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Abstract. Methane is the second most important anthropogenic greenhouse gas in the Earth’s atmosphere. Reducing methane

emissions is consequently an important element in limiting the global temperature increase below 2 °C compared to prein-

dustrial times. Therefore, a good knowledge of source strengths and source locations is required. Anthropogenic methane

emissions often originate from point sources or small areal sources, such as fugitive emissions at oil and gas production sites

or landfills. Airborne remote sensing instruments such as the Airborne Visible InfraRed Imaging Spectrometer - Next Gener-5

ation (AVIRIS-NG) with meter scale imaging capabilities are able to yield information about the locations and magnitudes of

methane sources, especially in areas with many potential emission sources.

To extract methane column enhancement information from spectra recorded with the AVIRIS-NG instrument, different re-

trieval algorithms have been used, e.g. the matched filter (MF) or the Iterative Maximum A Posteriori DOAS (IMAP-DOAS)

retrieval. The WFM-DOAS algorithm, successfully applied to AVIRIS-NG data in this study, fills a gap between those re-10

trieval approaches by being a fast, non-iterative algorithm based on a first order approximation of the Lambert-Beer law,

which calculates the change in gas concentrations from deviations from one background radiative transfer calculation using

precalculated weighting functions specific to the state of the atmosphere during the overflight. This allows the fast quantitative

processing of large data sets. Although developed for high spectral resolution measurements from satellite instruments such

as SCIAMACHY, TROPOMI and the MAMAP airborne sensor, the algorithm can be applied well to lower spectral resolution15

AVIRIS-NG measurements. The data set examined here was recorded in Canada over different gas and coal extraction sites as

part of the larger Arctic Boreal Vulnerability Experiment (ABoVE) Airborne Campaign in 2017.

The noise of the retrieved CH4 imagery over bright surfaces (> 1µWcm−2 nm−1 sr−1 at 2140nm) was typically ±2.3%

of the background total column of CH4 when fitting strong absorption lines around 2300nm, but could reach over ±5% for

darker surfaces (< 0.3µWcm−2 nm−1 sr−1 at 2140nm). Additionally, a worst case large scale bias due to the assumptions20

made in the WFM-DOAS retrieval was estimated to be ±5.4%. Radiance and fit quality filters were implemented to exclude

the most uncertain results from further analysis, mostly due to either dark surfaces or surfaces, where the surface spectral

reflection structures are similar to CH4 absorption features at the spectral resolution of the AVIRIS-NG instrument.
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We detected several methane plumes in the AVIRIS-NG images recorded during the ABoVE Airborne Campaign. For four

of those plumes, the emissions were estimated using a simple cross sectional flux method. The retrieved fluxes originated from

well pads and cold vents and ranged between (89 ± 46)kg(CH4)h−1 and (141 ± 87)kg(CH4)h−1. The wind uncertainty

was a significant source of uncertainty for all plumes, followed by the single pixel retrieval noise and the uncertainty due to

atmospheric variability. For one plume the wind was too low to estimate a trustworthy emission rate, although a plume was5

visible.

1 Introduction

Methane (CH4) is an important greenhouse gas, with a global warming potential approximately 28 times larger than that of

carbon dioxide (CO2) on a timescale of 100 years (IPCC 2013, 2013). After a brief period of stable mixing ratios at the

beginning of the 21st century, CH4 concentrations have again begun rising (Dlugokencky et al., 2011; Dlugokencky, 2018),10

though the origins of this stabilization and renewed increase are still debated (see for example Schaefer, 2019, and references

therein). This uncertainty emphasizes the need to reduce anthropogenic CH4 emissions to reach the goal of the Paris Agreement

(Paris Agreement, 2015; Nisbet et al., 2019).

According to the Global Carbon Project (GCP, Saunois et al., 2016, 2019) between∼ 50% and∼ 60% of the global methane

emissions are anthropogenic. Of those, roughly 55% result from agricultural practices and waste management, and nearly 35%15

from losses during fossil fuel extraction, delivery and use in energy production and transport, with a small contribution (∼ 10%)

coming from biomass and biofuel burning. Satellite instruments such as SCIAMACHY (spatial resolution ∼ 30× 60km2,

Burrows et al., 1995; Bovensmann et al., 1999) and TROPOMI (spatial resolution∼ 7×7km2, Veefkind et al., 2012; Hu et al.,

2016) have successfully been used to assess methane emissions from emission hot spots (Frankenberg et al., 2006; Schneising

et al., 2009; Buchwitz et al., 2017; Hu et al., 2018; Schneising et al., 2019; Pandey et al., 2019). Additional efforts to make20

single CH4 emitters visible from space by using measurements with high spatial resolution have been made, but so far only

strong single sources have been quantified (Thompson et al., 2016; Varon et al., 2019). Many anthropogenic CH4 emissions

occur over relatively large areas (e.g. rice paddies, animal herds, landfills), at previously unknown point sources (e.g. pipeline

leaks, broken valves) or with highly varying emissions, making reliable detection and attribution of single sources from space

challenging.25

Airborne remote sensing campaigns can often gain a better knowledge of single emitter source strengths in emission hot

spot regions due to their higher spatial resolution. In these campaigns, a defined area is sampled with stronger sensitivity to

small localized CH4 sources. For example, the Methane Airborne MAPper (MAMAP, Gerilowski et al., 2011), a non-imaging

instrument with a nadir pointing field of view and a high spectral resolution of ∼ 0.9nm, successfully quantified emissions

of known sources like coal mining shafts (Krings et al., 2013) or smaller areal sources like landfills (Krautwurst et al., 2017).30

However, its viewing geometry requires a flight pattern orthogonal to the CH4 plume for emission estimates and therefore

limits the potential to pinpoint single unknown sources in a field of multiple potential sources. This problem is solved by using

airborne imaging systems, which take multiple measurements across the flight track, thus creating an image of the area they
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pass over. However, to our knowledge, there is not yet an operational airborne imaging instrument specifically designed and

optimized for the detection of CH4 available.

Nevertheless, data from multiple imaging instruments have been analyzed to map and/or quantify CH4 emissions. For exam-

ple, thermal imaging instruments such as SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) could detect

methane plumes as low as 0.4kgh−1 of CH4 flying 500−700m above ground during a controlled release experiment (Scafutto5

et al., 2018). Also, the HyTES (Hyperspectral Thermal Emission Spectrometer) instrument has demonstrated detection of CH4

leaks (Hulley et al., 2016). While these instruments have been able to detect very small sources at low flight altitude (500m

above ground), performance may suffer at higher altitudes. For example, HyTES flying at 3km had some difficulty consistently

detecting a coal mine ventilation shaft plume with an estimated emission of ∼ 1650kgh−1 (Jongaramrungruang et al., 2019)

due to the strongly varying sensitivity of the instrument to different atmospheric layers.10

In the shortwave infrared (SWIR), the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG)

was used for the detection and quantification of anthropogenic methane sources (Thompson et al., 2015; Frankenberg et al.,

2016; Thorpe et al., 2016a, 2017; Duren et al., 2019; Cusworth et al., 2020; Thorpe et al., 2020). As the instrument was

not designed for the detection of atmospheric absorbers, it has a spectral resolution much coarser than SWIR instruments

specifically designed to measure CO2 and CH4. However, AVIRIS-NG has a very high signal to noise ratio (SNR) and meter15

scale spatial resolution. The latter depends on flight altitude and flight speed, with typical values for the ground sampling

distances for large scale methane surveys of 3×3m2 to 5×5m2. Successful algorithms for the retrieval of methane comprised

either a matched filter approach (Thompson et al., 2015), which uses a hypothesis test between presence and absence of

additional CH4 to infer CH4 increases, or an adaption of the IMAP-DOAS retrieval (Frankenberg et al., 2005) to AVIRIS-

NG airborne data (Thorpe et al., 2013, 2017), which is an iterative optimal estimation based algorithm. However, the latter20

is computationally very expensive, which makes it less suited to analyze large data sets aquired during longer measurement

campaigns (Thorpe et al., 2017). Consequently, it has only been applied to regions of special interest in the data.

In this study, we test and apply an adaption of the WFM-DOAS algorithm, used previously for the higher spectral resolu-

tion MAMAP measurements (spectral resolution ∼ 0.9nm Krings et al., 2011), to hyperspectral AVIRIS-NG data (spectral

resolution∼ 6nm). The data set was aquired during the Arctic Boreal Vulnerability Experiment Airborne Campaign (ABoVE,25

Miller et al., 2019b) in Canada and Alaska, which included overflights of multiple coal, oil and gas production sites. The

WFM-DOAS approach uses assumptions on the background state of the atmosphere at the time and location of the overflight,

including scattering. It performs a linear fit of atmospheric parameters deviating from this background state, making it a fast

quantitative method compared to iterative retrievals. We identified multiple plumes in the retrieval results, and for four of them,

the emissions were estimated by application of a cross sectional flux method.30

This publication is organized as follows: Following this introduction, Sect. 2 gives an overview of the instrument and data

sets. Section 2.1 describes the AVIRIS-NG instrument and radiance data, and Sect. 2.2 introduces the ERA-5 meteorological

data briefly. In Sect. 3, we present the retrieval algorithm for CH4 and the subsequent filtering. First, we describe the WFM-

DOAS method used to infer methane enhancement maps from the spectra in Sect. 3.1. Section 3.2 justifies the fitting windows

we use in the retrieval. Sect. 3.3 evaluates the sensitivity of the retrieval to assumptions in the forward model and in Sect.35
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3.4 we implement a filtering to remove certain error cases. We present experimental results in Sect. 4. First, the detection of

plumes is described in Sect. 4.1. Second, Sect. 4.2 illustrates a flux inversion using the cross sectional flux method, and Sect.

4.3 finally shows the results and uncertainties of the emission estimate for four plumes. The results are discussed in Sect. 5.

Sect. 6 summarizes the findings of this study.

2 Instrument and data sets5

2.1 The AVIRIS-NG instrument and measurements

AVIRIS-NG is a hyperspectral imaging spectrometer with a spectral sampling of∼ 5nm and a spectral resolution of∼ 5−6nm,

depending on the wavelength (Hamlin et al., 2011). As a nadir looking instrument, it measures solar radiation reflected from

ground in the wavelength range from 380 to 2450nm with a high signal-to-noise ratio of up to 800 at 2200nm (Thorpe et al.,

2016a). The instrument contains 600 spatial pixels, each having a 1 mrad field of view. This results in individual samples with10

5 m spatial resolution and a 3 km swath from a typical flight altitude of 5 km above ground level. This allows it to scan large

areas in short periods of time. The level-1 data distributed by the operations team contains orthorectified (and gridded) absolute

radiances (Chapman et al., 2019), with additional data containing observation parameters such as flight altitude, both solar and

instrument zenith and azimuth angles and surface elevation among others (see Miller et al., 2019a, for data description).

For this study, we analyzed a subset of the measurements collected during the ABoVE Airborne Campaign (Miller et al.,15

2019b) in 2017. The ABoVE campaign aimed to better understand the impacts of environmental changes in Alaska and western

Canada. During the airborne campaign, several flight lines of the AVIRIS-NG instrument covered fossil fuel infrastructure in

Canada, which contained multiple potential sources for CH4 emission plumes.

The data analyzed in this paper had been preselected to cover a wide range of surface types (e.g. forest, mountainous regions,

sand, grass). Additionally, the tracks contained different emission sources detected using the matched filter (MF) algorithm20

(Thompson et al., 2015) to test the retrieval algorithm against known plumes over different terrain. The preselection contained

13 flight lines on 5 different days in August 2017, covering different types of sources and surface types.

2.2 ERA-5 meteorological data

The WFM-DOAS retrieval and the flux inversion require information about various atmospheric parameters in addition to the

observed radiances. The following meteorological parameters were extracted from ERA-5 reanalysis data (Copernikus Climate25

Change Service (C3S) (2017), 2017): hourly data of temperature, pressure and water vapor profiles, as well as height resolved

wind speeds and wind components.

For a given flight line, the atmospheric parameters of the nearest 4 spatial grid points and the nearest two time steps of the

ERA-5 data set were interpolated to the time and location of the flight line. For the wind speed and the wind direction, the wind

speed components in East and North directions were averaged over the lowest 50m. We used the averaged wind speed for the30
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inversion, and included the averaged wind direction in the plots of the detected plumes. The wind direction for the inversion

was estimated from the plume structure itself.

3 Adaption of WFM-DOAS algorithm to AVIRIS-NG measurements

The WFM-DOAS algorithm was first developed for SCIAMACHY measurements (Buchwitz et al., 2000; Schneising et al.,

2008), where the absorption bands around 1580nm and 1660nm were used for the retrieval of CO2 and CH4. Recently, it5

has been modified and applied to TROPOMI measurements by Schneising et al. (2019) for the simultaneous retrieval of CH4

and CO. As TROPOMI was build without spectral bands around 1600nm, the retrieval used the wavelength ranges from

2311nm− 2315.5nm for CO and from 2320nm− 2338nm for CH4.

Additionally, the WFM-DOAS algorithm has been adapted and used since 2007 to retrieve local CH4 and CO2 enhancements

from MAMAP aircraft measurements in the wavelength range between 1590nm and 1690nm (see e.g. Krings et al., 2011,10

2013; Krautwurst et al., 2017; Krings et al., 2018).

3.1 Retrieval of total column increases with WFM-DOAS

The WFM-DOAS algorithm minimizes the difference between a measured and a modeled spectrum by scaling weighting

functions for the different trace gas profiles such as CH4 and CO2, shifting the temperature profile, and fitting a low order

polynomial for broad band absorption (e.g. at the surface) or scattering (e.g. by air molecules and aerosols). The weighting15

functions represent a linear relationship between the change in observed radiance and a change in the atmospheric parameters.

A detailed mathematical description of the WFM-DOAS algorithm modified for aircraft measurements and an analysis of this

method for MAMAP measurements can be found in Krings et al. (2011).

Each flight track covered a different scene or different day. We calculated a modeled spectrum for each scene using the SCI-

ATRAN radiative transfer model (Rozanov et al., 2017). There we used the solar zenith angle, viewing angle of the instrument,20

solar and instrument azimuth angle, surface elevation and flight altitude from the AVIRIS-NG level 1 orthorectified data set

(see data set description in Miller et al., 2019a). For each flight track, we calculated the mean value of each parameter and

used the results as input for the radiative transfer calculation.

For the radiative transfer calculation with SCIATRAN, the state of the atmosphere for the location of the flight track during

the time of overflight was equally important. Temperature, pressure and water vapor profiles were extracted from ECMWF25

ERA5 meteorological data (see 2.2). The background total columns of carbon dioxide (CO2,back) were calculated using the

Simple Empirical CO2 Model (SECM) by Reuter et al. (2012) in the version SECM2018, which contains a recently updated

parameter set (see also Reuter et al., 2020). The background total columns of methane (CH4,back) were calculated with the

approach used by Schneising et al. (2019), where a climatology averaged over the years 2003 - 2005 was enhanced by the total

increase in methane based on globally averaged marine NOAA surface data (Dlugokencky, 2018). The CH4 and CO2 profiles30

used in SCIATRAN where then obtained by scaling a US Standard Atmosphere (Oceanic et al., 1976) so that the total column

mixing ratio calculated from those profiles matched the a priori estimated local total column mixing ratio. HITRAN 2016

5
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Figure 1. Example fit result of the WFM-DOAS retrieval for AVIRIS-NG data. The left block ((a) - (d)) shows the CO2 fitting window

(2040nm−2100nm), the right block ((e) - (h)) shows the CH4 fitting window (2235nm−2380nm). In sub figures (a) and (h) the fit result

is shown as a solid blue line, while the actual measured intensities are shown as gray diamonds. The difference between the gray diamonds

and the line is the residuum, which is shown in sub figures (b) and (e). In the second row, the scaled weighting functions for CO2 and H2O in

the CO2 window ((c) and (d)) and for CH4 and H2O in the CH4 window ((g) and (h)) are shown as solid lines. The gray diamonds show the

fit result plus the residuum, to assess, if the residual structures are larger than the actual fitted structures. In the CH4 fit window the residuum

shows some structure, which might indicate some residual correlation between water vapor and methane signature in the real measurements,

which can not fully be resolved by the retrieval.

(Gordon et al., 2017) was used as spectral line parameter data base in SCIATRAN for trace gas absorption. The SCIATRAN

model predicted the radiance at the sensor for the background case and the height dependent weighting functions for CH4,

CO2 and H2O.

The WFM-DOAS retrieval produced profile scaling factors (PSF), which scaled the weighting functions of CH4, CO2, H2O

and temperature in a linear fit. An example fit of AVIRIS-NG data with the resulting residual structures is shown in Fig. 1.5

The light passed the air mass above the aircraft once on the downward path to the Earth, but transected the air mass below the

aircraft on both downward and upward paths. Consequently, the retrieval was more sensitive to atmospheric changes below the

aircraft than above. This was captured by the averaging kernel, which represented the sensitivity of the instrument to changes

in a specific altitude layer. In our case, strong local enhancements in atmospheric methane were confined below the aircraft,

so we multiplied the total column enhancements by the inverse of the averaging kernel for the airmass underneath the aircraft10

(kAK) to determine the true enhancement of CH4 caused by an emission source near the ground.
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We did not retrieve the pressure profile or scattering properties. This, and also other effects like surface elevation changes

could alter the light path and therefore the absorption strength, which would be detected as an enhancement. We used the proxy

method to correct the retrieved column enhancement for those effects (see also Frankenberg et al., 2005; Schneising et al.,

2009; Krings et al., 2011). Specifically, we divided the derived scaling factor of CH4 by the scaling factor of another well

mixed gas, which was assumed to be constant for the region of interest and time of overflight. For this work, we used CO2 as5

a proxy because of its spectral proximity to the CH4 absorption band, resulting in the proxy

PSFCH4,proxy = PSFCH4/PSFCO2 . (1)

Finally, we corrected the enhancements in a detected plume for large scale effects by normalizing over the local background

around the plume (PSFproxy, bg). The local column enhancement of CH4 below the aircraft in a plume (CH4,enh) was then

CH4,enh =
(

PSFCH4

PSFCO2

/
PSFproxy, bg− 1

)
·CH4,back · kAK. (2)10

A discussion of the biases introduced by the assumptions made for the WFM-DOAS retrieval are studied in the sensitivity

analysis in Sect. 3.3.

3.2 Comparison of major fitting windows in the SWIR spectral range

For the MAMAP instrument the fitting window was ∼ 1630nm− 1675nm for CH4 and ∼ 1592nm− 1617nm for CO2 at

0.9nm spectral resolution due to the sensor design (see Krings et al., 2011; Gerilowski et al., 2011). AVIRIS-NG additionally15

offered the possibility to fit the CH4 and CO2 absorption lines between 2000nm and 2400nm for the retrieval of CH4, al-

though at a coarser spectral resolution of 5.5nm−6.0nm. For example, the IMAP-DOAS retrieval successfully retrieved CH4

concentrations from AVIRIS-NG data using the spectral regions of 2215nm− 2410nm for CH4 and 1904nm− 2099nm for

CO2 (Thorpe et al., 2017).

For a first assessment of those absorption bands, we convolved a simulated high resolution spectrum and the corresponding20

weighting functions for CH4, CO2 and H2O with the AVIRIS-NG instrument spectral response function. We used a Gaussian

spectral response, where the FWHM were distributed as part of the data set. Fig. 2 shows the results of convolution and

resampling to the AVIRIS-NG wavelength grid.

Both fitting windows had their advantages and disadvantages, especially for the lower spectral resolution of AVIRIS-NG.

Around 2300nm, the absorption features of CH4 were about a factor of 2 stronger and had a more pronounced structure, which25

could lead to a better detection of methane changes. Around 1650nm, the at sensor radiance was nearly twice as high for the

same albedo, which could mean a higher signal-to-noise ratio. Additionally, there was less overlap with water vapor absorption

features near 1600nm.

We used a two step approach to find the best fitting window: First, we created a spatially averaged spectrum over a ho-

mogeneous surface elevation and surface type to reduce the instrument noise and systematic influences. Then, we optimized30

the edges of both fit windows for fitting the gas features in each window. As a measure of fit quality, the root mean square

error (RMSE) between measurement and fit result was used. For CH4, the best fitting windows were 1625nm− 1700nm and
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Figure 2. The high resolution simulated spectra (in (a) and (b) green) are convolved with the slit function of AVIRIS-NG and sampled to

the AVIRIS-NG wavelength grid (solid black line in upper row). The lower row ((c) and (d)) shows the weighting functions, i.e. the change

of intensity due to a change in atmospheric concentration for CH4 (blue), CO2 (black) and H2O (red). The shaded areas denote the fitting

windows for CO2 (gray) and CH4 (light orange). These have been chosen to be large enough to have enough data points inside the fitting

window, without interfering with other gases (Sect. 3.2).

2235nm−2380nm, and for CO2 1550nm−1620nm and 2040nm−2100nm (see also Fig. 2). For simplicity, the fitting win-

dows between 1550nm and 1700nm will be called “weak windows”, and the fitting windows between 2040nm and 2380nm

will be called “strong windows” in the following parts, according to the depth of the absorption features.

To assess the measurement precision in each window, we selected a homogeneous, flat, bright area which contained no

potential sources. We then applied the retrieval to the whole flight line containing this test case for each of the fitting windows5

and gases. These initial results showed detector column dependent stripes (see Sect. A in the appendix). To correct this effect,
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Table 1. Comparison of the standard deviation of PSFCH4 , PSFCO4 and PSFCH4,proxy in the two fitting windows around 1645nm and 2300nm

for the AVIRIS-NG FWHM (≈ 6nm). The standard deviation was calculated over a homogeneous and flat area with no visible plume and

possible source inside. The statistical uncertainties for PSFCH4 and PSFCO2 are therefore uncorrelated.

Standard deviation PSF Standard deviation PSF

1645nm fitting window 2300nm fitting window

PSFCH4 ±6.4% ±1.9%

PSFCO2 ±1.9% ±1.3%

PSFCH4,proxy ±6.6% ±2.3%

we normalized the PSFCH4 , PSFCO2 and PSFCH4,proxy for each pixel by the median PSF of its corresponding detector column.

We selected the median for resilience against outliers, which could otherwise have a large impact on the correction

After destriping, we compared the standard deviation in the test case region of the weak and strong window retrieval results

of PSFCH4 , PSFCO2 and PSFCH4,proxy (Table 1. The retrieved PSFCH4 and PSFCH4,proxy were noisier in the weak window by a

factor of 3.3 and 2.9, respectively. The retrieved PSFCO2 was noisier by a factor of 1.5 in the weak window. Therefore, we only5

used the strong windows in later analyses.

3.3 Sensitivity analysis

In addition to the noise in the spectra, uncertainties and variability in the assumed constant atmospheric background parameters

could lead to errors in the retrieval results. To assess the magnitude and influence of these deviations, we performed multiple

sensitivity analyses. We used a common set of geometric and atmospheric parameters to model the background spectrum. We10

then perturbed these atmospheric parameters to create synthetic AVIRIS-NG observations at instrument spectral resolution.

Next, we applied the WFM-DOAS algorithm to these simulated measurements, and assessed the systematic offset from the

expected PSF value for PSFCH4 , PSFCO2 and PSFCH4,proxy. To assess the influence of linearization on the retrieval results, we

did not include instrument noise in this analysis. The background simulation was based on the parameters extracted for one

flight line observed with a nadir viewing angle. The CH4 enhancements and a plume from this flight line are shown in Fig. 8.15

For the sensitivity analysis, we perturbed the following set of parameters (Table 2): the aircraft altitude, the surface elevation,

the instrument viewing angle (i.e. the instrument zenith angle) and the surface albedo as geometric parameters; and the total

columns of CH4, CO2 and H2O, and the pressure and temperature profiles as atmospheric parameters. Additionally, we used

selected spectral reflectance spectra of different surfaces instead of a spectrally uniform albedo and examined two additional

aerosol scenarios. We did not analyze the sensitivity to the solar zenith and azimuth angles, since these angles were effectively20

constant over the timespan of a flight line. In addition, we did not analyze the instrument azimuth angle dependency since the

flight tracks were nearly straight and the azimuth angle therefore effectively constant for a flight line.

The viewing angle variations were chosen to represent the range of the AVIRIS-NG viewing angles. The surface elevation

and aircraft altitude deviation were chosen to represent plausible deviations over one flight line. Temperature deviations were

9

https://doi.org/10.5194/amt-2020-275
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



chosen to be relatively large, as the temperature profile at the time of overflight for the specific ground scene might deviate

quite a lot from the ERA-5 reanalysis due to the spatial and temporal resolution of the model output. The pressure scaling was

chosen to represent a possible range of deviations, erring in favor of a conservatively high deviation for the observed scales.

The albedo deviations covered the range which was expected around 2100nm− 2300nm (Chen et al., 2006).

The scaling of the CO2 column and the H2O column spanned the natural deviations of CO2 and water vapor from the5

assumed background to establish an upper bound on errors from these effects. The range for the total column of CH4 covered

the range, which might be observed directly over or near a strong source. However, in most ground scenes containing a plume

signal, the enhancement was well below 20%, and for smaller plumes normally even near the source well below 10%.

The reflectance spectra in the sensitivity analysis included surfaces present in the survey region or associated with oil and

gas infrastructure. The spectral reflectances were based on the ECOSTRESS Spectral library (Meerdink et al., 2019; Baldridge10

et al., 2009) and on the US Geological Survey Spectral Library, Version 7 (Kokaly et al., 2017). They contained spectra from

a surface covered by a typical plant of the Canadian savanna, sandstone, sand, and rangeland surfaces, and anthropogenic

structures such as aluminium, steel and paving substances. The reflectance spectra are shown in Fig. 3.

The background aerosol scenario was assumed to be an OPAC (Hess et al., 1998) urban aerosol scenario (same as used

in Krings et al., 2011), as we were interested in emissions from anthropogenic infrastructure. To determine the magnitude of15

influence of the aerosol scenario on the retrieval, we used additionally simulated measurements with an OPAC background and

desert aerosol scenario.

After retrieving the profile scaling factors of CH4 and CO2 for each simulation, we calculated their deviation from the ground

truth defined in the simulations. We also calculated the deviations for the CH4 proxy method described in Sect. 3.1, and plotted

the errors as a function of the perturbation of each parameter in Fig. 4. While the observed uncertainties for the single profile20

scaling factors were quite high (orange and blue curves), for example up to 10% for an elevation change of approximately

400m, they were highly reduced by the proxy method (green curve). The influence of the surface spectral reflectance is shown

in Table 3 and discussed at the end of the section.

For aircraft altitude, temperature shifts, surface pressure scaling and viewing angle of the instrument, the maximum deviation

from the ground truth for PSFCH4,proxy remained well below 0.5%. Also for most albedo values the maximum deviation25

remained below 0.5%. For a very low albedo of 0.01, results of the single retrievals as well as the proxy method both degraded

considerably. We examined low radiance ground scenes further in Sect. 3.4. For large perturbations of the surface elevation

of 400m, the proxy method reduced the error only to around ±3.6%. The different aerosol scenarios did not introduce major

errors either. For the OPAC background scenario, the error was well below 0.1%, and even for the OPAC desert aerosol load,

only an error of −0.2% was introduced.30

For perturbations of CH4 and H2O, errors between the true and retrieved PSF growed, the larger the perturbations got.

WFM-DOAS assumes a linear relationship between gas enhancement and radiance, but this assumption does not hold for large

deviations from the background. This will also occur for CO2 when choosing larger deviations from the background.

When we perturbed CO2, the application of the proxy method increased the error in methane. When only CO2 was varied,

the methane column alone was retrieved correctly in the standard retrieval. Similarly, the retrieval correctly estimated the total35
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Figure 3. In (a), the weighting function for CH4 is displayed. In (b), the reflectance spectra covered in the sensitivity analysis are shown.

Especially for the paving concrete one can see a similar broad band shape compared to the weighting function of CH4, which is caused by

calcium carbonate (limestone).

column of CO2. However, in the proxy method the retrieved PSFCH4 was divided by the retrieved PSFCO2 , so that a decrease

in CO2 led to an apparent increase in CH4 and vice versa. This meant, that CO2 emission sources could mask CH4 emissions,

if the relative single column enhancement of CO2 is similar or greater than that of CH4. As the retrieval noise is similar for

both gases (Table 1), this would be visible as a CO2 point source in the PSFCO2 map.

For the scaling of CH4, the proxy method did not reduce the deviation of the retrieved from the true enhancements, as ex-5

pected. However, the large deviations for strong enhancements (11% underestimation for 100% increase) would nevertheless

mean a clearly detectable signal in the retrieved CH4 maps. Smaller deviations (±20%) from the background profile would

induce only small (< 1%) underestimations. Consequently, for inversions of large emitters, the emission might be underesti-

mated near the source, where the large enhancements are located. In cases with large concentrations near the source, emission

estimates should only be performed further down the plume.10

To estimate the total systematic uncertainty, we combined all uncertainties in Table 4 aside from the extreme CH4 case

in quadrature. This led to maximum systematic uncertainties of ±8.0% for PSFCH4 , ±11.3% for PSFCO2 , and ±5.4% for
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Table 2. Parameters studied in the sensitivity analysis and the range in which deviations were analyzed. The second column shows the back-

ground scenario used as “truth” in the sensitivity study. The third column notes the range of the perturbation of the parameters. Parameters

not mentioned here were constant and estimated as described in Sect. 3.1 for the flight line ang20170811t192639.

Parameter Standard value Studied range

Aircraft altitude 5.33km 4.93km to 5.93km

Surface elevation 0.39km 0.0km to 0.6km

Instrument viewing angle 0.00 ° ±18 °

Surface albedo 0.1 0.01 to 0.5

xCH4 1.833ppm (0.5 to 2) · 1.833ppm

xCO2 399.2ppm (0.97 to 1.03) · 399.2ppm

H2O 5.94 · 1022 moleccm−2 (0.5 to 2) · 5.94 · 1022 moleccm−2

Pressure profile US standard scaled to 1015hPa at sea level (0.95 to 1.05) · 1015hPa

Temperature profile US standard shifted to 299K at surface ±10K

Aerosol scenario OPAC urban OPAC background, OPAC desert

Rangeland vegetation

Barbed goatgrass

Soil (Entisol)

Surface reflectance Constant albedo 0.1 Grey sandstone

Weathered aluminium

Weathered steel

Paving asphalt

Paving concrete

PSFCH4,proxy due to the simplification of the radiative transfer calculation to one single background spectrum and set of weighting

functions. This uncertainty defined the large scale deviations possible in one flight track and should not be confused with the

single pixel precision of the column enhancement, nor did that automatically limit detection. As parameters such as surface

elevation in normal cases only vary smoothly, a plume signal on top of this bias is still detectable. However, a problem may

occur, if large amounts of CO2 are co-emitted with a weak methane source. In this case there could be a (partial) masking of5

the plume due to the negative bias introduced by CO2.

In contrast to those biases, the different surface types induce widely varying biases (Table 3) at AVIRIS-NG spectral reso-

lution. The proxy method reduced these errors for some surfaces, but not all. For rangeland vegetation, soil, gray sandstone

and weathered aluminium the bias after application of the proxy was well below 1%. However, for weathered steel and paving

asphalt, the bias increased to 1− 2%, while for barbed goat grass and paving concrete (i.e. limestone) the bias due to the10

reflection properties was greater than 7%. This meant, that even after application of the proxy, some residual influence of the
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Sensitivity of WFM-DOAS retrieval on different scene dependent parameters

CH4 fit only
CO2 fit only
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Background case

Figure 4. Sensitivity analysis of WFM-DOAS to the examined input parameters of the SCIATRAN radiative transfer calculation. The

absolute deviation of the retrieved from the expected PSFCH4 (blue), PSFCO2 (orange) and PSFCH4,proxy (green) is plotted for each parameter.

The largest deviations are present in surface elevation and scaling of the total column of CH4. With the proxy method, the deviations are

reduced for all parameters except for a scaling in the total columns. For enhancements of CO2, the proxy is worse than the single CH4

retrieval due to division by the amount of CO2 (see also Sect. 3.3).
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Table 3. Uncertainty estimate of PSFCH4 , PSFCO2 and PSFCH4,proxy due to the assumption of a constant albedo over different surfaces. As

long as there is a constant surface type, a large value does not principally hinder source detection. However, especially paving or man made

structures vary spatially with non man made structures, so false positive hits due to surface reflectance are possible.

Surface type Uncertainty Uncertainty Uncertainty

on PSFCH4 on PSFCH2 on PSFCH4,proxy

Rangeland vegetation 0.38% 0.34% 0.04%

Barbed goat grass −7.16% −0.06% −7.11%

Soil (Entisol) 0.26% 0.79% −0.53%

Grey sandstone 0.25% 0.62% −0.37%

Weathered aluminium 1.30% 1.05% 0.25%

Weathered steel −0.94% 0.18% −1.11%

Paving asphalt 2.23% 0.33% 1.90%

Paving concrete 11.89% 0.77% 11.04%

Table 4. Uncertainty estimate resulting from the assumed constant atmospheric and geometric background parameters. For each parameter,

the maximum deviations for PSFCH4 and PSFCO2 , as well as for PSFCH4,proxy , are listed. For albedo, the largest value was excluded from this

table (see main text). For CH4, two different cases are regarded. The case CH4 (±20%) is valid for most of the plumes and is relevant for

detection of smaller sources. The extreme case (100% increase) is only relevant near very strong sources and is excluded from the averaged

systematic uncertainty. The absolutely correct retrieval of PSFCO2 when changing CO2 is due to the relatively small range of change in CO2

investigated. However, this induces relatively large uncertainties for PSFCH4,proxy .

Parameter Uncertainty on PSFCH4 Uncertainty on PSFCO2 Uncertainty on PSFCH4,proxy

Aircraft altitude ±2.3% ±2.1% ±0.2%

Surface elevation ±6.3% ±10.2% ±3.6%

Temperature shift ±3.8% ±3.7% ±0.2%

Surface pressure ±0.5% ±1.0% ±0.5%

Viewing angle +1.4% +1.8% −0.4%

Albedo ±0.5% ±0.8% ±0.4%

Water vapor +0.9% +0.6% +0.2%

CH4 (±20%) −1.0% ±0.0% −1.0%

CH4 (extreme) −10.0% ±0.0% −10.0%

CO2 ±0.0% ±0.0% ±3.1%

Aerosol scenario ±0.1% ±0.3% ±0.2%

Systematic uncertainty ±8.0% ±11.3% ±5.4%

surface reflectance will remain. Paving concrete would be especially likely to cause a false positive, since it induced a large

positive bias. However, this would be highly correlated to structures visible in the RGB images of the scene. Barbed goat grass,
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Figure 5. Raw retrieval results of CH4 (pure PSFCH4 , not filtered and destriped, no proxy method applied) over a scene with large forest

areas and a lake as an example of a dark scene. The noise in the profile scaling factors results from the retrieval not being able to distinguish

between absorption features of CH4 and surface reflectance due to the low signal and therefore low signal to noise ratio. This effect is

especially strong over water, but also significant over the forest areas.

on the other hand, led to a large underestimation of the total column. However, this surface type normally occurs over large

patches of land, so that local enhancements on top of this bias should be detectable in most cases.

3.4 Filtering of poor fits

With the estimate of the influence of the background assumptions in place, we performed radiative transfer calculations for

the different flight tracks and applied the retrieval to the whole data set. Examining the data it was obvious, that the retrieval5

sometimes failed to retrieve meaningful results. Especially over surfaces with low spectral reflectance, and therefore low signal

on the detector, it produced mostly noise with profile scaling factors ranging from below 0 to largely over 2 and dramatic

changes between neighboring ground scenes (see Fig. 5). This effect, due to the low SNR over dark surfaces, indicated the

need to filter out low-radiance ground scenes. For IMAP-DOAS, Ayasse et al. (2018) concluded in a simulation study, that

at sensor radiances below 0.1µWcm−2 nm−1 sr−1 in the background signal led to significantly more inaccurate estimate of10

the methane column. In this study, we analyzed measured radiance spectra to estimate the radiance below which the retrieval

results were not trustworthy.

The threshold was determined by following procedure: For each ground scene the difference between the measured and the

fitted spectrum was calculated for each spectral pixel after the retrieval. These values were added in quadrature to get the root

mean square difference between fit and measurement (RMS). This RMS value was then plotted over the radiance at 2140.0nm15

in box plots with 0.05µWcm−2 nm−1 sr−1 bins on the horizontal axis (Fig. 6) for the whole data set. For low radiances this

difference increased drastically, implying a strongly reduced fit quality. As a compromise between coverage and quality, we

introduced a threshold of 0.1µWcm−2 nm−1 sr−1. The filter rejected all retrieval results where the radiances at 2140.0nm

were below this value. We also rejected measurements with an RMS over 2% to remove the worst outliers. Interestingly, for

very bright surfaces the spread of the upper whisker, denoting the 75 to 95 percentile, is increased. This could have been from20

surfaces such as paving materials or other anthropogenic structures, for which the reflected spectrum already had interfering
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Figure 6. Difference between fit and measurement (RMS) over radiance at 2140.0nm. The box indicates the first to third quartile range, the

whiskers denote the 5 to 95-percentile, and the small orange line inside the box the median RMS value of the according radiance bin. The

small blue dots denote outliers outside the 95 percentile. For low radiances, the fitting quality decreases significantly, as shown in the high

values and wide spread of the RMS. Therefore, all measurements over surfaces with radiances below 0.1µWcm−2 nm−1 sr−1 are filtered

out (dashed black vertical line), as the results are unreliable. Results with RMS higher than 2% are filtered out as additional quality flag

(dashed orange line). The increase in RMS spread especially at 1.5µWcm−2 nm−1 sr−1 might be due to high reflecting structures, which

have broad band reflection features similar to absorption features of CH4 (see Ayasse et al., 2018, and Sect. 3.3).

features similar to the absorption of CH4 at the AVIRIS-NG spectral resolution (see also Sect. 3.3 and Table 3). This results

agree with the findings of Ayasse et al. (2018).
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Figure 7. Example of the effect/necessity of the proxy method from flight line ang20170823t180156. In (a), the destriped PSFCH4 is shown.

Simply analyzing this image, one could assume a diffuse enhancement due to perhaps coal mining activities, as this is part of an open cast

coal mine. In figure (b) the destriped PSFCO2 is shown. There, a similar enhancement is visible. In (c) the destriped proxy results are shown,

where this diffuse enhancement vanishes.

4 Detection and inversion of plumes

4.1 Detection of plumes

For the detection of plumes, we filtered the retrieved CH4 values (Sect. 3.4), removed striping (Sect. 3.2 and Sect. A in the

appendix) and calculated the final CH4,enh according to Eq. 2. The proxy method proved necessary; otherwise diffuse CH4

enhancements would be mistaken for true enhancements due to emissions of CH4. This can be seen in Fig. 7, where diffuse5

enhancements in the pure CH4 results vanished completely after applying the proxy method.

The final CH4,enh were plotted as images and were manually inspected for methane plumes. For the reduced data set used

in this study (13 tracks), this approach detected several plumes in 10 out of the 13 tracks. However, many plumes were faint

or located near infrastructure, making unambiguous detection difficult and/or preventing the application of the cross sectional

flux method (White et al., 1976, and Sect. 4.2). Therefore, we show plumes which are well suited for the cross sectional flux10

method in Fig. 8 and Fig. 9. The additional CH4 plumes and enhancements not inverted in the following sections can be found

in the appendix in Sect. B. Those comprise, among others, emissions most likely resulting from open cast coal mining (Fig.

B1) or a well pad located in a forest (Fig. B2).

In Fig. 8, two overpasses of the same source on two different days are shown. On the first day (Fig. 8 (b)), the plume structure

was recognizable over a relatively long distance, while on the second day (Fig. 8 (d)), the plume was only faintly visible in the15

vicinity of the source. This was most likely due to the wind speed, which was significantly higher on the second day (4.4ms−1)

compared to the first day (2.6ms−1). A wind speed higher by a factor of 1.6 means a decrease in the column enhancements by

a factor of 1.6, which reduced the visibility of the plume in the retrieval results.
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In Fig. 8 (b), a new interesting feature was observable at the source. There, we observed a double plume structure that was

especially prominent during the first overpass. Comparison with the RGB image revealed, that one part seemed to originate

from the vent, while the other part seemed to originate from the top of the shadow of the vent. The vent released the plume

several meters above the surface. Because the plume was very narrow near the source, the sunlight only passed the plume

either before or after hitting the ground. As those two light paths were attributed to different ground scenes, the absorption and5

therefore the apparent CH4 enhancements were visible at two locations leading to the double plume structure. Further down the

plume, atmospheric mixing took place and the plume widened. Then, the sunlight passed through the plume both before and

after hitting the ground, and the double plume structure vanished. A simple geometric consideration of the distance between

the two plume structures, the solar and instrument zenith angle and the vent height estimated from the shadow of the structure

supported this hypothesis.10

In Fig. 9, two plumes originating from well pads are shown. Both extended linearly from their source and were visible over

approximately 100m. While the first plume (Fig. 9, b) originated from a cold vent (similar to Fig. 8), the emitting structure for

the plume in Fig. 9 (d) could not be identified from the RGB images. It seemed, however, that the source was located near the

surface. This would also explain the large deviation of the plume direction from the wind direction aquired from the ERA-5

model data, since the nearby forests could have significantly altered the wind direction near the surface.15

4.2 Cross sectional flux method

To estimate the fluxes for the selected sources, we applied the cross sectional flux method (White et al., 1976). As this method

is computationally and conceptually simple, it could well be used for initial estimations of source strengths. It had successfully

been utilized for estimating of emissions detected in remote sensing measurements (for example in Krings et al., 2011;

Frankenberg et al., 2016; Krautwurst et al., 2017; Varon et al., 2019). In this method, one calculates the flux F in kilogram20

per hour through a transect orthogonal to the wind direction with length segments dxi in meter based on the total column

enhancements CH4,enh,i in molecules per square centimeter at position i along the transect:

F = f ·
∑

i

CH4,enh,i ·u · dxi. (3)

The wind speed u in meter per second is assumed to be constant in time and space for the time of overflight. For the detected

AVIRIS-NG plumes, this assumption was valid, as these plumes had been sampled within seconds. The wind speed was25

extracted from the ECMWF ERA5 data (see Sect. 2.2), while the wind direction was estimated from the observed plume

directions. The factor f = 9.589e− 23skgh−1 molec−1 converted the flux to kilogram per hour.

We defined the local background for CH4,enh for each cross section as the region outside of the plume on each side. Then,

we calculated the PSFproxy,bg for the normalization to the local background using a linear fit between both local background

regions. This background fit reduced slight gradients present in the background concentration to accurately estimate the column30

enhancements originating from the source.

As is observable in Fig. 8, there were gaps and accumulations along the plume. These were caused by eddies and short gusts

which disrupted the plume structure. To account for that atmospheric variability, we defined multiple cross sections along the
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Flight line ang20170811t192639
Source P1

(a) RGB Image

500 m

Flight line ang20170812t184250
Source P2

(c) RGB Image

500 m

(b) CH4 enhancement (d) CH4 enhancement
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Figure 8. Plume resulting from a cold vent. The black arrow denotes the source position, while the red arrow indicates the wind direction

and wind speed according to ERA-5 data for comparison to the plume direction. In (b) the plume is much fainter, most likely due to the

higher wind speed. Especially in (a) a double plume structure is visible. This structure likely results from the light passing through the plume

only once before reflection on the ground for one part of the double structure, and only once after reflection for the second. As vertical

and horizontal mixing takes place the further the emissions travel, the light passes through the plume twice, and the double plume structure

vanishes. The roads are prominently visible in the retrieval results. It might be that this road is made of concrete, or otherwise contains

limestone. The roads were excluded from the flux analysis due to the high bias induced by it.

plume, each one pixel apart. We then calculated the flux for each of the cross sections. The final flux estimate was the mean

value of the single fluxes through all cross sections.
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Figure 9. Two additional plumes detected in the retrieval results, emanating from well pads. On the left ((a) and (c)), the RGB images

obtained from radiances of AVIRIS-NG are shown. On the right ((b) and (d)), the according retrieval results are presented. The ellipse

highlights the plumes. Additionally, the black arrows point to the source of the plumes, while the red arrow indicates the wind direction and

wind speed according to ERA-5 data for comparison to the plume direction. The sources are located near grass land. One can see the plume

shooting straight away in both cases. For (d) however, the ERA-5 wind direction does not fit well to the plume. This might result from the

plume originating from a source very near to the ground, where the influence of forests or small hills largely influences the wind direction.

Additionally, near the ground the instantaneous wind direction resulting from reanalysis data is uncertain and could explain the difference.

4.3 Flux and uncertainty estimation based on cross sectional flux method

For the plumes shown in Fig. 8 (in the following P1 and P2 for (b) and (d) respectively) and Fig. 9 (P3 and P4 for (b) and (d)

respectively), the methane flux was calculated using the cross sectional flux method. We selected plumes P1 and P2 for two

reasons: P1 was visible for approximately 200m before crossing the road, making it possible to define multiple cross sections

through the plume and thus leading to a strong reduction in the uncertainties. This was the only source observed twice in an5

emitting state by AVIRIS-NG, which allowed comparison of the flux estimates for two overflight times. It originated from a

vent in a bitumen extraction site. P3 and P4 shown in Fig. 9 (b) and (d) also showed a well shaped straight plume, which was

favorable for the cross sectional flux method. In Fig. 8 (b) and Fig. 9 (b), a clear bias due to the underlying road surface was

visible. In both cases, cross tracks that overlapped with this bias were excluded from the flux estimation.

Application of the cross sectional flux method on all plumes yielded the following emission estimates: For P1, a mean flux10

of (141 ± 87)kgh−1 was calculated, while for P2, the mean flux was (89 ± 46)kgh−1. For P3 and P4, the mean fluxes were
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(111 ± 76)kgh−1 and (70 ± 79)kgh−1, respectively. We calculated the wind speeds for the different plumes to be 2.7ms−1

for P1, 4.4ms−1 for P2, 2.8ms−1 for P3 and 1.5ms−1 for P4.

We estimated the uncertainty of the flux via Gaussian error propagation from the uncertainties of the single components of

Eq. 3 and Eq. 2, with additionally accounting for the atmospheric variability. The contribution and derivation of the main error

sources for P1 is shown below. We used the same procedure to estimate the uncertainty for the other sources.5

We estimated the single pixel precision for each plume region by analyzing the local background of the plume. We used the

standard deviation of the local background PSFCH4,proxy as measure of the retrieval noise and included the uncertainty due to

small variations of CO2, which might had been coemitted from the flare or collocated to the plume but which were below the

noise of the pure PSFCO2 . This led to a single pixel precision of ∼ 3% of the CH4 background column, which translated to an

uncertainty on the final flux of ±26kgh−1.10

The uncertainty due to atmospheric stability was calculated as the confidence interval of the fluxes through all cross sections.

This amounted for an uncertainty on the final flux of ±24kgh−1.

For the the wind, we assumed an uncertainty of ±1.5ms−1, according to the standard deviation of the hourly wind mea-

surements of ERA5 compared to inland measurement stations (Minola et al., 2020). For most cases the wind direction matched

quite well, so we assumed that the wind speed was also reasonably well captured by the model. As the wind speed directly15

influenced the flux, and the uncertainty could not be reduced by simply taking more cross sections into account, this directly

propagated to an uncertainty of the final flux of ±79kgh−1.

The estimate of the background column was dependent on a scaled climatology. We assumed a ±5% deviation as an upper

limit of the uncertainty for the total column of CH4 around the plume compared to this climatology. This lead to an uncertainty

of the final flux of ±7kgh−1, which was very small compared to the other uncertainties.20

Assuming that those sources of uncertainty were uncorrelated, we combined them in quadrature. This resulted in an uncer-

tainty for P1 of±87kgh−1. An overview over the contribution of the single error sources for all sources is given in Table 5. We

emphasize that for all of these cases, the fluxes were calculated from snapshots and were only valid for the time of overflight.

Our estimates for P1 and P2 overlapped within their respective uncertainties, suggesting that the source may have been

approximately constant over the two days. This could be explained by uncertainties in our assumptions of the wind speed, and25

the stronger dilution of the plume on the second day (Fig. 8). Additionally, the ratio between the mean fluxes (P1/P2) was

nearly the same as the inverse ratio of the wind speeds (4.4ms−1/2.7ms−1), which further supported the theory, that dilution

due to the higher wind speed played an important role for the lower flux on the second day.

The plume P4 was observed under unfavorable wind conditions with low winds of 1.5ms−1. This led to an uncertainty of

more than 100%. For such low winds, however, the cross sectional flux method is not well suited, as there horizontal transport30

due to diffusion is completely neglected. This however plays an increasing important role the lower the wind speed is (Sharan

et al., 1996).
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Table 5. Inversion results and uncertainty estimate based on the cross sectional flux method for P1 and P2 (two overpasses of the same source

on two consecutive days) and P3 and P4. The single pixel precision was calculated from the standard deviation of a background region for

each plume. The atmospheric variability resulted from the confidence interval of the multiple cross sectional fluxes. The wind uncertainty

and total column uncertainty was assumed to be±1.5ms−1 and 5%, respectively (see also text for explanation). For all inversions, the wind

speed uncertainty is a very large uncertainty. While for P2 additionally the atmospheric variability induces similar large errors, for P3 and P4

this is much less the case. However, there the different surfaces lead to a much larger single pixel uncertainty.

P1 P2 P3 P4

Single pixel precision ±26kgh−1 ±21kgh−1 ±40kgh−1 ±27kgh−1

Atmospheric variability ±24kgh−1 ±24kgh−1 ±20kgh−1 ±12kgh−1

Wind uncertainty ±79kgh−1 ±26kgh−1 ±59kgh−1 ±72kgh−1

Total column uncertainty ±7kgh−1 ±4kgh−1 ±6kgh−1 ±4kgh−1

Total flux (141 ± 87)kgh−1 (89 ± 46)kgh−1 (111 ± 76)kgh−1 (70 ± 79)kgh−1

5 Discussion

The WFM-DOAS retrieval provided an efficient and accurate way to handle AVIRIS-NG data quantitatively. In contrast to the

IMAP-DOAS retrieval (Frankenberg et al., 2005; Thorpe et al., 2014), the WFM-DOAS retrieval is a non-iterative retrieval

with precalculated radiative transfer calculations. This reduced the computational time needed for the retrieval, while still

delivering reliable local total column enhancements. On the other hand, the modeled background spectrum is adapted to the5

physical properties of the scene by scaling the trace gas columns and adapting the geometric parameters necessary to model

the average light path over the scene, in contrast to the more statistical approach used in the matched filter (Thompson et al.,

2015).

The WFM-DOAS retrieval of CH4 in the two SWIR fit windows of AVIRIS-NG data produced much larger noise in the

results for the weak window than for the strong window. The significantly less noisy WFM-DOAS results around 2300nm10

most likely originated from the higher number of spectral data points for the fit, and the stronger absorption features. Even

though there was approximately half the amount of light reaching the detector at these wavelengths, which reduced the SNR

on the detector, the SNR was still high enough for a good retrieval.

Problems however arose over very dark surfaces or surfaces with reflection properties similar to absorption features of CH4

at the spectral resolution of AVIRIS-NG. This led to residual structures in the retrieved CH4 maps. Especially paved roads15

or other anthropogenic structures were observable. Even though the CH4/CO2 proxy method reduced false positives in many

cases, there was still a remaining dependency of the CH4 results from the surface spectral reflectance for some surfaces like

concrete or barbed goat grass. Additionally, the noise on the retrieval results varied over different surfaces, which is reflected

in the uncertainties for the flux inversions for the 4 plumes.
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Those effects could be mitigated by deploying and utilizing an imaging spectrometer specifically designed for the task

of monitoring CH4 and CO2 concentrations, such as the proposed Airborne Methane Plume Spectrometer (AMPS Thorpe

et al., 2016b), or the MAMAP 2D system currently being developed and built at the University of Bremen, Germany. Due

to the higher spectral resolution, those instruments will have a higher sensitivity to smaller enhancements and should be less

influenced by the surface reflectance properties, as is already the case for the MAMAP instrument (see e.g. Krings et al., 2011).5

A large uncertainty in the flux inversion of emission sources, which can not be solved by advancing the imaging remote

sensing instrument’s characteristics, arises from the wind speed estimation. Additional measures have to be taken to reduce

this uncertainty. For example, in situ wind measurements in the boundary layer could additionally be made (see e.g. Krautwurst

et al., 2017; Krings et al., 2018). This approach is especially useful when airborne in situ measurements are included in the

campaign design. Another possibility includes the deployment of wind lidars (Wildmann et al., 2020), similar to the approach10

taken in the CO2 and Methane mission (CoMet). However, for large surveys or transects, this is not feasible anymore, especially

when the source locations of the plumes are not known prior to the flights. There, either advancing to local wind models

with much higher spatial resolution such as the GRAL model (Berchet et al., 2017) or the MECO(n) model (Kerkweg and

Jöckel, 2012) could lead to a significant uncertainty reduction. Also, methods such as the integrated mass estimation (IME,

Jongaramrungruang et al., 2019), which use empirically derived correlations between surface wind, flux rates, plume shape and15

mass enhancement in the plume to estimate the wind speed and the flux, could help estimating the emissions independent from

local wind models or wind measurements. Additionally, more sensitive remote sensing instruments could observe the plume

over longer distances, where the plume is likely better mixed in the boundary layer and the horizontal extend of the plume is

less influenced by turbulence and gusts, so that the modeled wind speed most likely better matches the wind speed inside the

plume.20

6 Summary and Conclusions

We successfully adapted and applied the WFM-DOAS retrieval to AVIRIS-NG data and estimated the uncertainties of this

method. In the data set, we were able to detect several point sources. An estimation of the methane emissions of a vent revealed

emissions of (141± 87)kgh−1 and (89± 46)kgh−1 on two consecutive days, while two other sources related to gas extraction

emitted (111 ± 76)kgh−1 and (70 ± 79)kgh−1, respectively. These source strengths are quite common as indicated by the25

log normal distribution of sources in the Four Corners region (Frankenberg et al., 2016). A large source of uncertainty for

the flux inversion was the wind speed estimate, as no collocated wind speed measurements near the surface were collected.

Also the atmospheric variability played an important role for shorter (i.e. smaller) plumes. This influence is reduced for longer

plumes, as more tracks are available for the flux estimation. The noise on the retrieval results varied with different surfaces,

which contributed notably to the uncertainty of the flux estimate. For the high wind situation, parts of the plume might have30

been additionally missed due to the higher dilution.

The dependency of the resulting total column CH4 retrieval results from the parameter values assumed in the radiative

transfer calculation have been examined. For most parameters, the induced bias was reduced to well below 1% when using CO2
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as a proxy for light path correction. Large perturbations in elevation resulted in a residual bias, however, the elevation varied

mostly smooth (for example over hills) or only by smaller amounts over buildings or vegetation changes such as from grassland

to forests. In addition, very strong CH4 enhancements led to a systematic underestimation of CH4, which in consequence could

lead to an underestimation of very strong emitters. However, such strong enhancements only occur near to strong sources (not

present in this study) and therefore inversion estimates could be performed further down the plume, where the enhancements5

are lower and therefore the bias is negligible. Deviations of CO2 from the background on the other hand were retrieved correctly

for typical variations of the total column. However, due to the use of CO2 as proxy for light path correction, these deviations

led to a bias in the proxy. Consequently, large amounts of CO2 coemitted to CH4 may mask a weak CH4 plume. Additionally,

the influence of some surface reflectance spectra on the retrieved PSFCH4,proxy was examined. While for some surface types the

bias on the retrieved PSFCH4,proxy could be reduced to well below 1%, some surfaces introduced larger biases, reaching up to10

11% for paving concrete.

As dark surfaces mostly produced noise in the retrieval results, ground scenes with at sensor radiances below 0.1µWcm−2 nm−1 sr−1

were excluded from the analysis. In the future, this radiance filter described in Sect. 3.4 could be applied to the data before the

application of the WFM-DOAS retrieval. This reduces the amount of data which has to be retrieved, without rejecting possible

good retrieval results. Additional retrieval improvements could be achieved by fitting CH4 and CO2 in both the weak and the15

strong window simultaneously.

While this and previous studies have demonstrated detection and quantification of methane emission sources with AVIRIS-

NG, the residual structures due to the relatively coarse spectral resolution make unambiguous detection and especially quantifi-

cation of small sources difficult. To mitigate this problem, spectrometers dedicated to the detection and quantification of CH4

are currently developed, such the proposed AMPS system (Thorpe et al., 2016b) or the MAMAP-2D system, which is being20

assembled.

Data availability. The AVIRIS-NG data set of the ABOVE campaign is available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1569

(Miller et al., 2019a).

Appendix A: Striping Effect

In a push-broom imager such as AVIRIS-NG each detector column acts as one separate line detector looking at a different25

ground scene. Even with very good calibration and characterization (described in Chapman et al., 2019, for AVIRIS-NG),

there will still be small differences in the spectra recorded by two different lines. In the retrieval results, this leads to a line

(or column) dependent difference in the retrieval results called “striping” (see for example Fig. 5). To correct this effect, we

normalize the PSFCH4 , PSFCO2 and PSFCH4,proxy for each pixel by the median PSF of its corresponding detector column. We

select the median for resilience against outliers, which could otherwise have a large impact on the correction30
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Appendix B: Other detected CH4 plumes

In this section, additional plumes are shown, which have been detected in the data, but were either too inconsistent or the

conditions did not allow for the application of the cross sectional flux method.

A very interesting observation are the plumes and CH4 accumulations due to open cast coal mining, as can be seen in Fig. B1.

During coal mining, the enclosed methane is released to the environment. For underground mining, the methane concentration5

in the air in the mining shafts are kept well below the explosion limit by ventilating the shafts with fresh air (Özgen Karacan,

2008). The ventilation shafts then emit the total emissions from the whole mine. In an open coal mine the emissions may come

out diffuse, however, according to Fig. B1, it seems as significant amounts of methane may be emitted from the brim, perhaps

during cutting of the coal.

Additional plumes are shown in Fig. B2 and Fig. B3. Those plumes originate from oil and gas infrastructure such as a well10

pad in the forest and vents. Especially the vents in B3 are only very faintly visible.
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Figure B1. Methane enhancements resulting from bituminous coal extraction. On the left (a, c, e) the RGB images and on the right (b, d, f)

the according total column enhancements of CH4 are shown. The upper two measurements where taken within ∼ 10 minutes, and the flight

lines lay very close to each other, so that the brim is the same. The dashed line is plotted on the same location in both images. While in (b)

a plume emanating from the brim is visible, in (d) strong accumulations near the brim are visible. In (f) the plume is more diffuse and the

highest enhancements are located near a brim. However, it is not as clear as in (b) and (d), if it really originates from the brim.
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Figure B2. Similar to Fig. B1, but for methane enhancements from oil/gas infrastructure. In (a) and (b), the emissions originate from a well

pad in a forest. Due to the low radiance over the trees, only the well pad itself passes the quality filters. The enhancements seem accumulated

and no clear wind direction is visible. In (c) and (d), a facility located at a bitumen extraction site is shown and meanders through the facility.
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Figure B3. Similar to Fig. B1, but for two overpasses over cold vents at a bitumen extraction site. The plumes are only faint, especially

for the second overpass (d). In the results a small striping effect is still visible. The destriping reduces the effect, but is not able to totally

eliminate it.
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