculate the bias and RMSE of the new model’s T,,, results at the pressure level. In addition to the GGNTm model,
other two empirical models developed in recent years including GTrop and GWMT _D, in which different vertical correction
methods were also applied, were also evaluated for performance comparisons of GGTNm and these two models.

Table 1 shows the mean bias and mean RMSE of the T, values over all global grid points resulting from each of the
above three models. As we can see, on a global scale, GGNTm outperformed all the other two models, especially at high
pressure levels. The GTrop has been proved to be considerably better than GPT3 (Sun et al., 2019), owing to its use of the T,
lapse-rate, although its T, results still had large errors at high pressure levels, which is most likely to be resulted from the
neglecting of the nonlinear vertical variation in T,,. The large bias and RMSE of the GWMT _D results were possibly because
its modelling was based on NCEP reanalysis data, and there may exist differences between the reanalysis data from ECMWF
and NCEP (Chen et al., 2011; Decker et al., 2012). Compared to GTrop and GWMT_D, GGNTm performed very well at all
pressure levels. This is because the model accounted for the vertical nonlinear variation in Ty,.

The results shown in Table 1 were the statistics of all global grid points at each of the five pressure levels selected. For
more refined results, Fig. 5 shows the map for the RMSE of T,,, at each grid point at either the 950 hPa or 500 hPa pressure
levels resulting from three models. The 950 hPa pressure level (the left column) results indicated that the RMSEs of T,
resulting from all the three models were latitude-dependent and high accuracy T, values (in blue) were mainly in low-latitude
belts. However, the results at the 500 hPa pressure level (the right column) indicated that the new model significantly
outperformed the other two models. In addition, from the 950h pressure level results, the percentages of those RMSE values
that were under 5 K from all the global grid points for GTrop, GWMT D and GGNTm were 93.4%, 82.1% and 94.6%
respectively; while the corresponding percentage values at the 500hPa level were 44.9%, 70.6% and 88.7%. These suggest

that larger improvements made by the new model, i.e. GGNTm, over the other two models were at high-altitude pressure levels.

3.2 Comparison with radiosonde data

In this section, T,, from radiosonde profiles were used as the reference for the performance assessment of the models
selected. The original radiosonde data at all globally distributed stations in 2018 were downloaded from the website of the

University of Wyoming (http://weather.uwyo.edu/upperair/). Different from the use of reanalysis data as the reference, water

vapor pressure at each pressure level from a radiosonde profile was calculated through a mixing ratio:
e = Rp/(622 + R) (12)
where R denotes the mixing ratio (g/kg).
An additional data pre-processing procedure needs to be conducted for data quality control. Those poor radiosonde profiles
needed to be identified and excluded from their use for the reference. The first check was for a valid mixing ratio value: if a

pressure level lacks a valid mixing ratio value, then it is regarded invalid and thus to be excluded. After this initial checking
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was performed, further identifications were also carried out. A profile would be excluded if it met any one of the following
four conditions:

(1) the profile lacks surface meteorological observations;

(2) the pressure value of the top pressure level is greater than 100 hPa;

(3) the difference in the pressure values at two successive levels is under 200hPa;

(4) the profile consists of a few pressure levels, e.g. if AP/n < 30 hPa (where AP is the difference of the pressure
values at the surface and the 100 hPa pressure levels, and N is the number of all pressure levels from the surface
to the 100hPa pressure levels), then the profile was regarded to have sufficient number of pressure levels, otherwise
it would be excluded from the use in the testing.

Sounding balloons are commonly launched twice a day (at 00:00 and 12:00 UTC). In this research, only those stations
that had at least 300 profiles in 2018 were selected in the model performance assessment. After the above 5-step quality control
procedure was performed, a total of 260140 profiles from 428 global radiosonde stations were finally used in the performance
evaluation of three selected models. Fig. 6 shows the T, values (at the earth surface) integrated from the radiosonde
measurements as well as that predicted by GGNTm at four radiosonde stations.

Table 2 shows the mean bias and RMSE of surface T,, values and T, values at all pressure levels from the surface to
the 10 km height at all the aforementioned radiosonde stations resulting from each of the three models that were the same as
the ones tested in the previous section. For the surface T, results, the mean RMSE of GTrop and GGNTm were very close;
GWMT _D was the worst, with the largest bias and RMSE values, which may be due to its low horizontal resolution (5°x5°).
The other set of results, the RMSE of T,,, under 10 km, was calculated using the differences between model-predicted T,
values and the reference Tm values over all pressure levels that with a height less than 10 km. A small RMSE of Tm under 10
km indicates that the model performs well at any altitudes below the tropopause. As we can see, GWMT _D was slightly better
than GTrop, possibly because the T,, value from the former was interpolated from the T, values at four height levels; the
mean bias of T,, from the new model, GGNTm, was the least, with the value of —0.16, which was close to 0, meaning nearly
unbiased; the RMSE of the new model was also the least, among the three models, which suggest that the vertical nonlinear
variation of T,, was modelled in the new model more accurately than the other existing models.

Similar to Fig. 5, Fig.7 shows the map for the RMSE of T, values at each of the 428 radiosonde stations in 2018 at the
surface pressure level (the left column) and all pressure levels that with a height less than 10 km (the right column) resulting
from GTrop, GWMT D, and GGNTm. It can be found that the RMSEs of all models were latitude-dependent, and those
stations that had a large RMSE value were most located in north Africa and north-east America. At the four stations located in
Antarctic, their surface T,, values were accurately modelled by these models. However, in terms of the RMSE of all pressure
levels under 10 km, the GTrop results were relatively large at the four stations, whilst both GWMT_D and GGNTm performed
well at three of the stations.

To further evaluate the performance of the three models at different height ranges under 10 km, the models’ T,, values
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from the aforementioned radiosonde profiles at the 428 global stations were divided into five height ranges, and Fig. 8 shows
each height range’s bias and RMSE. We can see the following results 1) in the height ranges above 4 km, the GTrop results
had the largest bias and largest RMSE, and GWMT D was considerably better than GTrop; 2) in low height ranges the
GWMT D results were the worst; 3) in all height ranges the GGNTm results were nearly unbiased and their accuracy varied
little with height. The GGNTm model’s consistent high accuracy in all height ranges suggest that the characteristics of the

vertical nonlinear variation in T, is modelled by the proposed model more accurately than the other models.

3.3 Evaluation of GGNTm under extreme weather conditions

The performance of our model under extreme weather conditions has also been assessed. The T,, values integrated
from the radiosonde profiles at KingsPark radiosonde station (N0.45005, Hong Kong) from August to September in 2018
(summer storm period) were taken as the reference data in this research. As is shown in Fig. 9, the Tm values at the
station predicted by GGNTm, as well as a T,,, — Ty model (T,,, = 0.6195 - T; + 103.3452) developed using T,, and
T, series at KingsPark station (He et al., 2019) were compared against corresponding radiosonde measurements during
the summer storm period. The daily total rainfall data (published by Hong Kong Observatory, https://www.hko.gov.hk)
during the two months are also shown in the figure. Heavy rainfall occurred frequently in Hong Kong during the two
months, and a super typhoon, named “Mangkhut” landed near Hong Kong and caused torrential rain on 16™ September.
As is shown in the figure, our model shows clear outperformance during the two months compared to the T,, — T
model. More experiments showed that the coefficients of a T,,, — T; models vary significantly with time (i.e. 0.6195 vs
0.58 for the linear part, 103.3452 vs 115.71 for the constant part, respectively), which means that a Tm-Ts model that is

based on the may have large errors during some periods.

3.4 Impact of GGNTm on PWV

The accuracy of GNSS-PWV over a GNSS site at an observing time is dependent upon the accuracies of the ZWD and
the conversion factor. Uncertainty analysis has been conducted by some researches to study the uncertainty of the GNSS-
derived PWYV resulting from different variables, including the uncertainty of GNSS-ZTD, the atmospheric pressure, the T,
and other constants utilized (Jiang et al., 2019b; Ning et al., 2016). This section mainly focuses on the impact of the newly
developed T,, model on PWYV, however, it is difficult to evaluate the impact of T,, on the GNSS-PWV directly. In this
research, the ZWD and Tm derived from the ERAS5 hourly reanalysis (the same as the data utilized in Section 3.1) were used
for simulating the GNSS-PWYV sensing. The ZWDs at each of the pressure levels over the globally distributed grid points
(2664 grid points in total) were calculated through integration:

ZWD = 10-6f (k§;+ ks %) dh (13)
H
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where H is the height of the reference pressure level. Then the reference PWVs can be obtained using the ZWDs and the
corresponding conversion factors resulting from the reference T, values, as is shown in Eq (1). Similarly, the PWVs resulting
from different empirical T,, models can be obtained. The statistical results of the RMSEs of the PWVs resulting from different
model-predicted Tm values by comparing the PWVs resulting from the reference Tm values (as references) are shown in Fig.
10. As we can see, the performance of both GGNTm and GTrop were better than GWMT _D. The mean RMSE of the predicted
PWVs resulting from GTrop and GGNTm over 2664 grid points were approximately the same. But the maximum RMSE of
the PWVs resulting from GGNTm were better than GTrop from 1000 hPa to 775 hPa. This is because the nonlinear variation
of T,, in the vertical direction was properly modelled in some regions. We can also find that there are not significant
differences between the RMSEs of the predicted PWVs resulting from GGNTm and GTrop due to fewer water vapor at the
pressure levels with high altitudes, although the accuracy of the model-predicted Tm values resulting from GGNTm was better
than GTrop. However, due to the fact that the water vapor content varies with latitude, terrain, season and weather, the

improvement in the model-predicted Tm values at pressure levels with high altitudes is still meaningful.

4 Conclusions

In GNSS meteorology, T,, is an essential parameter for converting GNSS-ZWD to PWYV over the GNSS observing
station. In practice, the T,, value over a GNSS station at an observing time is commonly obtained from an empirical T,
model, such as GPT3, GTrop and GWMT _D. In this research, a new global gridded empirical T,, model, named GGNTm,
was developed. In this model, the vertical nonlinear variation in T,, was modelled using a three-order polynomial function
fitting ERAS monthly mean reanalysis data over the 10-year period from 2008 to 2017; and seasonal variation terms, including
mean, annual and semi-annual amplitudes, for each of the coefficients in the polynomial function at each of global grid points
were also modelled based on the 10-year time series of the coefficient.

The performances of the newly developed GGNTm model was assessed and compared with GTrop and GWMT using
model predicted T,, values in 2018 against two references in the same year: 1) T,, from ERAS hourly reanalysis data and 2)
T,, from radiosonde profiles at 428 global radiosonde stations. Compared to the first reference, the RMSEs of T,, values
resulting from GGNTm at five pressure levels over all the global grid points in 2018 were significantly smaller than that of the
other three models at high-altitude pressure levels. Compared to the second reference, the mean bias and mean RMSE of T,

resulting from GGNTm at all the 428 radiosonde stations in 2018 were — 0.34 K and 3.89 K respectively; and the mean bias
and mean RMSE of T, resulting from GGNTm at all pressure levels from surface to 10 km height were —0.16 K and 4.20

K respectively, which were significantly smaller than that of all the other three models. In all five height ranges from surface
to 10 km in altitude, the GGNTm results were nearly unbiased, and their accuracy varied little with height. This result suggests
that the characteristics of the vertical nonlinear variation in T,,, is modelled by the approach proposed in this study more

accurately than the existing models. In addition, the impact of GGNTm on GNSS-PWYV was analyzed. The results showed that
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the accuracy of the PWYV resulting from GGNTm outperformed GTrop and GWMT model.

The improvement in the accuracy of the new T,,, model has significance for both long-term GNSS-PWYV analysis and
NRT/RT GNSS-PWYV sensing. Our future work will be focusing on using high temporal resolution atmospheric data such as
ERAS hourly reanalysis data, instead of monthly mean data used in this study, to model the temporal variation of the coefficents

in the T,, fitting function for further improving the accuracy of the GGNTm model.
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Figure 7. RMSE of T,,, at surface level (left column) and all pressure levels under 10 km (right column) at each of the 428
radiosonde stations in 2018 resulting from GTrop, GWMT D, and GGNTm. The RMSE of Tm under 10 km was calculated
using the differences between model-predicted Tm values and the Tm values over all pressure levels that with a height less

than 10 km.
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Figure 8. Bias and RMSE of T,, from radiosonde profiles at 428 global radiosonde stations in each of five height ranges
resulting from GTrop, GWMT D and GGNTm .
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Figure 10. Mean RMSE and maximum RMSE of PWV values at each of the pressure levels at UTC 12:00 at all global grid
points in 2018 resulting from each of the three models selected.
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Table 1. Mean bias and mean RMSE of T,,, values at each of five pressure levels at UTC 12:00 at all global grid points in

2018 resulting from each of the three models selected.

Pressure level Model
Statistic (K)
(hPa) GTrop GWMT D GGNTm
950
mean bias —-0.14 1.68 —0.43
mean RMSE ~ 3.39 3.98 3.35
800
mean bias —-0.14 2.09 0.09
mean RMSE ~ 3.79 4.46 3.77
650
mean bias 0.76 1.84 0.15
mean RMSE  4.14 4.58 4.07
500
mean bias 2.97 2.07 0.30
mean RMSE  5.17 4.57 3.94
350
mean bias 5.71 1.90 0.78
mean RMSE ~ 7.12 3.93 3.02
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Table 2 Mean bias and mean RMSE of T,,, values at 428 globally distributed radiosonde stations in 2018 resulting from GPT3,
GTrop, GWMT D and GGNTm.

Height Model Bias (K) RMSE (K)

Surface
GPT3 —0.36 [-7.87 5.81] 397 [1.36 12.51]
GTrop 0.16 [-2.39 4.23] 3.87 [1.35 7.22]
GWMT D 1.30[-1.74 5.64] 4.07 [1.51 7.81]
GGNTm —0.34 [-3.17 3.74] 3.89 [1.39 7.03]

Under 10km
GPT3 22.00 [6.78 27.29] 27.67 [10.8033.53]
GTrop 1.50 [-3.68 5.97] 5.08 [1.90 8.68]
GWMT D 1.16 [-0.20 6.18] 4.61 [2.24 8.52]
GGNTm —0.16 [-3.81 4.69] 420 [1.37 7.30]

Note: the values within square brackets were the minimum and maximum.
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