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Abstract. Global Navigation Satellite Systems (GNSS) have been proved to be an excellent technology for retrieving 

precipitable water vapor (PWV). In GNSS meteorology, PWV at a station is obtained from a conversion of the zenith wet 

delay (ZWD) of GNSS signals received at the station using a conversion factor which is a function of weighted mean 

temperature (𝑇𝑚) along the vertical direction in the atmosphere over the site. Thus, the accuracy of 𝑇𝑚 directly affects the 10 

quality of the GNSS-derived PWV. Currently, the 𝑇𝑚 value at a target height level is commonly modelled using the 𝑇𝑚 

value at a specific height and a simple linear decay function, whilst the vertical nonlinear variation in 𝑇𝑚 is neglected. This 

may result in large errors in the 𝑇𝑚 result for the target height level, as the variation trend in the vertical direction of 𝑇𝑚  

may not be linear. In this research, a new global grid-based 𝑇𝑚 empirical model with a horizontal resolution of 1°× 1°, named 

GGNTm, was constructed using ECMWF ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017. A 15 

three-order polynomial function was utilized to fit the vertical nonlinear variation in 𝑇𝑚 at the grid points, and the temporal 

variation in each of the four coefficients in the 𝑇𝑚 fitting function was also modelled with the variables of the mean, annual 

and semi-annual amplitudes of the 10-year time series coefficients. The performance of the new model was evaluated using 

its predicted 𝑇𝑚 values in 2018 to compare with the following two references in the same year 1) 𝑇𝑚 from ERA5 hourly 

reanalysis with the horizontal resolution of 5°× 5°; 2) 𝑇𝑚 from atmospheric profiles from 428 globally distributed radiosonde 20 

stations. Compared to the first reference, the mean RMSEs of the model predicted 𝑇𝑚 values over all global grid points at the 

950hPa and 500hPa pressure levels were 3.35K and 3.94K respectively. Compared to the second reference, the mean bias and 

mean RMSE of the model predicted 𝑇𝑚 values over the 428 radiosonde stations at the surface level were 0.34K and 3.89K 

respectively; the mean bias and mean RMSE of the model’s 𝑇𝑚 values over all pressure levels in the height range from the 

surface to 10 km altitude were −0.16K and 4.20K respectively. The new model results were also compared with that of the 25 

GPT3, GTrop and GWMT_D models in which different height correction methods were also applied. Results indicated that 

significant improvements made by the new model were at high-altitude pressure levels; in all five height ranges, GGNTm 

results were generally unbiased, and their accuracy varied little with height. The impact of 𝑇𝑚 on GNSS-PWV was evaluated 

in terms of relative error, and significant improvement was found compared to the widely used GPT3 model. These results 

suggest that considering the vertical nonlinear variation in 𝑇𝑚 and the temporal variation in the coefficients of the 𝑇𝑚 model 30 

can significantly improve the accuracy of model-predicted Tm for a GNSS receiver that is located in anywhere below the 
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tropopause (assumed to be 10 km), which has significance for applications needing real-time or near real-time PWV converted 

from GNSS signals. 

1 Introduction 

Water vapor, as an important greenhouse gas, is tightly related to weather variations, hence, it is crucial to monitor the 35 

water vapor content in the atmosphere for reliable weather forecast. The meteorological parameter that is closely related to 

water vapor is precipitable water vapor (PWV) and it can be measured by various technologies such as radiosondes, remote 

sensing satellites and water vapor radiometers. Global Navigation Satellite Systems (GNSS), which were initially designed for 

positioning, navigation, and timing, can be used to retrieve the zenith tropospheric delay (ZTD) of the GNSS signal over an 

observation station. The ZTD can be divided into zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD). The ZHD can 40 

usually be obtained at a high accuracy from a standard empirical model together with some surface meteorological data at the 

station. The atmospheric water vapor information is contained in the GNSS-ZTD, more precisely, in the GNSS-ZWD, which 

can be converted into PWV. The GNSS were first applied to meteorological research in the 1990s (Bevis et al., 1992). Near 

real-time GNSS-ZTD products estimated from GNSS data processing have been routinely assimilated into numerical weather 

models (NWM) for improving the performance of weather forecast (Bennitt and Jupp, 2012; Dousa and Vaclavovic, 2014; 45 

Guerova et al., 2016; Le Marshall et al., 2012, 2019). Research has demonstrated that the accuracy of GNSS-PWV can meet 

the accuracy requirements for most meteorological applications, and the applicability of GNSS-PWV for studying extreme 

weather conditions and climatic events has been investigated by many researchers (Bonafoni et al., 2013; Calori et al., 2016; 

Chen et al., 2018; Choy et al., 2013; Eugenia Bianchi et al., 2016; Shi et al., 2015; Wang et al., 2016, 2018; Zhang et al., 2015). 

To obtain GNSS-PWV over a station, the first step is to estimate the ZTD of the station from GNSS data processing, and the 50 

two most common data processing strategies are the network approach and precise point positioning (PPP) approach (Ding et 

al., 2017; Douša et al., 2016; Guerova et al., 2016; Li et al., 2015; Lu et al., 2015; Rohm et al., 2014; Yuan et al., 2014; Zhou 

et al., 2020). The former uses double-differenced observations, while the latter uses un-differenced observations in the 

observation equation system. The ZWD can be obtained from subtracting the ZHD from the GNSS-ZTD, or directly estimated 

if the ZHD has been corrected in the GNSS observation equation system, depending on the processing strategies adopted. Then 55 

the GNSS-PWV can be converted by: 

 𝑃𝑊𝑉 = 𝛱 ∙ 𝑍𝑊𝐷 (1) 

where 𝛱 is the conversion factor (Askne and Nordius, 1987; Bevis et al., 1992), which is given by: 

 𝛱 =
106

𝜌𝑤𝑅𝑣(
𝑘3

𝑇𝑚
+ 𝑘2

′ )
 (2) 

where 𝜌𝑤  is the density of liquid water; 𝑅𝑣  is the specific gas constant for water vapor; 𝑘2
′  and 𝑘3 are atmospheric 

refractivity constants; 𝑇𝑚 is the weighted mean temperature over the GNSS site, which is defined and approximated through 
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the following equation (Davis et al., 1985): 60 

 𝑇𝑚 =
∫

𝑒
𝑇

𝑑ℎ

∫
𝑒

𝑇2 𝑑ℎ
≈

∑
𝑒𝑖

𝑇𝑖

𝛥ℎ𝑖
𝑛
1

∑
𝑒𝑖

𝑇𝑖

2 𝛥ℎ𝑖
𝑛
1

 (3) 

where 𝑒 and 𝑇 are the water vapor pressure (hPa) and absolute temperature (K) respectively; 𝑛 is the number of the layers; 

𝑒𝑖, 𝑇𝑖 and ∆ℎ𝑖 are the mean water vapor pressure, mean temperature, and thickness of the 𝑖th layer respectively.  

From Eq. (2), one can see that 𝑇𝑚 is a crucial variable for the determination of the conversion factor 𝛱, which in turn 

affects the determination of PWV expressed by Eq. (1). The significance of obtaining accurate 𝑇𝑚  values has been 

demonstrated by previous researches (Bevis, 1994; Jiang et al., 2019; Ning et al., 2016; Wang et al., 2005, 2016). 𝑇𝑚 can be 65 

calculated from an observed atmospheric profile or NWM data (Wang et al., 2005, 2016). This observed atmospheric profile 

can be acquired from a radiosonde station, which is valid only for the sounding site. In fact, for GNSS stations, they are usually 

not co-located with any regional radiosonde stations, i.e. observed atmospheric profiles are unavailable, as a result, equation 

(3) is not applicable for GNSS stations. Moreover, even a GNSS station is co-located with a radiosonde station, due to the low 

temporal and spatial resolution of radiosonde data, the temporal resolution of its resultant 𝑇𝑚 is also low, which cannot meet 70 

the requirements of GNSS near real-time/real-time (NRT/RT) applications such as the conversion of GNSS-ZWD time series 

into PWV time series. Although atmospheric profiles can be obtained from NWM data, it is still difficult for users to obtain 

predicted results from the NWM data for NRT/RT GNSS-PWV sensing. Thus, it is of great importance to develop empirical 

𝑇𝑚 models for time-critical applications. Some 𝑇𝑚 models have been developed with a focus of improving the accuracy of 

the 𝑇𝑚, and these empirical models can be classified into two categories. One category is such a model that depends on in situ 75 

surface temperature observation 𝑇𝑠 , like the Bevis model, which is a simple linear function expressed as: 𝑇𝑚 = 𝑎 + 𝑏𝑇𝑠 

(Bevis et al., 1992). The two coefficients of such a linear function can be determined from the linear regression method based 

on long-term regional radiosonde data. However, the deployment of radiosonde stations is geographically sparse due to their 

high cost, and even worse is that there are no radiosonde stations at all in some areas. Yao et al. (2014a) developed a global 

latitude-dependent 𝑇𝑚 − 𝑇𝑠 linear model using 𝑇𝑚 data from the global geodetic observing system (GGOS) and 𝑇𝑠 data 80 

from the European center for medium-range weather forecasts (ECMWF). Jiang developed a time-varying global gridded  

𝑇𝑚 − 𝑇𝑠  model using both 𝑇𝑚  and 𝑇𝑠  derived from ERA-Interim(Jiang et al., 2019). Ding (2018, 2020) developed two 

generations of global 𝑇𝑚 models using the neural network algorithm, in which temperature observations were required for 

the input and the models performed well.  

The 𝑇𝑚 models mentioned above need in situ meteorological observations as the model’s input. However, for GNSS 85 

stations, again, not all stations are equipped with meteorological sensors. In this case, the type of empirical models that are 

independent of meteorological observations had to be constructed. Yao et al. (2014b, 2012, 2013) used spherical harmonics to 

develop the GWMT, GTM-Ⅱ and GTM-Ⅲ models, in which both the height and the periodicity of 𝑇𝑚 were taken into account. 

Huang et al. (2019a) established a global 𝑇𝑚 model using the sliding window algorithm, which was based on varying latitude 
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and altitude. The widely used GPT2w model (Böhm et al., 2015) and its successor, GPT3 (Landskron and Böhm, 2018), 90 

provided gridded results with both 1°×1°and 5°×5° horizontal resolutions and the models also contain a few terms related to 

temporal variations in 𝑇𝑚 including the mean, annual and semiannual amplitudes. However, the height differences between 

the user site, e.g. a GNSS station, and its nearest four surrounding grid points were not considered. Recent studies have 

overcome this problem by providing 𝑇𝑚 values at various heights ranging from ground surface to the upper troposphere. He 

et al. (2017) developed a voxel-based global model, named GWMT-D, using the 𝑇𝑚values at four height levels of reanalysis 95 

data from the National Centers for Environmental Prediction (NCEP) to construct the voxels. The 𝑇𝑚 predicted for the user 

site can be obtained from an interpolation of the 𝑇𝑚 values at the eight grid points of the voxel that contains the user site. In 

recent studies, some researchers used a 𝑇𝑚 lapse-rate, the rate of change in 𝑇𝑚 with altitude, to correct the effect of the height 

element on 𝑇𝑚, e.g. IGPT2w (Huang et al., 2019b), GTm_R (Li et al., 2020) and GPT2wh (Yang et al., 2020). The GTrop 

model (Sun et al., 2019), developed for predicting both ZTD and 𝑇𝑚 , also took into account the 𝑇𝑚  lapse-rate, and it 100 

outperforms GPT2w obviously at altitudes under 10 km. 

As previously discussed, considering the lapse-rate in a 𝑇𝑚 model can improve the model’s accuracy. However, the 

assumption that 𝑇𝑚 linearly varies with height, which many recently developed models were based on, may not agree well 

with the truth. In this research, a new global grid-based empirical 𝑇𝑚 model, named GGNTm, in which the vertical 

nonlinear variation of 𝑇𝑚 was taken into account, was developed using a three-order polynomial function and ERA5 105 

monthly mean reanalysis data over the 10-year period from 2008 to 2017, and the temporal variation in each of the four 

coefficients in the 𝑇𝑚 fitting function was also modelled with the variables of the mean, annual and semi-annual amplitudes 

of the 10-year time series coefficient.  

The outline of the paper is as follows. The features of the vertical nonlinear variation in 𝑇𝑚 were investigated in Sect. 

2.2, then a three-order polynomial function fitting the 10-year 𝑇𝑚 profiles obtained from ERA-5 monthly mean reanalysis 110 

data was developed for the GGNTm model. In Sect.3, the performance of GGNTm was validated using the 𝑇𝑚 values from 

ERA5 hourly reanalysis and globally distributed radiosonde profiles in 2018 as the references. Conclusions are summarized 

in the final section. 

2 Methodology for new model construction 

2.1 Data Source 115 

ERA5 reanalysis data were the latest reanalysis data developed by the ECMWF. In this research, ERA5 monthly mean 

reanalysis data in the 10-year period from 2008 to 2017containing geopotential heights, temperatures, and specific humidity 

at 37 pressure levels with a horizontal resolution of 1°× 1° were downloaded from the web server of the Copernicus Climate 

Change Service (C3S, https://climate.copernicus.eu/climate-reanalysis). The geopotential heights, which are often used in 

meteorology, were then converted to WGS-84 ellipsoidal heights. Water vapor pressure was calculated by (Nafisi et al., 120 
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2012): 

 𝑒 = 𝑞𝑝/(0.622 + 0.378𝑞)
 

 (4) 

where 𝑞 is the specific humidity, which can be obtained from NWM data; 𝑝 is the atmospheric pressure.  

2.2 Vertical variation of 𝑻𝒎 

The ERA5 monthly mean products were used to analyze the vertical variation of 𝑇𝑚. As defined in Eq. (3), 𝑇𝑚 is a 

function of water vaper pressure and temperature. The variation in water vapor pressure in the vertical direction has been 125 

known nonlinear, while the vertical variation in temperature is often assumed to be a linear decay function (Dousa and Elias, 

2014). In fact, there is such a phenomenon that temperature increases with the increase in height, the so-called temperature 

inversion, which occurs in both the upper atmosphere and near ground surface, meaning that the vertical variation in 

temperature is complex. As a result, 𝑇𝑚 in the vertical direction varies nonlinearly due to the irregular variations in both 

water vapor pressure and temperature in the vertical direction. Fig. 1 shows four vertical profiles of water vapor pressure, 130 

temperature, and 𝑇𝑚 at the pressure levels that were under a 10 km ellipsoidal height at four grid points obtained from 

ERA5 monthly mean reanalysis in December 2017. It should be noted that the surface heights of the four grid points were 

different, and they were 0 m, 301 m, 13 m, and 180 m respectively. Sub-figures (a) and (b) show that, in the height range 

near the surface, temperature increases with the increase in height. In addition, all the four 𝑇𝑚 profiles (the black curves 

with dots) in these sub-figures show a nonlinear variation trend. This implies that using a constant lapse-rate to model the 135 

vertical 𝑇𝑚 variation trend will result in large errors, i.e. the 𝑇𝑚 profiles cannot be accurately modelled through a constant 

𝑇𝑚 lapse-rate. This finding aligns well with other researchers (e.g. (Yao et al., 2018)). 

2.3 Three-order polynomial function for 𝑻𝒎 vertical fitting 

A linear 𝑇𝑚 decay function with a constant 𝑇𝑚 lapse-rate can be expressed as: 

 𝑇𝑚 = 𝛼 + 𝛽(𝐻 − ℎ0) (5) 

where 𝛼 is the 𝑇𝑚 value at the reference height ℎ0; 𝛽 is the 𝑇𝑚 lapse-rate and 𝐻 is the ellipsoidal height (km) of the user 140 

site. An equivalent expression of Eq. (5) is: 

 𝑇𝑚 = 𝛼′ + 𝛽′𝐻  (6) 

where 𝛼′ denotes the 𝑇𝑚value at 0 km ellipsoidal height. Some 𝑇𝑚 models were constructed based on this linear 𝑇𝑚 decay 

function. 𝑇𝑚  values from different height ranges can be used to calculate the 𝑇𝑚  lapse-rate. However, if 𝑇𝑚  varies 

nonlinearly in the vertical direction, the calculated 𝑇𝑚 lapse-rate values would have large errors. To overcome this problem, 

in this research, a three-order polynomial function was selected for a new 𝑇𝑚 model: 145 

 𝑇𝑚 = 𝑎 + 𝑏𝐻 + 𝑐𝐻2 + 𝑑𝐻3  (7) 

where 𝑎, 𝑏, 𝑐, 𝑑 are the four unknown coefficient parameters of the fitting function.  

For the estimation of the two sets of unknown coefficient parameters expressed in equations (6) and (7), two schemes, 
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named scheme-1 and scheme-2, were for the two functions fitting the sample data of 𝑇𝑚 profiles of the 120 monthly mean 

reanalysis data over the 10-year period from 2008 to 2017 at each grid point. It should be noted that, only those 𝑇𝑚 values 

from the heights under 10 km were selected for the sample data. For measuring how well the fitting function fits the sample 150 

data, the root mean square (RMS) of the differences between the 𝑇𝑚 values resulting from the fitting function and the sample 

data was calculated by: 

 𝑅𝑀𝑆 = √
1

𝑛
∑ 𝛥𝑖

𝑛

𝑖=1

2

 (8) 

where 𝛥𝑖 is the residual of 𝑇𝑚 at the 𝑖th pressure level over the grid point. Fig. 2 shows the map for the mean of the RMSs 

of the fitting residuals of the 𝑇𝑚 from the aforementioned 120 monthly mean 𝑇𝑚 profiles (the samples) at each of the grid 

points. The mean of the mean RMSs at all global grid points for scheme-1 and scheme-2 were 1.26 K and 0.30 K respectively. 155 

In addition, the RMS results in the left sub-figure (for linear function) were latitude-dependent, and small RMSs (blue) were 

in mid-latitude regions; large RMS values in both sub-figures were in Antarctica. Comparing the two subfigures, we could find 

that the RMS values shown in the right sub-figure were all very small and significantly smaller than that of the left sub-figure, 

meaning that the three-order polynomial fitting function superior to the linear fitting function. 

2.4 𝑻𝒎 temporal fitting for new model 160 

In the previous section, the 10-year time series of coefficients in the three-order polynomial function expressed in Eq. (7) at 

each of the grid points were obtained from the least-squares estimation. Since they were not constant values, the temporal 

variation in each coefficient at each grid point needs to be further modelled for the new grid-based empirical 𝑇𝑚 model 

proposed in this study, GGNTm. The seasonal variation reflected in the 10-year time series of each of the coefficients 𝑟 =

𝑎, 𝑏, 𝑐, 𝑑 was analyzed using the fast Fourier transform (FFT), and results for seasonality and periodicity at point 60°N,120°E 165 

are shown in Fig. 3, which presented noticeable annual and semi-annual amplitudes. Similar periodicities were also found at 

other grid points. According to these characteristics, the fitting model for GGNTm containing three terms including mean, 

annual and semi-annual amplitudes for each coefficient time series at each grid point expressed by the following was adopted 

in this study:  

 𝑟 = 𝐴0 + 𝐴1 𝑐𝑜𝑠(
𝑑𝑜𝑦−𝑑1

365.25
2𝜋) + 𝐴2 𝑐𝑜𝑠(

𝑑𝑜𝑦−𝑑2

365.25
4𝜋)  (9) 

where 𝐴0, 𝐴1 and 𝐴2 are the mean, annual and semi-annual amplitudes respectively; 𝑑𝑜𝑦 denotes “day of year”; 𝑑1 and 170 

𝑑2  are the initial phases of the annual and semi-annual periodicities, which are estimated together with the mean and 

amplitudes.  

Then, the mean, annual and semi-annual amplitudes, and initial phases for each coefficient at each of the grid points over 

the globe (with the resolution of 1°× 1°) were determined using the least squares estimation method and the 10-year time series 

of the coefficient. To calculate 𝑇𝑚 for a specific site and time, e.g. for a GNSS station at an observing time, the following 3-175 
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step procedure needs to be carried out: 

1) using Eq. (9) to calculate each of the four coefficients at each of the four grid points surrounding the user site;  

2) using Eq. (7) to calculate the 𝑇𝑚 values at the height of the user site at each of the above four grid points (which is 

for the height dimension);  

3) using an interpolation method, such as the inverse distance weighting or bilinear interpolation, on the four 𝑇𝑚 values 180 

from step 2) to obtain the 𝑇𝑚 value for the user site (which is for the horizontal dimension, as is shown in Fig. 4).  

Till now the new model has been developed based on the 10-year sample data from 2008 to 2017. This model will be 

validated using the model predicted 𝑇𝑚 results in 2018 compared against the same year’s (i.e. out-of-sample) reference data. 

Results will be discussed in the next section.  

3 Evaluation of GGNTm 185 

Our new model was developed for obtaining predicted Tm values over a site that is located in anywhere below the 

tropopause (assumed to be 10 km), which has significance for applications needing real-time or near real-time PWV converted 

from GNSS signals received by a GNSS receiver located in a flat area, an ocean area, a high mountainous area, or even a flight 

vehicle. For the performance assessment of the newly developed 𝑇𝑚  model, 𝑇𝑚  values over different pressure levels 

obtained from both ERA-5 reanalysis and radiosonde profiles in 2018 were selected as the references due to the fact that GNSS 190 

receivers may be located in any reasonable altitudes. The two statistics, bias and RMSE, were utilized to measure the systematic 

discrepancy and the accuracy of the model results. Their formulas are: 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑇𝑚𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑚𝑖
𝑟𝑒𝑓

)

𝑛

𝑖=1

 (10) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇𝑚𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑚𝑖
𝑟𝑒𝑓

)

𝑛

𝑖=1

2

 (11) 

where i is the index of the data element; 𝑇𝑚𝑖
𝑚𝑜𝑑𝑒𝑙denotes the model resultant 𝑇𝑚 value; 𝑇𝑚𝑖

𝑟𝑒𝑓
 denotes the reference 𝑇𝑚   

value; 𝑛 is the number of the 𝑇𝑚 values in the statistics. 

3.1 Comparison with ERA5 hourly data 195 

As the first set of the reference selected for the evaluation of the new model, ERA-5 hourly data (with the resolution of 

5°× 5°) at 12:00 UTC on each day in 2018, which were out-of-sample data, were downloaded from the C3S. Then they were 

converted to 𝑇𝑚 profiles, and 𝑇𝑚 values at each of five pressure levels: 950hPa, 800hPa, 650hPa, 500hPa and 350hPa were 

used to calculate the bias and RMSE of the new model’s 𝑇𝑚 results at the pressure level. In addition to the GGNTm model, 

other three empirical models developed in recent years including GPT3, GTrop and GWMT_D, in which different vertical 200 
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correction methods were also applied, were also evaluated for performance comparisons of GGTNm and these three models.  

Table 1 shows the mean bias and mean RMSE of the 𝑇𝑚 values over all global grid points resulting from each of the 

above four models. As we can see, on a global scale, GGNTm outperformed all the other three models, especially at high 

pressure levels. The mean bias and RMSE of GPT3 varied significantly due to its lack of height refinement. GTrop was 

considerably better than GPT3, owing to its use of the 𝑇𝑚 lapse-rate, although its 𝑇𝑚 results were still had large errors at 205 

high pressure levels, which is most likely to be resulted from the neglecting of the nonlinear vertical variation in 𝑇𝑚. The large 

bias and RMSE of the GWMT_D results were possibly because its modelling was based on NCEP reanalysis data, and there 

may exist systematic differences between the reanalysis data from ECMWF and NCEP. However, GWMT_D still significantly 

outperformed GPT3, due to its voxel-based structure. Compared to GTrop and GWMT_D, GGNTm performed very well at 

all pressure levels. This is because the model accounted for the vertical nonlinear variation in 𝑇𝑚. 210 

The results shown in Table 1 were the statistics of all global grid points at each of the five pressure levels selected. For 

more refined results, Fig. 5 shows the map for the RMSE of 𝑇𝑚 at each grid point at either the 950hPa or 500hPa pressure 

levels resulting from three models, and the reason for not selecting GPT3 here was due to its much poor performance. The 

950hPa pressure level (the left column) results indicated that the RMSEs of 𝑇𝑚 resulting from all the three models were 

latitude-dependent and high accuracy 𝑇𝑚 values (in blue) were mainly in low-latitude belts. However, the results at the 500 215 

hPa pressure level (the right column) indicated that the new model significantly outperformed the other two models. In addition, 

from the 950h pressure level results, the percentages of those RMSE values that were under 5 K from all the global grid points 

for GTrop, GWMT_D and GGNTm were 93.4%, 82.1% and 94.6% respectively; while the corresponding percentage values 

at the 500hPa level were 44.9%, 70.6% and 88.7%. These suggest that larger improvements made by the new model, i.e. 

GGNTm, over the other two models were at high-altitude pressure levels. 220 

3.2 Comparison with radiosonde data 

In this section, 𝑇𝑚 from radiosonde profiles were used as the reference for the performance assessment of the models 

selected. The original radiosonde data at all globally distributed stations in 2018 were downloaded from the website of the 

University of Wyoming (http://weather.uwyo.edu/upperair/). Different from the use of reanalysis data as the reference, water 

vapor pressure at each pressure level from a radiosonde profile was calculated through a mixing ratio: 225 

 𝑒 = 𝑅𝑝/(622 + 𝑅)
 

 (12) 

where 𝑅 denotes the mixing ratio (g/kg).  

An additional data pre-processing procedure needs to be conducted for data quality control. Those poor radiosonde profiles 

needed to be identified and excluded from their use for the reference. The first check was for a valid mixing ratio value: if a 

pressure level lacks a valid mixing ratio value, then it is regarded invalid and thus to be excluded. After this initial checking 

was performed, further identifications were also carried out. A profile would be excluded if it met any one of the following 230 

four conditions: 

(1) the profile lacks surface meteorological observations; 
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(2) the pressure value of the top pressure level is greater than 100 hPa;  

(3) the difference in the pressure values at two successive levels is under 200hPa;  

(4) the profile consists of a few pressure levels, e.g. if 𝛥𝑃/𝑛 ≤ 30 ℎ𝑃𝑎 (where 𝛥𝑃 is the difference of the pressure 235 

values at the surface and the 100 hPa pressure levels, and n  is the number of all pressure levels from the surface to 

the 100hPa pressure levels), then the profile was regarded to have sufficient number of pressure levels, otherwise it 

would be excluded from the use in the testing. 

Sounding balloons are commonly launched twice a day (at 00:00 and 12:00 UTC). In this research, only those stations 

that had at least 300 profiles in 2018 were selected in the model performance assessment. After the above 5-step quality control 240 

procedure was performed, a total of 260140 profiles from 428 global radiosonde stations were finally used in the performance 

evaluation of four selected models. 

 Table 2 shows the mean bias and RMSE of surface 𝑇𝑚 values and 𝑇𝑚 values at all pressure levels from the surface to 

the 10 km height at all the aforementioned 428 global radiosonde stations resulting from each of the four models that were the 

same as the ones tested in the previous section. For the surface 𝑇𝑚 results, the mean RMSE of GTrop and GGNTm were very 245 

close; GWMT_D was the worst, with the largest bias and RMSE values, which may be due to its low horizontal resolution 

(5°×5°). The other set of results, the RMSE of 𝑇𝑚 under 10 km, was calculated using the differences between model-predicted  

𝑇𝑚 values and the reference Tm values over all pressure levels that with a height less than 10 km. A small RMSE of Tm under 

10 km indicates that the model performs well at any altitudes below the tropopause. As we can see, GPT3 performed the worst 

and significantly worse than the other three models, mainly due to lack of an appropriate modelling for the 𝑇𝑚  vertical 250 

variation; GWMT_D was slightly better than GTrop, possibly because the 𝑇𝑚 value from the former was interpolated from 

the 𝑇𝑚 values at four height levels; the mean bias of 𝑇𝑚 from the new model, GGNTm, was the least, with the value of −0.16, 

which was close to 0, meaning nearly unbiased; the RMSE of the new model was also the least, among the four models, which 

suggest that the vertical nonlinear variation of 𝑇𝑚 was modelled in the new model more accurately than the other existing 

models. 255 

Similar to Fig. 5, Fig.6 shows the map for the RMSE of 𝑇𝑚 values at each of the 428 radiosonde stations in 2018 at the 

surface pressure level (the left column) and all pressure levels that with a height less than 10 km (the right column) resulting 

from GTrop, GWMT_D, and GGNTm. It can be found that the RMSEs of all models were latitude-dependent, and those 

stations that had a large RMSE value were most located in north Africa and north-east America. At the four stations located in 

Antarctic, their surface 𝑇𝑚 values were accurately modelled by these models. However, in terms of the RMSE of all pressure 260 

levels under 10 km, the GTrop results were relatively large at the four stations, whilst both GWMT_D and GGNTm performed 

well at three of the stations. 

To further evaluate the performance of the three models at different height ranges under 10 km, the models’ 𝑇𝑚 values 

from the aforementioned radiosonde profiles at the 428 global stations were divided into five height ranges, and Fig. 7 shows 

each height range’s bias and RMSE. We can see the following results 1) in the height ranges above 4 km, the GTrop results 265 
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had the largest bias and largest RMSE, and GWMT_D was considerably better than GTrop; 2) in low height ranges the 

GWMT_D results were the worst; 3) in all height ranges the GGNTm results were nearly unbiased and their accuracy varied 

little with height. The GGNTm model’s consistent high accuracy in all height ranges suggest that the characteristics of the 

vertical nonlinear variation in 𝑇𝑚 is modelled by the proposed model more accurately than the other models. 

3.3 Impact of GGNTm on PWV 270 

The accuracy of GNSS-PWV over a GNSS site at an observing time is dependent upon the accuracies of the 

ZWD and the conversion factor. Uncertainty analysis has been conducted by some researches to study the uncertainty of 

the GNSS-derived PWV, including the uncertainty in the conversion factor (Bevis, 1994; Jiang et al., 2019; Ning et al., 

2016). This research mainly focuses on the impact of the newly developed 𝑇𝑚 model on PWV, however, it is difficult to 

evaluate the impact of 𝑇𝑚 on the GNSS-PWV directly, as GNSS stations and radiosonde stations are usually not collocated. 275 

Thus, a theoretical model was adopted by several studies to study the error in PWV resulting from 𝑇𝑚 (He et al., 2017; 

Huang et al., 2019a; Li et al., 2020; Wang et al., 2005, 2016). The relationship of the relative error between 𝑇𝑚 and PWV 

can be expressed as: 

 

∆𝑃𝑊𝑉

𝑃𝑊𝑉
=

∆𝛱

𝛱
=

1

(1 +
𝑘2
′

𝑘3
𝑇𝑚)

∗
∆𝑇𝑚

𝑇𝑚

 
(13) 

where ∆𝑃𝑊𝑉 is the absolute error in PWV resulting from 𝑇𝑚; ∆𝑃𝑊𝑉/𝑃𝑊𝑉 is the relative error of PWV. Due to the fact 

that 𝑘2
′ /𝑘3 is quite small (≈ 6𝑒−5 𝐾−1), the relative error of PWV resulting from 𝑇𝑚 is approximately equal to that of 𝑇𝑚. 280 

In this research, surface 𝑇𝑚 and PWV were obtained from the abovementioned radiosonde profiles downloaded from the 

University of Wyoming. The mean absolute error and mean relative error of PWV resulting from GGNTm model at the above-

mentioned radiosonde stations are shown in Fig. 8. As is shown in the figure, the distribution of both mean absolute error and 

mean relative error of PWV resulting from GGNTm are latitude-dependent, and stations at high latitudes tended to have smaller 

absolute errors but larger relative errors compared to stations located in low-latitude regions. The mean of mean absolute error 285 

and mean relative error of PWV resulting from 𝑇𝑚  derived from GGNTm on surface level were 0.19 mm and 1.13%, 

respectively. 𝑇𝑚 values over different pressure levels of radiosonde profiles at the 428 radiosonde stations in 2018 were then 

divided into five height ranges to calculate the relative error of PWV resulting from selected empirical models. As is shown in 

Table 3, significant improvement can be obtained compared to the widely used GPT3 model, and the relative error of GGNTm 

varied little with height. 290 

4 Conclusions 

In GNSS meteorology, 𝑇𝑚 is an essential parameter for converting GNSS-ZWD to PWV over the GNSS observing 

station. In practice, the 𝑇𝑚 value over a GNSS station at an observing time is commonly obtained from an empirical 𝑇𝑚 
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model, such as GPT3, GTrop and GWMT_D. In this research, a new global gridded empirical 𝑇𝑚 model, named GGNTm, 

was developed. In this model, the vertical nonlinear variation in 𝑇𝑚 was modelled using a three-order polynomial function 295 

fitting ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017; and seasonal variation terms, including 

mean, annual and semi-annual amplitudes, for each of the coefficients in the polynomial function at each of global grid points 

were also modelled based on the 10-year time series of the coefficient. 

The performances of the newly developed GGNTm model was assessed and also compared with three existing models 

GPT3, GTrop and GWMT using model predicted 𝑇𝑚 values in 2018 against two references in the same year: 1) 𝑇𝑚 from 300 

ERA5 hourly reanalysis data and 2) 𝑇𝑚 from radiosonde profiles at 428 global radiosonde stations. Compared to the first 

reference, the RMSEs of 𝑇𝑚 values resulting from GGNTm at five pressure levels over all the global grid points in 2018 were 

significantly smaller than that of the other three models at high-altitude pressure levels. Compared to the second reference, the 

mean bias and mean RMSE of 𝑇𝑚 resulting from GGNTm at all the 428 radiosonde stations in 2018 were－0.34K and 3.89K 

respectively; and the mean bias and mean RMSE of 𝑇𝑚 resulting from GGNTm at all pressure levels from surface to 10 km 305 

height were －0.16K and 4.20K respectively, which were significantly smaller than that of all the other three models. In all 

five height ranges from surface to 10 km in altitude, the GGNTm results were nearly unbiased, and their accuracy varied little 

with height. This result suggests that the characteristics of the vertical nonlinear variation in 𝑇𝑚 is modelled by the approach 

proposed in this study more accurately than the existing models. In addition, the impact of GGNTm on GNSS-PWV was 

analyzed using a theoretical function. The results showed that the relative error of PWV resulting from GGNTm outperformed 310 

GPT3, GTrop and GWMT model. 

The improvement in the accuracy of the new 𝑇𝑚 model has significance for GNSS meteorology. Our future work will 

be focussing on using high temporal resolution atmospheric data such as ERA5 hourly reanalysis data, instead of monthly 

mean data used in this study, to model the temporal variation of the coefficents in the 𝑇𝑚 fitting function for further improving 

the accuracy of the GGNTm model.  315 
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Figure 1. Temperature T, water vapor pressure e and 𝑇𝑚 profiles obtained from ERA5 monthly mean reanalysis in December 

2017 at 4 grid points: (a) 90°N, 120°E; (b) 60°N, 120°E; (c) 30°N, 120°E; (d) 0°N, 120°E. 

 445 

 

Figure 2. Mean of RMSs of the 𝑇𝑚 residuals of 120 monthly -mean profiles from the 10-year period at each grid point for 

scheme-1 (left, for linear function) and scheme-2 (right, for three-order polynomial function) 
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 450 

 

Figure 3. Periodicity reflected in the 10-year time series of each coefficient in the three-order polynomial function at 

60°N,120°E. 
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 455 
 

 
Figure 4. Spatial interpolation of the 𝑇𝑚 value for the target point (𝜑, 𝜆, 𝐻). After obtaining the 𝑇𝑚 values at the 

height H at the four grid points (see the four grids on the top plane) by GGNTm model using Eq. (7), the 𝑇𝑚 value at 

the target point can be interpolated (the dashed rectangular). 460 
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Figure 5. RMSE of 𝑇𝑚 at each grid point at 950hPa (left column) and 500hPa (right column) pressure levels in 2018 resulting 

from GTrop, GWMT_D and GGNTm. 
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Figure 6. RMSE of 𝑇𝑚 at surface level (left column) and all pressure levels under 10 km (right column) at each of the 428 

radiosonde stations in 2018 resulting from GTrop, GWMT_D, and GGNTm. The RMSE of Tm under 10 km was calculated 

using the differences between model-predicted Tm values and the Tm values over all pressure levels that with a height less 470 

than 10 km. 
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Figure 7. Bias and RMSE of 𝑇𝑚 from radiosonde profiles at 428 global radiosonde stations in each of five height ranges 

resulting from GTrop, GWMT_D and GGNTm . 
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Figure 8. The mean absolute error and mean relative error of PWV at surface level resulting from 𝑇𝑚 derived from GGNTm 

at each of the 428 radiosonde stations in 2018 

  

https://doi.org/10.5194/amt-2020-274
Preprint. Discussion started: 7 October 2020
c© Author(s) 2020. CC BY 4.0 License.



 

23 

 

 480 
Table 1. Mean bias and mean RMSE of 𝑇𝑚 values at each of five pressure levels at UTC 12:00 at all global grid points in 

2018 resulting from each of the four models selected. 

Pressure level 

 (hPa) 
Statistic (K) 

Model 

GPT3 GTrop GWMT_D GGNTm 

950      

 
mean bias 0.74 −0.14 1.68 −0.43 

mean RMSE 4.25 3.39 3.98 3.35 

800       

 
mean bias 7.30 −0.14 2.09 0.09 

mean RMSE 7.83 3.79 4.46 3.77 

650      

 
mean bias 15.91 0.76 1.84 0.15 

mean RMSE 16.68 4.14 4.58 4.07 

500      

 
mean bias 27.50 2.97 2.07 0.30 

mean RMSE 27.81 5.17 4.57 3.94 

350      

 
mean bias 42.27 5.71 1.90 0.78 

mean RMSE 42.47 7.12 3.93 3.02 
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Table 2 Mean bias and mean RMSE of 𝑇𝑚 values at 428 globally distributed radiosonde stations in 2018 resulting from GPT3, 

GTrop, GWMT_D and GGNTm. 

Height Model Bias (K) RMSE (K) 

Surface    

 GPT3 −0.36 [−7.87  5.81] 3.97  [1.36  12.51] 

 GTrop 0.16 [−2.39  4.23] 3.87  [1.35  7.22] 

 GWMT_D 1.30 [−1.74  5.64] 4.07  [1.51  7.81] 

 GGNTm −0.34 [−3.17  3.74] 3.89  [1.39  7.03] 

Under 10km    

 GPT3 22.00  [6.78  27.29] 27.67  [10.80 33.53] 

 GTrop 1.50  [−3.68  5.97] 5.08  [1.90  8.68] 

 GWMT_D 1.16  [−0.20  6.18] 4.61  [2.24  8.52] 

 GGNTm −0.16  [−3.81  4.69] 4.20  [1.37  7.30] 

Note: the values within square brackets were the minimum and maximum. 
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Table 2 Relative error of 𝑃𝑊𝑉 in different height ranges. 

Height (km)  Relative error (%)   

GPT3 GTrop GWMT_D GGNTm 

(-0.1 2] 1.83 1.23 1.31 1.23 

(2  4] 

(4  6] 

(6  8] 

(8 10] 

5.32 

10.32 

15.56 

20.59 

1.38 

1.60 

1.91 

2.25 

1.47 

1.55 

1.46 

1.47 

1.35 

1.38 

1.31 

1.29 
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