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Abstract. Global Navigation Satellite Systems (GNSS) have been proved to be an excellent technology for retrieving 

precipitable water vapor (PWV). In GNSS meteorology, PWV at a station is obtained from a conversion of the zenith wet 

delay (ZWD) of GNSS signals received at the station using a conversion factor which is a function of weighted mean 

temperature (𝑇𝑚) along the vertical direction in the atmosphere over the site. Thus, the accuracy of 𝑇𝑚 directly affects the 

quality of the GNSS-derived PWV. Currently, the 𝑇𝑚 value at a target height level is commonly modelled using the 𝑇𝑚 10 

value at a specific height and a simple linear decay function, whilst the vertical nonlinear variation in 𝑇𝑚 is neglected. This 

may result in large errors in the 𝑇𝑚 result for the target height level, as the variation trend in the vertical direction of 𝑇𝑚  

may not be linear. In this research, a new global grid-based 𝑇𝑚 empirical model with a horizontal resolution of 1°× 1°, named 

GGNTm, was constructed using ECMWF ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017. A 

three-order polynomial function was utilized to fit the vertical nonlinear variation in 𝑇𝑚 at the grid points, and the temporal 15 

variation in each of the four coefficients in the 𝑇𝑚 fitting function was also modelled with the variables of the mean, annual 

and semi-annual amplitudes of the 10-year time series coefficients. The performance of the new model was evaluated using 

its predicted 𝑇𝑚 values in 2018 to compare with the following two references in the same year 1) 𝑇𝑚 from ERA5 hourly 

reanalysis with the horizontal resolution of 5°× 5°; 2) 𝑇𝑚 from atmospheric profiles from 428 globally distributed radiosonde 

stations. Compared to the first reference, the mean RMSEs of the model predicted 𝑇𝑚 values over all global grid points at the 20 

950hPa and 500hPa pressure levels were 3.35K and 3.94K respectively. Compared to the second reference, the mean bias and 

mean RMSE of the model predicted 𝑇𝑚 values over the 428 radiosonde stations at the surface level were 0.34K and 3.89K 

respectively; the mean bias and mean RMSE of the model’s 𝑇𝑚 values over all pressure levels in the height range from the 

surface to 10 km altitude were −0.16K and 4.20K respectively. The new model results were also compared with that of the 

GTrop and GWMT_D models in which different height correction methods were also applied. Results indicated that significant 25 

improvements made by the new model were at high-altitude pressure levels; in all five height ranges, GGNTm results were 

generally unbiased, and their accuracy varied little with height. The improvement in PWV brought by GGNTm was also 

evaluated. These results suggest that considering the vertical nonlinear variation in 𝑇𝑚  and the temporal variation in the 

coefficients of the 𝑇𝑚 model can significantly improve the accuracy of model-predicted Tm for a GNSS receiver that is 

located in anywhere below the tropopause (assumed to be 10 km), which has significance for applications requiring real-time 30 

or near real-time PWV converted from GNSS signals. 
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1 Introduction 

Water vapor, as an important greenhouse gas, is tightly related to weather variations, hence, it is crucial to monitor the 

water vapor content in the atmosphere for reliable weather forecast. The meteorological parameter that is closely related to 

water vapor is precipitable water vapor (PWV) and it can be measured by various technologies such as radiosondes, remote 35 

sensing satellites and water vapor radiometers. Global Navigation Satellite Systems (GNSS), which were initially designed for 

positioning, navigation, and timing, can be used to retrieve the zenith tropospheric delay (ZTD) of the GNSS signal over an 

observation station. The ZTD can be divided into zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD). The ZHD can 

usually be obtained at a high accuracy from the Saastamoinen model together with measured meteorological data at the station. 

The atmospheric water vapor information is contained in the GNSS-ZTD, more precisely, in the GNSS-ZWD, which can be 40 

converted into PWV. Different from the other atmospheric measurement techniques, GNSS receivers are regarded as cost-

effective equipment for meteorological research, the main advantage of the GNSS-based method is its real-time, stable, high-

temporal-resolution and relative long-term capabilities. The GNSS were first applied to meteorological research in the 1990s 

(Bevis et al., 1992). Some preliminary research in relation to the long-term feature of the GNSS ZTD/PWV series and the 

relationship between GNSS-PWV and weather or climate issues have already been carried out (Bianchi et al., 2016; Bonafoni 45 

and Biondi, 2016; Calori et al., 2016; Chen et al., 2018; Choy et al., 2013; He et al., 2019; Junbo Shi et al., 2015; Rohm et al., 

2014a; Wang et al., 2016, 2018; Zhang et al., 2015). Near real-time GNSS-ZTD products estimated from GNSS data processing 

have been routinely assimilated into numerical weather models (NWM) for improving the performance of weather forecast 

(Bennitt and Jupp, 2012; Dousa and Vaclavovic, 2014; Guerova et al., 2016; Le Marshall et al., 2012, 2019). 

To obtain GNSS-PWV over a station, the first step is to estimate the ZTD of the station from GNSS data processing, and 50 

the two most common data processing strategies are the network approach and precise point positioning (PPP) approach (Ding 

et al., 2017; Douša et al., 2016; Guerova et al., 2016; Li et al., 2015; Lu et al., 2015; Rohm et al., 2014b; Yuan et al., 2014; 

Zhou et al., 2020). The former uses double-differenced observations, while the latter uses un-differenced observations in the 

observation equation system. The ZWD can be obtained from subtracting the ZHD from the GNSS-ZTD, or directly estimated 

if the ZHD has been corrected in the GNSS observation equation system, depending on the processing strategies adopted. Then 55 

the GNSS-PWV can be converted by: 

 𝑃𝑊𝑉 = 𝛱 ∙ 𝑍𝑊𝐷 (1) 

where 𝛱 is the conversion factor (Askne and Nordius, 1987; Bevis et al., 1992), which is given by: 

 𝛱 =
106

𝜌𝑤𝑅𝑣(
𝑘3

𝑇𝑚
+ 𝑘2

′ )
 (2) 

where 𝜌𝑤  is the density of liquid water; 𝑅𝑣 = 461.5 J/(kg ∗ K)  is the specific gas constant for water vapor; 𝑘2
′ =

22.1 𝐾/ℎ𝑃𝑎 and 𝑘3 = 373900 𝐾2/ℎ𝑃𝑎 are atmospheric refractivity constants; 𝑇𝑚 is the weighted mean temperature over 

the GNSS site, which is defined and approximated through the following equation (Davis et al., 1985): 60 
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where 𝑒 and 𝑇 are the water vapor pressure (hPa) and absolute temperature (K) respectively; 𝑛 is the number of the layers; 

𝑒𝑖, 𝑇𝑖 and ∆ℎ𝑖 are the mean water vapor pressure, mean temperature, and thickness of the 𝑖th layer respectively.  

From Eq. (2), one can see that 𝑇𝑚 is a crucial variable for the determination of the conversion factor 𝛱, which in turn 

affects the determination of PWV expressed by Eq. (1). The significance of obtaining accurate 𝑇𝑚  values has been 

demonstrated by previous researches (Bevis, 1994; Jiang et al., 2019a; Ning et al., 2016; Wang et al., 2005, 2016). 𝑇𝑚 can be 65 

calculated from an observed atmospheric profile. This observed atmospheric profile can be acquired from a radiosonde station, 

which is valid only for the sounding site. In fact, for GNSS stations, they are usually not co-located with any regional 

radiosonde stations, i.e. observed atmospheric profiles are unavailable, as a result, equation (3) is not applicable for GNSS 

stations. Moreover, even a GNSS station is co-located with a radiosonde station, due to the low temporal and spatial resolution 

of radiosonde data, the temporal resolution of its resultant 𝑇𝑚 is also low, which cannot meet the requirements of GNSS near 70 

real-time/real-time (NRT/RT) applications such as the conversion of GNSS-ZWD time series into PWV time series. The 

atmospheric profiles from NWM data can be obtained for 𝑇𝑚 determination (Wang et al., 2005, 2016). However, for some 

time-critical applications, NRT/RT Tm is essential for NRT/RT GNSS-PWV determination, thus the main drawback in using 

the reanalysis data is its latency issue, and it is still difficult for most users to obtain predicted results to obtain from the NWM 

data. Thus, it is of great importance to develop empirical 𝑇𝑚 models for time-critical applications. Some 𝑇𝑚 models have 75 

been developed with a focus of improving the accuracy of the 𝑇𝑚, and these empirical models can be classified into two 

categories. One category is such a model that depends on in situ surface temperature observation 𝑇𝑠, like the Bevis model, 

which is a simple linear function expressed as: 𝑇𝑚 = 𝑎 + 𝑏𝑇𝑠  (Bevis et al., 1992). The two coefficients of such a linear 

function can be determined from the linear regression method based on long-term regional radiosonde data. However, the 

deployment of radiosonde stations is geographically sparse due to their high cost, and even worse is that there are no radiosonde 80 

stations at all in some areas. One of the possible ways to solve the availability issue is to use reanalysis data to develop Ts-Tm 

models. However, such a reanalysis-based Ts-Tm model may not be as accurate as that derived from local radiosonde profiles. 

Yao et al. (2014a) developed a global latitude-dependent 𝑇𝑚 − 𝑇𝑠  linear model using 𝑇𝑚  data from the global geodetic 

observing system (GGOS) and 𝑇𝑠  data from the European center for medium-range weather forecasts (ECMWF). Jiang 

developed a time-varying global gridded  𝑇𝑚 − 𝑇𝑠 model using both 𝑇𝑚 and 𝑇𝑠 derived from ERA-Interim(Jiang et al., 85 

2019a). Ding (2018, 2020) developed two generations of global 𝑇𝑚  models using the neural network algorithm, in which 

temperature observations were required for the input and the models performed well. The 𝑇𝑚 models mentioned above need 

in situ meteorological observations (mainly 𝑇𝑠) as the model’s input. However, for GNSS stations, not all stations are equipped 

with meteorological sensors. Although the meteorological parameters at the user station can also be interpolated using the 

actual meteorological measurements nearby, the interpolation error depends on the terrain difference between the 90 
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meteorological sensor’s location and the point of interest in addition the interpolation methods used.  

To address the above-mentioned issues, the type of empirical models that are independent of meteorological observations 

had to be constructed. Yao et al. (2014b, 2012, 2013) used spherical harmonics to develop the GWMT, GTM-Ⅱ and GTM-Ⅲ 

models, in which both the height and the periodicity of 𝑇𝑚 were taken into account. Huang et al. (2019a) established a global 

𝑇𝑚 model using the sliding window algorithm, which was based on varying latitude and altitude. The widely used GPT2w 95 

model (Böhm et al., 2015) and its successor, GPT3 (Landskron and Böhm, 2018), provided gridded results with both 1°×1°and 

5°×5° horizontal resolutions and the models also contain a few terms related to temporal variations in 𝑇𝑚 including the mean, 

annual and semiannual amplitudes. However, the height differences between the user site, e.g. a GNSS station, and its nearest 

four surrounding grid points were not considered. Recent studies have overcome this problem by providing 𝑇𝑚 values at 

various heights ranging from ground surface to the upper troposphere. He et al. (2017) developed a voxel-based global model, 100 

named GWMT-D, using the 𝑇𝑚values at four height levels of reanalysis data from the National Centers for Environmental 

Prediction (NCEP) to construct the voxels. The 𝑇𝑚 predicted for the user site can be obtained from an interpolation of the 𝑇𝑚 

values at the eight grid points of the voxel that contains the user site. In recent studies, some researchers used a 𝑇𝑚 lapse-rate, 

the rate of change in 𝑇𝑚 with altitude, to correct the effect of the height element on 𝑇𝑚, e.g. IGPT2w (Huang et al., 2019b), 

GTm_R (Li et al., 2020) and GPT2wh (Yang et al., 2020). The GTrop model (Sun et al., 2019), developed for predicting both 105 

ZTD and 𝑇𝑚, also took into account the 𝑇𝑚 lapse-rate, and it outperforms GPT2w obviously at altitudes under 10 km.  

We have noticed that some studies have extended the GNSS-PWV sensing to a shipborne GNSS receiver, or GNSS 

receiver that onboard other moving vehicles (Fan et al., 2016; Wang et al., 2019; Webb et al., 2016). Thus, we concentrated 

on developing a high-accuracy unbiased empirical model for predicting Tm values in any possible places, which is 

meaningful for GNSS meteorology. As previously discussed, considering the lapse-rate in a 𝑇𝑚 model can improve the 110 

model’s accuracy. However, the assumption that 𝑇𝑚 linearly varies with height, which many recently developed models 

were based on, may not agree well with the truth. In this research, a new global grid-based empirical 𝑇𝑚 model, named 

GGNTm, in which the vertical nonlinear variation of 𝑇𝑚 was taken into account, was developed using a three-order 

polynomial function and ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017, and the temporal 

variation in each of the four coefficients in the 𝑇𝑚 fitting function was also modelled with the variables of the mean, annual 115 

and semi-annual amplitudes of the 10-year time series coefficient.  

The outline of the paper is as follows. The features of the vertical nonlinear variation in 𝑇𝑚 were investigated in Sect. 

2.2, then a three-order polynomial function fitting the 10-year 𝑇𝑚 profiles obtained from ERA-5 monthly mean reanalysis 

data was developed for the GGNTm model. In Sect.3, the performance of GGNTm was validated using the 𝑇𝑚 values from 

ERA5 hourly reanalysis and globally distributed radiosonde profiles in 2018 as the references. Conclusions are summarized 120 

in the final section. 

2 Methodology for new model construction 



 

5 

 

2.1 Data Source 

ERA5 reanalysis data were the latest reanalysis data developed by the ECMWF. In this research, ERA5 monthly mean 

reanalysis data in the 10-year period from 2008 to 2017containing geopotential heights, temperatures, and specific humidity 125 

at 37 pressure levels with a horizontal resolution of 1°× 1° were downloaded from the web server of the Copernicus Climate 

Change Service (C3S, https://climate.copernicus.eu/climate-reanalysis). The geopotential heights, which are often used in 

meteorology, were then converted to WGS-84 ellipsoidal heights. Water vapor pressure was calculated by (Nafisi et al., 

2012): 

 𝑒 = 𝑞𝑝/(0.622 + 0.378𝑞)
 
 (4) 

where 𝑞 is the specific humidity, which can be obtained from NWM data; 𝑝 is the atmospheric pressure.  130 

2.2 Vertical variation of 𝑻𝒎 

The ERA5 monthly mean products were used to analyze the vertical variation of 𝑇𝑚. As defined in Eq. (3), 𝑇𝑚 is a 

function of water vaper pressure and temperature. The variation in water vapor pressure in the vertical direction has been 

known nonlinear, while the vertical variation in temperature is often assumed to be a linear decay function (Dousa and Elias, 

2014). In fact, there is such a phenomenon that temperature increases with the increase in height, the so-called temperature 135 

inversion, which occurs in both the upper atmosphere and near ground surface, meaning that the vertical variation in 

temperature is complex. As a result, 𝑇𝑚 in the vertical direction varies nonlinearly due to the irregular variations in both 

water vapor pressure and temperature in the vertical direction. Fig. 1 shows four vertical profiles of water vapor pressure, 

temperature, and 𝑇𝑚 at the pressure levels that were under a 10 km ellipsoidal height at four grid points obtained from 

ERA5 monthly mean reanalysis in December 2017. It should be noted that the surface heights of the four grid points were 140 

different, and they were 0 m, 301 m, 13 m, and 180 m respectively. Sub-figures (a) and (b) show that, in the height range 

near the surface, temperature increases with the increase in height. In addition, all the four 𝑇𝑚 profiles (the black curves 

with dots) in these sub-figures show a nonlinear variation trend. This implies that using a constant lapse-rate to model the 

vertical 𝑇𝑚 variation trend will result in large errors, i.e. the 𝑇𝑚 profiles cannot be accurately modelled through a constant 

𝑇𝑚 lapse-rate. This finding aligns well with other researchers (e.g. (Yao et al., 2018)). 145 

2.3 Three-order polynomial function for 𝑻𝒎 vertical fitting 

A linear 𝑇𝑚 decay function with a constant 𝑇𝑚 lapse-rate can be expressed as: 

 𝑇𝑚 = 𝛼 + 𝛽(𝐻 − ℎ0) (5) 

where 𝛼 is the 𝑇𝑚 value at the reference height ℎ0; 𝛽 is the 𝑇𝑚 lapse-rate and 𝐻 is the ellipsoidal height (km) of the user 

site. An equivalent expression of Eq. (5) is: 

 𝑇𝑚 = 𝛼′ + 𝛽′𝐻  (6) 

where 𝛼′ denotes the 𝑇𝑚value at 0 km ellipsoidal height. Some 𝑇𝑚 models were constructed based on this linear 𝑇𝑚 decay 150 

https://climate.copernicus.eu/climate-reanalysis
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function. 𝑇𝑚  values from different height ranges can be used to calculate the 𝑇𝑚  lapse-rate. However, if 𝑇𝑚  varies 

nonlinearly in the vertical direction, the calculated 𝑇𝑚 lapse-rate values would have large errors. To overcome this problem, 

in this research, a three-order polynomial function was selected for a new 𝑇𝑚 model: 

 𝑇𝑚 = 𝑎 + 𝑏𝐻 + 𝑐𝐻2 + 𝑑𝐻3  (7) 

where 𝑎, 𝑏, 𝑐, 𝑑 are the four unknown coefficient parameters of the fitting function.  

For the estimation of the two sets of unknown coefficient parameters expressed in equations (6) and (7), two schemes, 155 

named scheme-1 and scheme-2, were for the two functions fitting the sample data of 𝑇𝑚 profiles of the 120 monthly mean 

reanalysis data over the 10-year period from 2008 to 2017 at each grid point. It should be noted that, only those 𝑇𝑚 values 

from the heights under 10 km were selected for the sample data. For measuring how well the fitting function fits the sample 

data, the root mean square (RMS) of the differences between the 𝑇𝑚 values resulting from the fitting function and the sample 

data was calculated by: 160 

 𝑅𝑀𝑆 = √
1

𝑛
∑ 𝛥𝑖

2

𝑛

𝑖

 (8) 

where 𝛥𝑖 is the residual of 𝑇𝑚 at the 𝑖th pressure level over the grid point. Fig. 2 shows the map for the mean of the RMSs 

of the fitting residuals of the 𝑇𝑚 from the aforementioned 120 monthly mean 𝑇𝑚 profiles (the samples) at each of the grid 

points. The mean of the mean RMSs at all global grid points for scheme-1 and scheme-2 were 1.26 K and 0.30 K respectively. 

In addition, the RMS results in the left sub-figure (for linear function) were latitude-dependent, and small RMSs (blue) were 

in mid-latitude regions; large RMS values in both sub-figures were in Antarctica. Comparing the two subfigures, we could find 165 

that the RMS values shown in the right sub-figure were all very small and significantly smaller than that of the left sub-figure, 

meaning that the three-order polynomial fitting function superior to the linear fitting function. 

2.4 𝑻𝒎 temporal fitting for the new model 

In the previous section, the 10-year time series of coefficients in the three-order polynomial function expressed in Eq. (7) at 

each of the grid points were obtained from the least-squares estimation. Since they were not constant values, the temporal 170 

variation in each coefficient at each grid point needs to be further modelled for the new grid-based empirical 𝑇𝑚 model 

proposed in this study, GGNTm. The seasonal variation reflected in the 10-year time series of each of the coefficients 𝑟 =

𝑎, 𝑏, 𝑐, 𝑑 was analyzed using the fast Fourier transform (FFT), and results for seasonality and periodicity at point 60°N,120°E 

are shown in Fig. 3, which presented noticeable annual and semi-annual amplitudes. Similar periodicities were also found at 

other grid points. According to these characteristics, the fitting model for GGNTm containing three terms including mean, 175 

annual and semi-annual amplitudes for each coefficient time series at each grid point expressed by the following was adopted 

in this study:  

 𝑟 = 𝐴0 + 𝐴1 𝑐𝑜𝑠(
𝑑𝑜𝑦−𝑑1

365.25
2𝜋) + 𝐴2 𝑐𝑜𝑠(

𝑑𝑜𝑦−𝑑2

365.25
4𝜋)  (9) 



 

7 

 

where 𝐴0, 𝐴1 and 𝐴2 are the mean, annual and semi-annual amplitudes respectively; 𝑑𝑜𝑦 denotes “day of year”; 𝑑1 and 

𝑑2  are the initial phases of the annual and semi-annual periodicities, which are estimated together with the mean and 

amplitudes.  180 

Then, the mean, annual and semi-annual amplitudes, and initial phases for each coefficient at each of the grid points over 

the globe (with the resolution of 1°× 1°) were determined using the least squares estimation method and the 10-year time series 

of the coefficient. To calculate 𝑇𝑚 for a specific site and time, e.g. for a GNSS station at an observing time, the following 3-

step procedure needs to be carried out: 

1) using Eq. (9) to calculate each of the four coefficients at each of the four grid points surrounding the user site;  185 

2) using Eq. (7) to calculate the 𝑇𝑚 values at the height of the user site at each of the above four grid points (which is 

for the height dimension);  

3) using an interpolation method, such as the inverse distance weighting or bilinear interpolation, on the four 𝑇𝑚 values 

from step 2) to obtain the 𝑇𝑚 value for the user site (which is for the horizontal dimension, as is shown in Fig. 4).  

Till now the new model has been developed based on the 10-year sample data from 2008 to 2017. This model will be 190 

validated using the model predicted 𝑇𝑚 results in 2018 compared against the same year’s (i.e. out-of-sample) reference data. 

Results will be discussed in the next section.  

3 Evaluation of GGNTm 

For the performance assessment of our newly developed 𝑇𝑚 model, 𝑇𝑚 values over different pressure levels obtained 

from both ERA-5 hourly reanalysis (at UTC 12:00) and globally distributed radiosonde profiles in 2018 were selected as the 195 

references. Thus, both 24-hour and 12-hour variations of Tm have been contained in the reference data for the evaluation of 

our new model. The two statistics, bias and RMSE, were utilized to measure the systematic discrepancy and the accuracy of 

the model results. Their formulas are: 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑇𝑚𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑚𝑖
𝑟𝑒𝑓

)

𝑛

𝑖=1

 (10) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇𝑚𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑚𝑖
𝑟𝑒𝑓

)

𝑛

𝑖=1

2

 (11) 

where i is the index of the data element; 𝑇𝑚𝑖
𝑚𝑜𝑑𝑒𝑙denotes the model resultant 𝑇𝑚 value; 𝑇𝑚𝑖

𝑟𝑒𝑓
 denotes the reference 𝑇𝑚   

value; 𝑛 is the number of the 𝑇𝑚 values in the statistics. 200 

3.1 Comparison with ERA5 hourly data 

As the first set of the reference selected for the evaluation of the new model, ERA-5 hourly data (with the resolution of 



 

8 

 

5°× 5°) at 12:00 UTC on each day in 2018, which were out-of-sample data, were downloaded from the C3S. Then they were 

converted to 𝑇𝑚 profiles, and 𝑇𝑚 values at each of five pressure levels: 950hPa, 800hPa, 650hPa, 500hPa and 350hPa were 

used to calculate the bias and RMSE of the new model’s 𝑇𝑚 results at the pressure level. In addition to the GGNTm model, 205 

other two empirical models developed in recent years including GTrop and GWMT_D, in which different vertical correction 

methods were also applied, were also evaluated for performance comparisons of GGTNm and these two models.  

Table 1 shows the mean bias and mean RMSE of the 𝑇𝑚 values over all global grid points resulting from each of the 

above three models. As we can see, on a global scale, GGNTm outperformed all the other two models, especially at high 

pressure levels. The GTrop has been proved to be considerably better than GPT3 (Sun et al., 2019), owing to its use of the 𝑇𝑚 210 

lapse-rate, although its 𝑇𝑚 results still had large errors at high pressure levels, which is most likely to be resulted from the 

neglecting of the nonlinear vertical variation in 𝑇𝑚. The large bias and RMSE of the GWMT_D results were possibly because 

its modelling was based on NCEP reanalysis data, and there may exist differences between the reanalysis data from ECMWF 

and NCEP (Chen et al., 2011; Decker et al., 2012). Compared to GTrop and GWMT_D, GGNTm performed very well at all 

pressure levels. This is because the model accounted for the vertical nonlinear variation in 𝑇𝑚.  215 

The results shown in Table 1 were the statistics of all global grid points at each of the five pressure levels selected. For 

more refined results, Fig. 5 shows the map for the RMSE of 𝑇𝑚 at each grid point at either the 950 hPa or 500 hPa pressure 

levels resulting from three models. The 950 hPa pressure level (the left column) results indicated that the RMSEs of 𝑇𝑚 

resulting from all the three models were latitude-dependent and high accuracy 𝑇𝑚 values (in blue) were mainly in low-latitude 

belts. However, the results at the 500 hPa pressure level (the right column) indicated that the new model significantly 220 

outperformed the other two models. In addition, from the 950h pressure level results, the percentages of those RMSE values 

that were under 5 K from all the global grid points for GTrop, GWMT_D and GGNTm were 93.4%, 82.1% and 94.6% 

respectively; while the corresponding percentage values at the 500hPa level were 44.9%, 70.6% and 88.7%. These suggest 

that larger improvements made by the new model, i.e. GGNTm, over the other two models were at high-altitude pressure levels. 

3.2 Comparison with radiosonde data 225 

In this section, 𝑇𝑚 from radiosonde profiles were used as the reference for the performance assessment of the models 

selected. The original radiosonde data at all globally distributed stations in 2018 were downloaded from the website of the 

University of Wyoming (http://weather.uwyo.edu/upperair/). Different from the use of reanalysis data as the reference, water 

vapor pressure at each pressure level from a radiosonde profile was calculated through a mixing ratio: 

 𝑒 = 𝑅𝑝/(622 + 𝑅)
 
 (12) 

where 𝑅 denotes the mixing ratio (g/kg).  230 

An additional data pre-processing procedure needs to be conducted for data quality control. Those poor radiosonde profiles 

needed to be identified and excluded from their use for the reference. The first check was for a valid mixing ratio value: if a 

pressure level lacks a valid mixing ratio value, then it is regarded invalid and thus to be excluded. After this initial checking 

http://weather.uwyo.edu/upperair/
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was performed, further identifications were also carried out. A profile would be excluded if it met any one of the following 

four conditions: 235 

(1) the profile lacks surface meteorological observations; 

(2) the pressure value of the top pressure level is greater than 100 hPa;  

(3) the difference in the pressure values at two successive levels is under 200hPa;  

(4) the profile consists of a few pressure levels, e.g. if 𝛥𝑃/𝑛 ≤ 30 ℎ𝑃𝑎 (where 𝛥𝑃 is the difference of the pressure 

values at the surface and the 100 hPa pressure levels, and n  is the number of all pressure levels from the surface 240 

to the 100hPa pressure levels), then the profile was regarded to have sufficient number of pressure levels, otherwise 

it would be excluded from the use in the testing. 

Sounding balloons are commonly launched twice a day (at 00:00 and 12:00 UTC). In this research, only those stations 

that had at least 300 profiles in 2018 were selected in the model performance assessment. After the above 5-step quality control 

procedure was performed, a total of 260140 profiles from 428 global radiosonde stations were finally used in the performance 245 

evaluation of three selected models. Fig. 6 shows the 𝑇𝑚 values (at the earth surface) integrated from the radiosonde 

measurements as well as that predicted by GGNTm at four radiosonde stations. 

 Table 2 shows the mean bias and RMSE of surface 𝑇𝑚 values and 𝑇𝑚 values at all pressure levels from the surface to 

the 10 km height at all the aforementioned radiosonde stations resulting from each of the three models that were the same as 

the ones tested in the previous section. For the surface 𝑇𝑚 results, the mean RMSE of GTrop and GGNTm were very close; 250 

GWMT_D was the worst, with the largest bias and RMSE values, which may be due to its low horizontal resolution (5°×5°). 

The other set of results, the RMSE of 𝑇𝑚 under 10 km, was calculated using the differences between model-predicted 𝑇𝑚 

values and the reference Tm values over all pressure levels that with a height less than 10 km. A small RMSE of Tm under 10 

km indicates that the model performs well at any altitudes below the tropopause. As we can see, GWMT_D was slightly better 

than GTrop, possibly because the 𝑇𝑚 value from the former was interpolated from the 𝑇𝑚 values at four height levels; the 255 

mean bias of 𝑇𝑚 from the new model, GGNTm, was the least, with the value of −0.16, which was close to 0, meaning nearly 

unbiased; the RMSE of the new model was also the least, among the three models, which suggest that the vertical nonlinear 

variation of 𝑇𝑚 was modelled in the new model more accurately than the other existing models. 

Similar to Fig. 5, Fig.7 shows the map for the RMSE of 𝑇𝑚 values at each of the 428 radiosonde stations in 2018 at the 

surface pressure level (the left column) and all pressure levels that with a height less than 10 km (the right column) resulting 260 

from GTrop, GWMT_D, and GGNTm. It can be found that the RMSEs of all models were latitude-dependent, and those 

stations that had a large RMSE value were most located in north Africa and north-east America. At the four stations located in 

Antarctic, their surface 𝑇𝑚 values were accurately modelled by these models. However, in terms of the RMSE of all pressure 

levels under 10 km, the GTrop results were relatively large at the four stations, whilst both GWMT_D and GGNTm performed 

well at three of the stations.  265 

To further evaluate the performance of the three models at different height ranges under 10 km, the models’ 𝑇𝑚 values 
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from the aforementioned radiosonde profiles at the 428 global stations were divided into five height ranges, and Fig. 8 shows 

each height range’s bias and RMSE. We can see the following results 1) in the height ranges above 4 km, the GTrop results 

had the largest bias and largest RMSE, and GWMT_D was considerably better than GTrop; 2) in low height ranges the 

GWMT_D results were the worst; 3) in all height ranges the GGNTm results were nearly unbiased and their accuracy varied 270 

little with height. The GGNTm model’s consistent high accuracy in all height ranges suggest that the characteristics of the 

vertical nonlinear variation in 𝑇𝑚 is modelled by the proposed model more accurately than the other models. 

3.3 Evaluation of GGNTm under extreme weather conditions 

The performance of our model under extreme weather conditions has also been assessed. The 𝑇𝑚 values integrated 

from the radiosonde profiles at KingsPark radiosonde station (No.45005, Hong Kong) from August to September in 2018 275 

(summer storm period) were taken as the reference data in this research. As is shown in Fig. 9, the Tm values at the 

station predicted by GGNTm, as well as a 𝑇𝑚 − 𝑇𝑠 model (𝑇𝑚 = 0.6195 ∙ 𝑇𝑠 + 103.3452) developed using 𝑇𝑚 and 

𝑇𝑠 series at KingsPark station (He et al., 2019) were compared against corresponding radiosonde measurements during 

the summer storm period. The daily total rainfall data (published by Hong Kong Observatory, https://www.hko.gov.hk) 

during the two months are also shown in the figure. Heavy rainfall occurred frequently in Hong Kong during the two 280 

months, and a super typhoon, named “Mangkhut” landed near Hong Kong and caused torrential rain on 16th September. 

As is shown in the figure, our model shows clear outperformance during the two months compared to the 𝑇𝑚 − 𝑇𝑠 

model. More experiments showed that the coefficients of a 𝑇𝑚 − 𝑇𝑠 models vary significantly with time (i.e. 0.6195 vs 

0.58 for the linear part, 103.3452 vs 115.71 for the constant part, respectively), which means that a Tm-Ts model that is 

based on the may have large errors during some periods. 285 

3.4 Impact of GGNTm on PWV 

The accuracy of GNSS-PWV over a GNSS site at an observing time is dependent upon the accuracies of the ZWD and 

the conversion factor. Uncertainty analysis has been conducted by some researches to study the uncertainty of the GNSS-

derived PWV resulting from different variables, including the uncertainty of GNSS-ZTD, the atmospheric pressure, the 𝑇𝑚 

and other constants utilized (Jiang et al., 2019b; Ning et al., 2016). This section mainly focuses on the impact of the newly 290 

developed 𝑇𝑚  model on PWV, however, it is difficult to evaluate the impact of 𝑇𝑚  on the GNSS-PWV directly. In this 

research, the ZWD and Tm derived from the ERA5 hourly reanalysis (the same as the data utilized in Section 3.1) were used 

for simulating the GNSS-PWV sensing. The ZWDs at each of the pressure levels over the globally distributed grid points 

(2664 grid points in total) were calculated through integration: 

 𝑍𝑊𝐷 = 10−6 ∫ (𝑘2
′

𝑒

𝑇
+ 𝑘3

𝑒

𝑇2
)

∞

𝐻

𝑑ℎ (13) 
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where 𝐻 is the height of the reference pressure level. Then the reference PWVs can be obtained using the ZWDs and the 295 

corresponding conversion factors resulting from the reference 𝑇𝑚 values, as is shown in Eq (1). Similarly, the PWVs resulting 

from different empirical 𝑇𝑚 models can be obtained. The statistical results of the RMSEs of the PWVs resulting from different 

model-predicted Tm values by comparing the PWVs resulting from the reference Tm values (as references) are shown in Fig. 

10. As we can see, the performance of both GGNTm and GTrop were better than GWMT_D. The mean RMSE of the predicted 

PWVs resulting from GTrop and GGNTm over 2664 grid points were approximately the same. But the maximum RMSE of 300 

the PWVs resulting from GGNTm were better than GTrop from 1000 hPa to 775 hPa. This is because the nonlinear variation 

of 𝑇𝑚  in the vertical direction was properly modelled in some regions. We can also find that there are not significant 

differences between the RMSEs of the predicted PWVs resulting from GGNTm and GTrop due to fewer water vapor at the 

pressure levels with high altitudes, although the accuracy of the model-predicted Tm values resulting from GGNTm was better 

than GTrop. However, due to the fact that the water vapor content varies with latitude, terrain, season and weather, the 305 

improvement in the model-predicted Tm values at pressure levels with high altitudes is still meaningful. 

4 Conclusions 

In GNSS meteorology, 𝑇𝑚 is an essential parameter for converting GNSS-ZWD to PWV over the GNSS observing 

station. In practice, the 𝑇𝑚 value over a GNSS station at an observing time is commonly obtained from an empirical 𝑇𝑚 

model, such as GPT3, GTrop and GWMT_D. In this research, a new global gridded empirical 𝑇𝑚 model, named GGNTm, 310 

was developed. In this model, the vertical nonlinear variation in 𝑇𝑚 was modelled using a three-order polynomial function 

fitting ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017; and seasonal variation terms, including 

mean, annual and semi-annual amplitudes, for each of the coefficients in the polynomial function at each of global grid points 

were also modelled based on the 10-year time series of the coefficient. 

The performances of the newly developed GGNTm model was assessed and compared with GTrop and GWMT using 315 

model predicted 𝑇𝑚 values in 2018 against two references in the same year: 1) 𝑇𝑚 from ERA5 hourly reanalysis data and 2) 

𝑇𝑚 from radiosonde profiles at 428 global radiosonde stations. Compared to the first reference, the RMSEs of 𝑇𝑚 values 

resulting from GGNTm at five pressure levels over all the global grid points in 2018 were significantly smaller than that of the 

other three models at high-altitude pressure levels. Compared to the second reference, the mean bias and mean RMSE of 𝑇𝑚 

resulting from GGNTm at all the 428 radiosonde stations in 2018 were－0.34 K and 3.89 K respectively; and the mean bias 320 

and mean RMSE of 𝑇𝑚 resulting from GGNTm at all pressure levels from surface to 10 km height were －0.16 K and 4.20 

K respectively, which were significantly smaller than that of all the other three models. In all five height ranges from surface 

to 10 km in altitude, the GGNTm results were nearly unbiased, and their accuracy varied little with height. This result suggests 

that the characteristics of the vertical nonlinear variation in 𝑇𝑚 is modelled by the approach proposed in this study more 

accurately than the existing models. In addition, the impact of GGNTm on GNSS-PWV was analyzed. The results showed that 325 
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the accuracy of the PWV resulting from GGNTm outperformed GTrop and GWMT model. 

The improvement in the accuracy of the new 𝑇𝑚 model has significance for both long-term GNSS-PWV analysis and 

NRT/RT GNSS-PWV sensing. Our future work will be focusing on using high temporal resolution atmospheric data such as 

ERA5 hourly reanalysis data, instead of monthly mean data used in this study, to model the temporal variation of the coefficents 

in the 𝑇𝑚 fitting function for further improving the accuracy of the GGNTm model.  330 
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 500 

 

Figure 1. Temperature T, water vapor pressure e and 𝑇𝑚 profiles obtained from ERA5 monthly mean reanalysis in December 

2017 at 4 grid points: (a) 90°N, 120°E; (b) 60°N, 120°E; (c) 30°N, 120°E; (d) 0°N, 120°E. 

  



 

18 

 

 505 

 

 

 

Figure 2. Mean of RMSs of the 𝑇𝑚 residuals of 120 monthly -mean profiles from the 10-year period at each grid point for 

scheme-1 (left, for linear function) and scheme-2 (right, for three-order polynomial function) 510 
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Figure 3. Periodicity reflected in the 10-year time series of each coefficient in the three-order polynomial function at 

60°N,120°E. 515 
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Figure 4. Spatial interpolation of the 𝑇𝑚 value for the target point (𝜑, 𝜆, 𝐻). After obtaining the 𝑇𝑚 values at the height H at 520 
the four grid points (see the four grids on the top plane) by GGNTm model using Eq. (7), the 𝑇𝑚 value at the target point can 

be interpolated (the dashed rectangular). 
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Figure 5. RMSE of 𝑇𝑚 at each grid point at 950hPa (left column) and 500hPa (right column) pressure levels in 2018 resulting 525 

from GTrop, GWMT_D and GGNTm. 
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Figure 6. 𝑇𝑚 values (at the earth surface) integrated from the radiosonde measurements as well as that predicted by GGNTm 

at each of the four radiosonde stations (No. 23955, 42339,72293 and 87623). 530 
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Figure 7. RMSE of 𝑇𝑚 at surface level (left column) and all pressure levels under 10 km (right column) at each of the 428 

radiosonde stations in 2018 resulting from GTrop, GWMT_D, and GGNTm. The RMSE of Tm under 10 km was calculated 

using the differences between model-predicted Tm values and the Tm values over all pressure levels that with a height less 

than 10 km. 535 
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Figure 8. Bias and RMSE of 𝑇𝑚 from radiosonde profiles at 428 global radiosonde stations in each of five height ranges 

resulting from GTrop, GWMT_D and GGNTm . 
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 540 

 
Figure 9. Tm derived from radiosonde profiles, Ts-Tm model, GGNTm from August to September in 2018 at KingsPark 

station and the daily total rainfall at Hong Kong International Airport 
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 545 
 

 

Figure 10. Mean RMSE and maximum RMSE of PWV values at each of the pressure levels at UTC 12:00 at all global grid 

points in 2018 resulting from each of the three models selected. 
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Table 1. Mean bias and mean RMSE of 𝑇𝑚 values at each of five pressure levels at UTC 12:00 at all global grid points in 

2018 resulting from each of the three models selected. 

Pressure level 

 (hPa) 
Statistic (K) 

Model 

GTrop GWMT_D GGNTm 

950     

 
mean bias −0.14 1.68 −0.43 

mean RMSE 3.39 3.98 3.35 

800      

 
mean bias −0.14 2.09 0.09 

mean RMSE 3.79 4.46 3.77 

650     

 
mean bias 0.76 1.84 0.15 

mean RMSE 4.14 4.58 4.07 

500     

 
mean bias 2.97 2.07 0.30 

mean RMSE 5.17 4.57 3.94 

350     

 
mean bias 5.71 1.90 0.78 

mean RMSE 7.12 3.93 3.02 

 

  555 
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Table 2 Mean bias and mean RMSE of 𝑇𝑚 values at 428 globally distributed radiosonde stations in 2018 resulting from GPT3, 

GTrop, GWMT_D and GGNTm. 

Height Model Bias (K) RMSE (K) 

Surface    

 GPT3 −0.36 [−7.87  5.81] 3.97  [1.36  12.51] 

 GTrop 0.16 [−2.39  4.23] 3.87  [1.35  7.22] 

 GWMT_D 1.30 [−1.74  5.64] 4.07  [1.51  7.81] 

 GGNTm −0.34 [−3.17  3.74] 3.89  [1.39  7.03] 

Under 10km    

 GPT3 22.00  [6.78  27.29] 27.67  [10.80 33.53] 

 GTrop 1.50  [−3.68  5.97] 5.08  [1.90  8.68] 

 GWMT_D 1.16  [−0.20  6.18] 4.61  [2.24  8.52] 

 GGNTm −0.16  [−3.81  4.69] 4.20  [1.37  7.30] 

Note: the values within square brackets were the minimum and maximum. 

 560 


