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Abstract. Quantitative precipitation estimation (QPE) is a
difficult task, particularly in complex topography, and re-
quires the adjustment of empirical relations between radar
observables and precipitation quantities, as well as methods
to transform observations aloft to estimations at the ground
level. In this work, we tackle this classical problem with a
new twist, by training a random forest (RF) regression to
learn a QPE model directly from a large database compris-
ing 4 years of combined gauge and polarimetric radar obser-
vations. This algorithm is carefully fine-tuned by optimizing
its hyperparameters and then compared with MeteoSwiss’
current operational non-polarimetric QPE method. The eval-
uation shows that the RF algorithm is able to significantly
reduce the error and the bias of the predicted precipitation
intensities, especially for large and solid or mixed precipita-
tion. In weak precipitation, however, and despite a posteri-
ori bias correction, the RF method has a tendency to over-
estimate. The trained RF is then adapted to run in a quasi-
operational setup providing 5 min QPE estimates on a Carte-
sian grid, using a simple temporal disaggregation scheme. A
series of six case studies reveal that the RF method creates
realistic precipitation fields, with no visible radar artifacts,
that appear less smooth than the original non-polarimetric
QPE and offers an improved performance for five out of six
events.

1 Introduction

Quantitative precipitation estimation (QPE) is well known
to be difficult in orographically complex regions such as the
Alps (Houze, 2012; Gabella et al., 2017) due to intricate in-

teractions between the terrain and the precipitation and to
a large amount of precipitation falling in solid phase. Still,
providing an accurate estimate in these regions remains par-
ticularly important because the large precipitation amounts
in these regions provide essential water resources. Addition-
ally, the hydrological damages can be severe in steep terrain
(e.g., landslides, debris flows) which requires fast and accu-
rate warning systems. The most direct and accurate observa-
tions of precipitation intensities are obtained using networks
of calibrated and well-maintained rain gauges at the ground.
Though these measurements are used as a reference, they
suffer from inaccuracies in strong wind, especially for solid
precipitation (Kochendorfer et al., 2017; Buisán et al., 2017),
and provide only a very partial sampling of the precipitation
system (Kitchen and Blackall, 1992). Hence, especially for
flash-flood and debris-flow alerts, as well as hydrological ap-
plications at the catchment scale, these measurements need
to be complemented with areal measurements, typically pro-
vided by weather radars. Unfortunately, radar measurements
are particularly prone to errors and uncertainties in moun-
tainous regions due to the partial or total beam blocking by
the orography, which restricts the observations to higher alti-
tudes (e.g., Gabella and Perona, 1998; Germann et al., 2006;
Anagnostou et al., 2010). In addition, QPE in solid precipi-
tation is also much more difficult due to the vast heterogene-
ity of solid hydrometeors and the complex relation between
radar observables and intensity (Fujiyoshi et al., 1990; Zrnic
and Ryzhkov, 1999).

Traditionally, QPE has involved adjusting relations be-
tween polarimetric radar observables and precipitation in-
tensities based either on in situ observations by disdrom-
eters (e.g., Joss et al., 1998; Chapon et al., 2008; Tokay
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et al., 2009) or by matching the resulting precipitation esti-
mates with gauge observations (Mapiam et al., 2014). While
the first approach has the advantage of being physics-based,
there is no guarantee that the derived relations are still valid
at larger scales (Verrier et al., 2013), and as such it often
requires additional bias correction with gauges as reference
(Morin and Gabella, 2007). The second approach has the dis-
advantage of relying too much on potentially flawed gauge
observations and is often based only on a limited number
of precipitation events. Though power laws are traditionally
used as mathematical models to relate radar observables to
precipitation quantities, some efforts have been made to train
artificial neural networks (ANNs), which are machine learn-
ing models able to represent any mathematical function (Cy-
benko, 1989). An issue with ANNs however is the difficulty
to fine-tune them accurately in the presence of noise, which
can lead to overfitting and physically unrealistic outcomes.

Currently MeteoSwiss relies on a two-step process to pro-
vide the best possible QPE. The first step is a radar-based
real-time QPE, which relies on a unique Z–R relationship to
convert radar reflectivity to precipitation aloft. This estimate
is then corrected for partial beam shielding and extrapolated
to the ground with a dynamical vertical profile of reflectivity
(VPR) (Germann et al., 2009). The second step improves this
radar-based estimate by merging it with gauge observations,
using a geostatic interpolation technique called co-kriging
with external drift (Sideris et al., 2014), to provide an hourly
QPE estimate which is then disaggregated to a 5 min resolu-
tion (Barton et al., 2020). Since the development of the radar-
based QPE, the radar network of MeteoSwiss has been up-
dated significantly: it now consists of five dual-polarization,
Doppler, C-band radars (Germann et al., 2015). The update to
dual-polarization offers great opportunities, and the rich ad-
ditional information it provides is already used operationally
for the classification of hydrometeors from radar measure-
ments (Besic et al., 2016) and the identification of ground
clutter. Dual-polarization brings additional information, es-
pecially in intense precipitation (Ryzhkov et al., 2005, 2014)
and solid precipitation (Ryzhkov and Zrnic, 1998; Bukovčić
et al., 2018).

The goal of this work is to derive a new data-driven radar-
based QPE algorithm that provides accurate precipitation es-
timates in Switzerland’s complex topography and takes ad-
vantage of the large archive of polarimetric radar data col-
lected over the years by MeteoSwiss’ operational radar net-
work. The algorithm should be as direct as possible to avoid
the use of a posteriori bias corrections and should also pro-
vide uncertainty estimates. This algorithm should with time
replace the first step of the QPE estimation and provide a bet-
ter input to the gauge–radar merging, which will hopefully
also lead to a better final output.

To reach these ends, a non-parametric model for QPE is
developed that does not rely on specific power laws but uses
random forest (RF) regression to learn a model directly from
the data. Random forests (Breiman, 2001) are an ensemble

learning method used for classification or regression. The
idea behind RF is to train an ensemble of simple decision
trees which individually tend to overfit and perform poorly
and to aggregate their individual predictions to get a much
better and robust estimate. In case of regression, the aggrega-
tion method is simply the average prediction of the individual
trees. RF has been applied with success in remote sensing,
particularly in the domains of hyperspectral data classifica-
tion and land cover classification (Belgiu and Drăguţ, 2016).

By feeding it with appropriate input features, the presented
QPE RF model is able to natively correct the predictions
for bright-band and calibration issues and extrapolate pre-
cipitation to the ground level, thus simplifying the overall
processing chain. Orellana-Alvear et al. (2019) recently pre-
sented promising results with an RF approach in the Andes,
although with only a single-polarization X-band radar. How-
ever, the alternatives to the RF models that are considered in
their work are quite simplistic – Marshall–Palmer Z–R re-
lation (Marshall and Palmer, 1948) and custom-fitted power
law – and do not include the typical bright-band and local
bias corrections that are present in operational QPE models.
In this work we go further by considering the full polari-
metric radar and ground station network of Switzerland (five
C-band radars and more than 270 ground stations) over the
course of 4 years of observations, and we compare the per-
formance of this model with the operational state-of-the-art
QPE products processed at MeteoSwiss.

This article is structured in the following way. Section 2
provides an overview of the database that was used to train
and evaluate the QPE method, and Sect. 3 introduces the ran-
dom forest regression and the transformation of input data it
requires, as well as the performance metrics that are used
throughout this work. At the end of the section, these metrics
are used to evaluate the performance of MeteoSwiss’ cur-
rent QPE products. Section 4 details the overall performance
and the optimal configuration of the random forest QPE. Sec-
tion 5 completes the previous section by explaining how the
algorithm was adapted to a quasi-operational mode where it
provides 2D maps of precipitation every 5 min. The perfor-
mance of the new QPE algorithm is then assessed on a case
study of six precipitation events. Finally Sect. 6 concludes
this work and summarizes the main advantages and limita-
tions of the proposed method.

2 Collocated gauge–radar database

Training a machine learning algorithm requires large
amounts of data in a homogeneous format. Even though the
present archives of MeteoSwiss contain vast amounts of data
covering decades of measurements, these data have different
spatial and temporal resolutions (from point measurements
to large area numerical weather prediction fields), are some-
times temporally inhomogeneous, and are stored in different
file formats. Thus an important effort has been invested in
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the creation of a homogenized dataset that can be used to
train any type of machine learning model with the main ob-
jective of precipitation estimation but also allowing for other
potential uses (e.g., verification of operational products and
correction of bias). Note however that only the data that are
explicitly used in the present QPE study will be detailed in
this section.

Most MeteoSwiss operational products are estimated over
a Cartesian grid of 1 km2 (in the Swiss LV03 coordinate sys-
tem) at a temporal resolution of 2 to 5 min. For numerical
prediction, MeteoSwiss runs the COSMO model which is
a mesoscale-limited area model that is operated and devel-
oped by several weather services in Europe (e.g., Switzer-
land, Italy, Germany, Poland, Romania and Russia) (Seifert
et al., 2011; Doms et al., 2011; Baldauf et al., 2011; Wolfens-
berger and Berne, 2018). COSMO analysis runs are avail-
able over Switzerland every hour1 on a 3D irregular grid.
Polarimetric radar data are available every 5 min on a polar
grid. Finally, the synoptic weather station data have a tempo-
ral resolution of 10 min. To accommodate these differences,
the reference temporal resolution of the database is 10 min,
and the reference spatial resolution is 1 km2 for spatial data
(Cartesian products and polar radar data). Table 1 summa-
rizes the differences in spatial and temporal support between
all different data sources used in this work.

For Cartesian and polar data, the aggregation to 10 min
resolution is done by simple averaging. For quantities ex-
pressed in decibels such as radar reflectivity, the averaging
is done on linear quantities, and the average is converted to
decibels. For radar data, three methods for the spatial aggre-
gation to a 1 km2 pixel have been used: mean, in which the
average of all observables that fall within a given 1 km2 pixel
is taken (with the same consideration as above for decibel
quantities); max, in which only data at the polar gate with
maximum Zh (within a square kilometer) are taken; and min,
in which only the data at the polar gate with minimum Zh
(within a square kilometer) are taken. For COSMO data, only
the mean aggregation method is used in space, whereas in
time a linear interpolation between hourly outputs is made to
get to a 10 min temporal resolution.

For radar data and Cartesian products, the extraction is per-
formed separately for a 3×3 pixels neighborhood around the
center pixel, in which the synoptic station is located. The data
corresponding to the different neighbors are then stored as
separate columns in the database.

The database covers 4 years of measurements from Jan-
uary 2016 to December 2019 for the five Swiss radars. To
avoid populating the entire database with zeros, at a given
station, only the 10 min time steps that fall within an hour
when the rain gauge recorded at least 0.1 mm of precipi-

1The temporal resolution of the COSMO model is much higher,
but since the data amount is huge, 3D archives are kept only at
hourly resolution.

tation2 were included. Note that even if there are no dry
hours in the database, at the 10 min resolution, the propor-
tion of observed zero precipitation intensities is still 30 %.
The database consists of around 3.3 million observations at
the ground, every row corresponding to a different combina-
tion of a 10 min time step and station; and there are 18 mil-
lion radar observations aloft (for the station pixel only, the
number of observations for neighbor pixels is similar). Ag-
gregated to hourly resolution this represents a total of around
550 000 station hours at the ground (hourly observation at a
given station).

2.1 Synoptic weather station data

Synoptic weather data come from the SwissMetNet (SMN;
Suter et al., 2006) observation network which regroups more
than 288 stations from which 160 are synoptic weather sta-
tions and 128 are rain gauges which only record the precip-
itated amounts. Note that the area of Switzerland is around
41 000 km2, and the average distance between two stations
is 11 km. These stations provide observations every 10 min.
Two station observations were used in this study: the precip-
itation amount over 10 min measured at a height of 1.5 m and
the temperature at a height of 2 m. In some stations, precipita-
tion measurements are performed with a tipping bucket Lam-
brecht rain gauge (types 1518 H3 and 15188), but in most
stations an Ott Pluvio2 weighing rain gauge is used instead.
All rain gauges are heated to melt solid precipitation but are
not shielded from the wind. Temperature measurements are
performed with a meteolabor Thygan instrument.

Figure 2 shows the distribution of hourly precipitation ob-
servations for the entire database. It can be clearly seen that
the distribution is strongly right-skewed, with a vast majority
of small intensities and very few but intense extremes. Note
that roughly half of the ground observations in the database
come from weather stations and the other half from rain
gauges, for which no information about air temperature is
available. From the weather station observations, only 16 %
correspond to temperatures below 0 ◦C.

2.2 Radar and COSMO data

The Swiss radar network consists of five polarimetric C-band
radars which perform plan position indicator (PPI) scans at
20 different elevation angles3 (Germann et al., 2006) using
an interleaved scanning strategy. The polar data used in this
study consist of the final quality-checked measurements cor-
rected for ground clutter and calibration and aggregated to a
radial resolution of 500 m (over six consecutive range gates).
In addition to radar observations, the temperature from the
COSMO numerical weather prediction model has been in-

2This corresponds to one tip of a tipping bucket rain gauge and
is the maximum resolution of all rain gauges.

3
−0.2, 0.4, 1.0, 1.6, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 11.0,

13.0, 16.0, 20.0, 25.0, 30.0, 35.0 and 40.0◦.
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Table 1. Native and transformed spatial and temporal resolutions of the products included in the gauge–radar database.

Original resolution Database resolution

Spatial Temporal Spatial Temporal

Radar 1◦× 500m× 20 elevations 5 min 1km2
× 20 elevations 10 min

COSMO (model) ≈ 1km2
× 60 vert. levels 1 h 1km2

× 20 elevations 10 min
Operational products 1 km2 5 min 1 km2 10 min
Synoptic stations Point 10 min Point 10 min

Figure 1. Topography of Switzerland with the five Swiss operational radars (blue circles), the 160 synoptic weather stations (red triangles
with black border) and the 128 rain gauges (red triangles without borders). Major cities are indicated with black squares. This map is based
on a digital elevation model provided by swisstopo.

Figure 2. Distribution and statistical indicators of hourly observed
precipitation intensities for the entire database (January 2016 to De-
cember 2019). The three vertical dashed red bars indicate the per-
centiles 99, 99.9 and 99.99.

terpolated to the radar grid using nearest-neighbor interpola-
tion. The radar and COSMO variables that have been used in
this study are listed in Table 2.

2.3 MeteoSwiss Cartesian reference products

Two types of MeteoSwiss Cartesian products have been used
in this study.

2.3.1 RZC

RZC is the standard operational purely radar QPE product
of MeteoSwiss (Germann et al., 2006; Gabella et al., 2017).
It provides 2D maps of precipitation intensities in millime-
ter per hour (mm h−1) equivalent liquid water every 5 min.
The algorithm starts by estimating the precipitation intensity
at every radar gate from the reflectivity with the power law
Z = 316R1.5 (Joss et al., 1998), where Z is linear reflectiv-
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Table 2. List of radar and COSMO variables used aloft the synoptic stations.

Name Description Units

VIS Static visibility of a given radar volume obtained statically with a digital elevation % (0 % = total blockage)
model and a radar refraction model

Height Height of every radar volume above the terrain m

Zh Reflectivity factor at horizontal polarization corrected for visibility using mm6 m−3

a factor of 100/ visibility (in %)

Zv Reflectivity factor at vertical polarization corrected for visibility as above mm6 m−3

Kdp Specific differential phase shift upon propagation obtained with the method ◦ km−1

detailed in Appendix A

ρhv Co-polar correlation coefficient –

Rvel Mean Doppler (radial) velocity m s−1

Sw Spectral width (standard deviation of Doppler velocities within a radar resolution volume) m s−1

Ah Specific attenuation at horizontal polarization dB km−1

Nh Estimated noise level at every gate dBm

T Temperature from the COSMO model interpolated to the radar polar coordinates ◦C

ity (in units of mm6 m−3), and R is precipitation intensity (in
mm h−1). Prior to this transformation, gates with low visibil-
ity VIS (VIS≤ 37 %) are discarded. The values are corrected
for partial beam shielding by applying a multiplicative cor-
rection of 100/VIS (in %). To account for growth and decay
of precipitation with altitude, a correction with a dynamic
vertical profile of reflectivity (Germann and Joss, 2002) is
then applied to every R value aloft. The R values aloft are in-
tegrated to the ground using a weighted sum, linearly related
to the visibility and exponentially related to the height of ob-
servations: w(h)= exp(−0.3h) · VIS

100 , where h is the height
above ground of the observation in meters. Obviously the
negative factor in the exponential implies that observations
closer to the ground have a larger weight. These weighted
averages are then resampled to the Cartesian 1 km2 grid. Fi-
nally a multiplicative local bias correction is applied at every
Cartesian pixel to obtain the final R estimated at the ground;
see Germann et al. (2006), in particular “Experiment” in Ta-
ble 2 (p. 1684), Fig. 8 (p. 1686) and Sect. 5.

2.3.2 CPC

CombiPrecip (CPC) is a combined gauge–radar QPE prod-
uct developed by Sideris et al. (2014). The merging is per-
formed with a geostatic method called co-kriging with ex-
ternal drift, in which the spatial dependence of radar and
gauge observations are fitted dynamically with an exponen-
tial law. The gauge data are then interpolated in space and
time (co-kriging) to the Cartesian grid as a primary vari-
able using the radar data as a trend (drift). This method
only yields an hourly estimate, but a recent algorithm by

Barton et al. (2020) is used operationally to produce 5 min
CPC estimates by disaggregating hourly CPC estimates with
hourly fractions of 5 min RZC estimates. Also note that at ev-
ery gauge in Switzerland an hourly cross-validation product
called CPC.CV is computed using a leave-one-out strategy
(the gauge for which the CPC performance is assessed is not
used in the algorithm).

3 QPE computation

3.1 Choice of a regression method

Thanks to this large database of collocated gauge and radar
observations, a QPE model can be trained and used for
the further prediction on new data, providing a 2D Carte-
sian estimate on the same grid as the current QPE product
(Sect. 2.3.1).

To be used in an operational context, the QPE method must
be fast (real-time use) and robust in the case of faulty radar
measurements, both during training and the subsequent pre-
diction of new values. Obviously, it should benefit from po-
larimetric information which is not used in the current RZC
method. Moreover, unlike the current method it should pro-
vide an unbiased estimate that does not require additional lo-
cal corrections. Three machine learning regression methods
were considered: artificial neural networks (ANNs), gradient
boosting (GB) and random forests (RFs). The advantage of
RF is the simplicity of the hyperparameter tuning and the in-
herent parallelization of the training and predicting. RFs are
not able to extrapolate, meaning that the input dataset has to
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be representative of all cases that can be encountered in na-
ture. ANNs are powerful and easy to parallelize but require
careful tuning and can easily overfit in case of noise, lead-
ing to unphysical predictions. GB can be extremely powerful
and does not extrapolate but is harder to parallelize and to
tune. Preliminary tests showed that without extensive fine-
tuning the three methods provide relatively similar perfor-
mance. Due to its numerous advantages it was thus decided
to use only random forest regression.

3.2 Random forest regression

Random forests (Breiman, 2001) are an ensemble learning
methodology, in which the outcomes of a number of trained
weak learners (in this case decision trees) are combined with
a voting scheme to yield a boosted estimate with a better
performance. This is inspired by the wisdom of the crowd
process, in which a collective heterogeneous group of indi-
viduals is better at analyzing and solving a complex problem
than single individuals, even if they are experts. To guaran-
tee the heterogeneity of the weak learners, RF includes boot-
strap resampling and random feature selection. Let us assume
that the input dataset has dimensions of N ×M , where N is
the number of samples and M the number of input features.
For each tree in the forest, a new training set with N sam-
ples is created using bootstrap sampling (random selection
of samples with replacement). For each training set a new
decision tree is grown using the CART method (Breiman
et al., 1984). Every time a new split has to be made at a given
node of the tree, only a number m of features (m<M , typ-
ically m=

√
M) are randomly selected. This process, which

is trivial to parallelize is repeated until t trees are grown, giv-
ing a random forest. In the case of random forest regression,
the final prediction is simply the average of all outcomes of
the individual trees of the forest. The hyperparameters of the
random forest regression model which need to be fine-tuned
with cross-validation are as follows:

– the number of trees t in the forest

– the maximum depth d of the individual trees (i.e., how
many times a split is made; trees that are too shallow
will be biased too much, whereas trees that are too deep
will be overfitted)

– the number of features m randomly considered when
splitting a decision tree

– the minimum number of samples in a node to split it

– the minimum number of samples in a leaf (child node)
to accept a given split.

Because RF regression uses the average of the tree predic-
tions, they tend to underestimate extreme values and over-
estimate small values (Zhang and Lu, 2012). Even if it is
very rare and does contribute only marginally to the total

precipitation amounts, extreme precipitation is a key part of
QPE since it causes the largest impact on landscapes, ecosys-
tems and human activities. Consequently, to allow RF to bet-
ter represent large values, the last two parameters (minimum
number of samples in a node and in a leaf for a split) have
been set to 2 and 1, which is also the default in the scikit-
learn (Pedregosa et al., 2011) machine learning library that
was used to train the RF algorithm. This implies that the split-
ting procedure is not affected by the size of the node and the
generated leaves.

Moreover, in order to further mitigate the inherent bias of
RF, three types of a posteriori bias correction (BC) methods
were compared.

BC_raw A polynomial regression of predictions versus ob-
servations (from gauge) on the training dataset is per-
formed, and this fit is then used to correct new RF pre-
dictions.

BC_cdf A polynomial regression of sorted predictions ver-
sus sorted observations on the training dataset is per-
formed, and this fit is then used to correct new RF pre-
dictions. This can be seen as a form of histogram match-
ing since it maps the cumulative density function (CDF)
of predictions to the CDF of observations.

BC_cdf_spline Same as BC_cdf but a cubic spline is used
instead of a simple linear regression.

Figure 3 shows an example of predicted values versus ob-
servations on the training fraction and the first order bias-
correction methods that were fitted to the data. Comparisons
with the 1 : 1 line show that high intensities are generally un-
derestimated. The bias-correction methods apply a factor to
every new prediction that should bring them closer to the 1 : 1
line. Note that the relative performance of these BC methods
needs to be assessed on an independent test dataset.

3.3 Transformation of radar data

In the database a column of radar observations is available
aloft over every station. Reference precipitation observations
are however only available at the ground. Machine learning
methods require consistent dimensions of input features and
response (observations). Therefore, radar data need to be ag-
gregated to the ground level. In our model, taking as an ex-
ample the current RZC QPE, the radar data are aggregated to
the ground using a similar weighted sum:

w(h)= exp(−βh) ·
VIS
100

, (1)

where the β parameter indicates the slope of this exponential
and was fine-tuned with cross-validation alongside the other
RF hyperparameters (Sect. 3.2).

This transformation allows us to derive five additional
variables: Fracrad_r, which is the fraction of observations

Atmos. Meas. Tech., 14, 1–25, 2021 https://doi.org/10.5194/amt-14-1-2021



D. Wolfensberger et al.: RainForest: a random forest algorithm for QPE 7

Figure 3. Panel (a) shows an example of raw uncorrected predictions (as a density plot) versus observations on the training fraction. The
blue, yellow and dark green lines are the corresponding fitted bias-correction models which try to estimate the observed value as a function
of raw predicted values. Panel (b) shows the raw predictions corrected with the BC_cdf_spline method (dark green line in panel a), which
brings them much closer to the 1 : 1 line.

aloft that come from radar r (r being one of the five oper-
ational radars). This fraction is weighted in the same expo-
nential way, meaning that for a given radar, the presence of
observations at low altitudes gives a larger increase in the
fraction. Note that since these variables are all related to the
others, they will be grouped together under the general term
Fracrad.

3.4 Performance metrics

In order to assess the performance of the QPE method and
to compare it with the current RZC algorithm, pertinent per-
formance metrics are required. A single metric is usually not
sufficient to represent the error structure; hence, in this work
we will use four different complementary metrics. Let us use
the notation Y for the response variable (observed precipita-
tion intensity) and Ŷ for the QPE estimation.

RMSE The root mean square error is in units of millimeters
per hour (mm h−1):

RMSE=

√√√√ 1
N

N∑
i=1
(Yi − Ŷi)2 =

√
ME2+STDE2, (2)

where ME is the mean linear error (bias) and STDE the
standard deviation of the errors. RMSE, because of the
use of an exponent of 2, is quite sensitive to large devi-
ations occurring for high precipitation rate values.

scatter The weighted interquantile (16 %–84 %) of relative
bias is in decibels (dB) (Germann et al., 2006):

scatter= 0.5 · (Qw84(εdB)−Qw16(εdB)) , (3)

where

εdB = 10log
(
Yi

Ŷi

)
, i = 1, . . . ,N,

and Qw is a weighted quantile (Edgeworth, 1888),
where the weights w are related to the observed pre-
cipitation intensity:

w =
Ŷi∑N
i=1 Ŷi

.

logBias The relative bias is in decibels (dB):

logBias= 10log

(∑N
i=0Yi∑N
i=0 Ŷi

)
. (4)

ED The energy distance is a unitless measure of the sta-
tistical distance between two distributions (Rizzo and
Székely, 2016):

ED(Y, Ŷ )

=

√
2E||Y − Ŷ || −E||Y −Y ′|| −E||Ŷ − Ŷ ′|| ≥ 0. (5)

The prime symbol indicates the difference between
pairs of successive values, and the norm || is the stan-
dard Euclidean norm.

The two first metrics are estimates of the error of the QPE
model: the RMSE is a measure of the additive error and is
more sensitive to extreme values, whereas the scatter is a ro-
bust measure of the relative error since it ignores the tails of
the distribution. The third metric is a measure of the rela-
tive bias of the QPE model, expressed in logarithmic scale.
The last metric measures the match of the predicted precipi-
tation distribution with the observed values. As such it does
not indicate if a single predicted precipitation value is cor-
rect but only that the global population of predicted values
is representative of what is observed in nature. As in Sideris
et al. (2014), Speirs et al. (2017), and Panziera et al. (2017),
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the performance metrics will be mostly evaluated at hourly
resolution (aggregation of six consecutive 10 min time steps)
because of the limited representativeness of the gauge data
(due mostly to the spatial undersampling of the gauge but
also to wind effects and limited accuracy of the instrument).
This also avoids numerical issues in the logarithmic scores
(logBias and scatter) since all hours in the database are rainy,
whereas some 10 min time steps are dry.

3.5 Performance of reference products

Figure 4 shows the scatter plots of observed precipitation ver-
sus reference products (CPC, CPC.CV and RZC) for all ob-
servations and for observations with T < 2 ◦C, which might
correspond to solid or mixed precipitation. Clearly, CPC de-
livers by far the best performance for all evaluation metrics
except logBias which shows the tendency of CPC to under-
estimate strong precipitation, in particular in snow, a conse-
quence of the smoothing caused by the kriging algorithm.
However, since CPC is taking into account the observed
gauge measurement, it is not a fair comparison. We will thus
restrict the evaluation to the CPC.CV and RZC products.
Clearly, RZC has a relatively large overall RMSE, especially
for larger intensities; it is however relatively unbiased and
has a low ED, indicating that it provides realistic, although
sometimes inaccurate, precipitation estimates. It tends how-
ever to underestimate quite strongly solid precipitation inten-
sities. CPC.CV provides a systematically better performance
than RZC, and the improvement is particularly clear in solid
or mixed precipitation. Note that decreasing the temperature
threshold from 2 to 0 ◦C decreases the performance on all
scores by 10 % to 30 %, but it affects all models in a similar
way and as such does not change the general conclusions.

3.6 Filtering of input data

To avoid including spurious data in the training and valida-
tion procedure of the random forest, the following data were
excluded from the study:

1. Data from the TIT (Titlis), GSB (Grand Saint-Bernard),
GRH (Grimsel Hospiz), PIL (Pitatus), SAE (Säntis) and
AUB (L’Auberson) stations, where radar agreement has
always been poor because of poor radar visibility (very
complex topography) and/or suboptimal rain gauge lo-
cations (wind-induced undercatching), were excluded.
With the exception of the last one (located at 1100 m
but with poor radar visibility as it is located in the heart
of the Jura mountains), all of these stations are located
above 1900 m on mountain summits or passes of the
Alps.

2. Data in whichZh aggregated to the ground is larger than
20 dBZ and the gauge measures no precipitation were
excluded.

3. Data in which Zh aggregated to the ground is
smaller than 5 dBZ and the gauge measures more than
0.5 mm h−1 equivalent were excluded.

The two last constraints reduce the effect of strong advec-
tion which leads to a decorrelation between gauge and radar
observations due to temporal and spatial shifts of the pre-
cipitation field. These three criteria lead to 6.5 % of the data
being filtered out (from which fraction condition 1 represents
20 %, condition 2 35 % and condition 3 45 %).

4 Fitting of a QPE model and results

4.1 Choice of input features

To assess the relative importance of all available input vari-
ables (Table 2) aggregated to the ground as in Sect. 3.3 and to
choose the most pertinent ones, an approach from Han et al.
(2016) has been adapted for regression. Assuming as before
that M is the number of available input features, the method
is described in Algorithm 1.

In this study, cross-validation is always done by separat-
ing all precipitation events in the dataset and by randomly
attributing these events to either the train or test fraction.
We define precipitation events as a continuous period of pre-
cipitation observations with a time interval of less than 12 h
between every observation. In other words, two successive
precipitation events are separated by a dry period of at least
12 h in between them. Precipitation events always cover full
hours (e.g., from 13:00 to 14:00). This method has the double
advantage of increasing the independence between the test
and train fractions and avoids including partial hours into the
test and train fractions, which is an issue when the evaluation
metrics are computed at hourly aggregation. In addition, K in
the K-fold cross-validation is always set to 5 (five iterations).

The results of Algorithm 1 are shown in Fig. 5, separately
for all observations and for high precipitation intensities. In
terms of radar variables, as expected the horizontal reflec-
tivity Zh has by far the highest importance and is followed
by the polarimetric variables Zv and Kdp. The fraction of
every radar also has a great importance, which can be ex-
plained by two factors. First of all the individual radars are
not perfectly homogeneous and differ slightly in calibration;
this is taken into account in the RZC product by global bi-
ases applied separately to all radar observations. Secondly,
this is a way for the regressor to account for the spatial pre-
cipitation structure over Switzerland; for example, Alpine re-
gions with relatively poor visibility where precipitation tends
to be underestimated by the RZC product are characterized
by low radar fractions from the three lower radars (Albis, La
Dôle and Monte Lema). Surprisingly the spectral width Sw
seems to play a relatively large role, which can be due to
the fact that it is an indicator of convection (Hooper et al.,
2005; Rao et al., 2010), which leads to different relations be-
tween precipitation and radar observables. Note also that the
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Figure 4. Scatter plots and performance scores of the reference products CPC, CPC.CV and RZC for all available observations (a, b, c) and
for observations with T < 2 ◦C (d, e, f). The 1 : 1 line is shown in red. The color bar gives the counts in logarithmic scale.

relatively low importance of the height (in fact this is the av-
erage weighted height of the observations aloft) and the vis-
ibility is likely explained by the fact that these variables are
already included in the exponential weighting (Sect. 3.3 and,
for the visibility, in the correction of Zh and Zv; Table 2).
Finally Ah, Nh and Rvel have a low importance on average.
For Ah, this is somehow in contradiction to Ryzhkov et al.
(2014) who give very promising results for QPE. However
their study was at X-band and requires ray-to-ray fine-tuning
of the power-law parameters of the ZPHI method, whereas
we used only constant default parameters. There is work in
progress to improve the estimation of Ah at MeteoSwiss, but
it is a tedious task in complex topography and is thus out of

the scope of this work. One should not forget however that
even variables with low average importance might in some
particular cases be very informative, for example, attenua-
tion in the case of a gauge after a strong thunderstorm.

It is also interesting to notice that for larger intensities, the
pie charts in Fig. 5 show a relatively greater importance of
Sw (which is an indicator of convection) and of polarimet-
ric variables Zv, Kdp and ρhv and a clear lesser importance
of the radar fractions, since discrepancies between radars be-
come weaker for strong signals, and the temperature, since
high intensities are mostly related to strong convection, with
liquid precipitation at high altitude.
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Figure 5. (a) Mean decrease in RMSE obtained with Algorithm 1 for all available features, separated for all precipitation and for R >
3 mm h−1, and (b) relative importance of these RMSE decreases (normalized by the sum of all decreases). The importance of the feature
Fracrad is the sum of the importance of the fraction of every single radar (see Sect. 3.3)

.

In the final choice of input variables, it was decided to
include all 13 features4 displayed in Fig. 5 with the excep-
tion of Ah, Nh and Rvel because of their low importance and
additional computational cost (for Ah). This model will be
referred to as RF_dualpol. For the sake of comparison and
to evaluate the possible performance in case of a failure in
the vertical polarization channel, one additional model will
be tested, RF_hpol, in which only horizontal polarization is
available, and ρhv, Kdp and Zv are not included.

4.2 Optimization of hyperparameters

Once the input features have been specified, a grid-search
method is used to find the best possible hyperparameters.
For every combination of hyperparameters, a five-fold cross-
validation is performed in order to get the average perfor-
mance metrics. The hyperparameters that have been tested
are reported in Table 3.

The four performance metrics (Sect. 3.4) were estimated at
hourly aggregation for observed precipitation ranges ≤ 2, 2–
10 and ≥ 10 mm h−1 and for solid precipitation (T ≤ 2 ◦C)
and averaged over all cross-validation iterations. The com-
bination of hyperparameters providing the best trade-off be-

4As stated previously, the radar fraction is decomposed into five
features, one for every radar.

tween performance for all metrics over all precipitation sub-
sets and computational cost is then found with the following:

idxbest = arg min
c

0.3 ·Costcomputation[c]

+ 0.7Costperformance[c], (6)

where c is a given combination of all hyperparameters
[t,d, m,β,BC]. The computational cost is proportional to
the number of trees and their maximum depth.

Costcomputation[c] = d × t (7)

The performance cost is given by

Costperformance[c] =

PS∑ 1
6

RMSE(PS)z [c]

+
1
6

scatter(PS)z [c]

+
1
3

∣∣∣logBias(PS)z

∣∣∣ [c] + 1
3

ED(PS)z [c], (8)

where the suffix z indicates a score standardized over all sam-
ples N (z scores):

γz =
γ − γ

σ(γ )
.

Atmos. Meas. Tech., 14, 1–25, 2021 https://doi.org/10.5194/amt-14-1-2021



D. Wolfensberger et al.: RainForest: a random forest algorithm for QPE 11

Table 3. List of all hyperparameters used in the RF algorithm, as well as the range of values that were tested.

Parameter Meaning Tested values

t Number of trees in the random forest 10, 15, 20, 30, 40, 50

d The maximum depth (number of nodes) of the individual trees 10, 15, 20, 30, 40

m The number of features randomly picked when doing a node split 1, 3, 5, 7, 9, 11, 13

β The exponent in the exponential altitude weighting (Eq. 1) −0.3, 0.5, 0.7, 0.9

BC The type of bias-correction method (Sect. 3.2) No BC, “BC_cdf”’ with a fitted polynome of degree
1, 2, 3, “BC_raw”’ with a fitted polynome of degree
1, 2, 3, “BC_cdf_spline”

Note that the weights of RMSE and scatter are halved
with respect to the weights of logBias and ED since they are
both a measure of error dispersion. The final best trade-off
was found with t = 15, d = 20, m= 7, β =−0.5 and BC =
“BC_cdf_spline”. A comparison of the effect of the choice of
hyperparameters on the RMSE, for all precipitation amounts
and for high intensities, is shown in Appendix B.

4.3 Stability of the model

A good way to diagnose the completeness of the training data
and the stability of a machine learning model is to compute
a learning curve (Meek et al., 2002; Praz et al., 2017) that
shows the performance on the test and train fractions with
increasing number of samples used for training. When look-
ing at this learning curve in Fig. 6, one can conclude that
the size of the database seems sufficient to train the model as
the test error reaches a plateau for a high number of samples
and does not decrease significantly with the number of sam-
ples. Note that for random forest regression the train error
and its variability tend to be very small since, when consid-
ering a large maximum depth of the individual trees (large
d), the model is generally able to (almost) perfectly render
the response variable on the training set. Because of this, the
interpretability of the train error in this case is very limited,
and it is hence not displayed.

Another hypothesis of this QPE model is that the train-
ing dataset is consistent through time and there is no major
change in the input features that is caused by non-natural
phenomena (such as hardware modifications or additional
beam shielding caused, for example, by a new construction
in the vicinity of a radar). One way to verify this is to look for
a trend in the time series of daily cross-validation errors. To
this end, the approach of Cleveland et al. (1990) was used to
decompose the time series of daily RMSE values into a long-
term trend, a seasonal trend and fluctuations that are neither
long-term nor seasonal. The results are shown in Fig. 7. It
appears that there is indeed no long-term trend in the daily
cross-validation error, and besides the obvious seasonal trend
(larger intensities in summer), there is no tendency of the
model to perform better or worse over some periods of time.

Figure 6. Learning curve of the RF_dualpol model. It shows the
RMSE of the test fraction at hourly scale as a function of the num-
ber of samples used for training. The curve was obtained with 10
iterations of a five-fold cross-validation. The colored areas corre-
spond to the Q25–Q75 interquantile and the solid line to the mean.

As such, if the current radar setup in Switzerland is conserved
(as planned), the model should only improve in the future as
long as the model gets periodically retrained with an aug-
mented database.

4.4 Overall performance of fitted model

The overall performance metrics of the fitted model (aver-
aged over a five-fold cross-validation) at hourly resolution
are shown in Fig. 8. It appears clearly that the RF models
have a lower error (RMSE and scatter) for both liquid and
solid precipitation. However on average they tend to overes-
timate liquid precipitation (positive logBias). When looking
at different precipitation ranges (see Appendix C); it appears
that this overestimation only happens at small precipitation
intensities (≤ 2 mm h−1), which still represent the majority
of observations (cf. Fig. 2), and for higher values the RF
methods show on the contrary a slight underestimation with
respect to RZC (cf. Fig. C1), indicating that the bias correc-
tion is not yet perfect. Note also that the RF_hpol model has a
consistently poorer performance than the polarimetric model,
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Figure 7. (a) Average daily test RMSE obtained from a five-fold
cross-validation, (b) daily test RMSE decomposed into seasonal and
long-term trends, and fluctuations from these two trends.

which could be expected, but still outperforms RZC in terms
of RMSE and scatter. Though the RF models do not reach
the performance of CPC.CV, they sometimes get quite close
and are less biased for certain precipitation ranges. In general
RF_dualpol delivers a performance more similar to CPC.CV
than RZC.

An example of prediction versus observation scatter plots
for one iteration of the cross-validation are shown in Fig. 9.
It can be seen clearly that for the RF_dualpol method, the
spread around the 1 : 1 line is smaller than for RZC, and there
is no visible underestimation trend as can be observed for
CPC.CV at higher precipitation intensities.

The performance of the fitted model was also assessed spa-
tially by computing the cross-validation performance met-
rics separately at every ground station. Figure 10 shows the
spatial distribution of the logBias. There is a clear improve-
ment with the random forest methods, with respect to RZC,
as areas of strong underestimation in south-central and west-
central Switzerland are not visible anymore. The clear over-
estimation in Valais (southwest) is however still visible. Per-
formance on other metrics (not displayed) show a clear de-
crease in scatter and to a lesser extent in RMSE and a de-
crease in the ED of RF_dualpol with respect to RZC, al-
though only in central Switzerland.

There is generally a trade-off to be found between the
bias (accuracy) and the variance (precision) of a model, and
underestimating models tend to have a smaller error due to
the very asymmetric distribution of precipitation. Figure 11
shows the logBias as a function of the error for all stations.
It distinctly shows that RF_dualpol and to a lesser extent
RF_hpol are characterized by a better trade-off since the log-
Bias is generally closer to 0 and the scatter is smaller. There
is also much less variability between the ground stations, in-
dicating that the model is able to take into account local ten-
dencies.

Figure 8. Overall performance metrics of the fitted RF models and
the references for a five-fold cross-validation. The small black lines
at the center of the bars indicate the standard deviation of the metrics
over the five-fold cross-validation.

4.5 Error model

Besides a precipitation estimate at every Cartesian pixel, one
also needs an estimate of its uncertainty. This uncertainty can
be approximated by the error in the cross-validation verifica-
tion. Figure 12 shows this approximate error as a function
of the estimate, as well as possible polynomial fits. It can
be seen that the average error tends to be around 50 % of the
estimate, and the relative error decreases with increasing pre-
diction. The error of the dualpol model is noticeably lower,
which emphasizes again the valuable information brought by
the polarimetric variables. Though these average errors seem
very large, they are in fact smaller than the one of RZC,
which is shown as a black line.

5 Generation of 5 min QPE maps

The RF QPE method derived from the database has been
adapted to a quasi-operational framework in order to gen-
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Figure 9. Example of prediction versus observation scatter plots on the test fraction for one cross-validation iteration. The 1 : 1 line is shown
in red.

erate 5 min QPE maps at the same temporal and spatial res-
olution as the RZC product. The main steps remain identi-
cal, namely, the spatial averaging of input features to 1 km2,
followed by a vertical aggregation to the ground using a log-
arithmic profile (with β =−0.5), and finally the use of the
trained RF to predict precipitation intensities at the ground.
This final estimate is then converted into 256 digital numbers
(byte format) using the same lookup table used for the encod-
ing of the RZC product. However, a few modifications were
necessary in order to improve the spatial structure of the fi-
nal RF product and take into account the change in temporal
support between the database and the 5 min QPE maps.

5.1 Local outlier removal and low-pass filtering

The estimated QPE is generally noisier in space than the stan-
dard RZC product. This can be explained by the inherent
discretization performed by the RF regression method and
by the addition of new weakly intercorrelated input features.
To alleviate this issue, two operations are performed succes-
sively. First a 3× 3 pixel local outlier removal is applied: in
every 3× 3 neighborhood, if the z value (precipitation inten-

sity standardized within its neighborhood) of a pixel is larger
than 3 or lower than −3, its value is replaced by the mean in
the neighborhood. The second step is a low-pass filtering, for
which two approaches have been considered:

1. A simple 2D Gaussian filtering with a standard devia-
tion of σ = 0.5 km (0.5 pixel) is the first approach. An
explanation regarding this choice of σ is given in Ap-
pendix D.

2. An advection-correction method in which two consecu-
tive 5 min QPE fields are decomposed into a sequence
of five fields at a resolution of 1 min which are then
averaged (Appendix 2 of Anagnostou and Krajewski,
1999) is the second approach. The Lukas–Kanade op-
tical flow method as implemented in pysteps (Pulkki-
nen et al., 2019) was used to derive the motion vec-
tors of the precipitation fields. In the following the term
RF_dualpol_AC will be used for the RF product ob-
tained with dual-polarization inputs and smoothed with
the advection-correction method.
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Figure 10. Cross-validation logBias at every ground station for
RF_dualpol, RF_hpol, RZC and CPC.CV. The displayed geograph-
ical domain is the same as in Fig. 1. The gray colors in the back-
ground illustrate the topography.

Figure 11. Scatter versus logBias at every ground station for
RF_dualpol, RF_hpol, RZC and CPC.CV. Every dot corresponds
to a different station.

A comparison of these two methods is shown in Fig. 13.
The advection-corrected field looks much smoother, and the
intense precipitation cells are larger, although in fact their
cores tend to have weaker intensities.

Figure 12. Absolute error of the precipitation estimate as a func-
tion of the precipitation estimate, evaluated over five iterations of
a five-fold cross-validation, for the two RF models. The colored
semi-transparent area corresponds to the Q25–Q75 interquantile,
the solid lines to the mean and the dashed line to a polynomial
fit, whose formulation is shown in the box on the left. The solid
black line corresponds to the average error of the RZC model which
is shown as a reference. All quantiles and means have been ob-
tained using a discretization on the predicted values with a step of
1 mm h−1.

5.2 Temporal disaggregation

The RF method has been trained from the database to predict
precipitation intensities over a 10 min period since it is the
smallest available timescale of gauge observations. A disag-
gregation of the 10 min estimate delivered by the RF method
is thus necessary in order to match the 5 min resolution of
RZC. In our case we base the disaggregation on the Z–R
relationship used by MeteoSwiss in its RZC product (Joss
et al., 1998):TS1

zh = 316R1.5
ZR → RZR =

1
316

z
2
3
h , (9)

where zh is the linear reflectivity (in mm6 m−3) and RZR the
estimated rain intensity (in mm h−1).

At a every time step t , the disaggregation is done in the
following way:

1. The input features to the RF are computed by taking the
average of the two latest 5 min time steps.

X= 0.5(Xt +Xt−5m)

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Atmos. Meas. Tech., 14, 1–25, 2021 https://doi.org/10.5194/amt-14-1-2021



D. Wolfensberger et al.: RainForest: a random forest algorithm for QPE 15

Figure 13. Resulting QPE field on a case of widespread snowfall, on the left with Gaussian smoothing (σ = 0.5 pixels) and on the right with
advection correction.

2. The 10 min estimate is computed with the RF model
trained on the database.

R
(10)
RF = RF(X)

3. The 5 min RF estimate is obtained by using the fraction
of R(5)ZR, estimated from zt (with Eq. 9), to R(10)

ZR , esti-
mated from 0.5

(
Zh,t +Zh,t−5m

)
.

R
(5)
RF =

R
(5)
ZR

R
(10)
ZR

R
(10)
RF

Figure 14 shows examples of generated QPE fields for two
very different precipitation events. The spatial structure of
the RF fields looks realistic with no visible radar artifacts
such as bright band (especially for the 22 January event,
when mixed-phase precipitation is omnipresent) or influence
from ground clutter. Despite the Gaussian smoothing the RF
fields look somewhat more discontinuous than RZC and par-
ticularly CPC (which is naturally smooth due to the kriging
procedure). For these two examples, the RF field looks like
an intermediate stage between RZC and CPC, with weaker
and more localized precipitation cores than RZC. This is
however not a systematic behavior.

5.3 Case studies

Six precipitation events typical of Switzerland are consid-
ered, of which two correspond to widespread winter snow
events (warm front on 22 January 2018 and cold front on
29 January 2020), two to summer convection with heavy pre-
cipitation (thermal convection on 25 July 2017 and cold front
convection on 6 August 2019), and two to cold front situa-
tions in autumn with mainly stratiform precipitation (27 Oc-
tober 2018 and 15 October 2019). All events last for 24 h
from midnight to midnight. To ensure an unbiased estimate

of the performance, the RF models used for prediction have
been trained after filtering out all input data from these 6 d.

The performance of all QPE methods is given in Fig. 15 in
the form of a color-coded table. The best-performing QPE is
almost systematically CPC.CV. Since this method uses also
ground measurements, the comparison with pure radar prod-
ucts such as RZC and the RF QPE is not fair, but the perfor-
mance of CPC.CV can be considered as an asymptotic ideal
performance to which the best-possible radar QPE should
tend. It appears that RF_dualpol (with Gaussian smoothing)
has a lower RMSE than RZC for four out of six events (and
equal RMSE for the two others), a lower scatter than RZC
for five out of six events, a better logBias than RZC for
five out of six events and a lower ED for four out of six
events. In contrast, the performance of RF_dualpol_AC, the
RF dual-polarization QPE with a posteriori advection correc-
tion (Sect. 5.1), is much poorer, and it often overestimates
precipitation as can be seen by the larger logBias. In fact
this overestimation is limited to small precipitation intensi-
ties, which indicates that the smoothing effect is too strong as
the high values in the precipitation cores tend to leak towards
the margins of the precipitation system. The performance of
the single polarization RF_hpol model is almost systemati-
cally worse than RF_dualpol and as such can not really be
used as an alternative to RZC. Most likely in the absence
of polarimetric information, the RF algorithm is not able to
overcome the absence of an additional VPR and local bias
corrections as are applied to the RZC product. When look-
ing at the performance for different precipitation ranges, the
RF models tend to produce larger precipitation intensities for
low observed precipitation with respect to RZC. In most of
the cases, this is rather a good sign since RZC tends to under-
estimate at these ranges, but in some cases (15 October and
6 August 2019) it leads to the overestimation of weak precip-
itation. This can be explained by the natural tendency of the
RF to overestimate weak responses, which is not totally com-
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Figure 14. Two examples of precipitation fields generated with RZC, CPC, RF_dualpol and RF_hpol (both with Gaussian smoothing):
(a) strong convection on 25 July 2017 during a typical summertime barometric swamp. The color scale is divided in a linear progression
in purple tones for low precipitation and a logarithmic progression from blue to green above a certain threshold. (b) Heavy snowfall event
during a warm front crossing of Switzerland on 22 January 2018.

pensated for by the a posteriori bias correction. For observed
intense precipitation above 10 mm h−1, RZC is clearly un-
derestimating for all events. RF_dualpol still underestimates
but to a significantly lesser amount, and the relative decrease
in logBias with respect to RZC ranges from 10 % to 40 %
depending on the event. The only event in which the perfor-
mance of RF_dualpol is problematic is 6 August 2019, when
it has a clear tendency to overestimate weak and intermediate
(up to 10 mm h−1) precipitation. Nevertheless, it is necessary
to keep in mind the large difference in the spatial support of

the rain gauge and the radar, which makes a direct compar-
ison difficult. As the radar provides an average over a much
larger area than the rain gauge, it would not be surprising
that the estimated values are underestimated with respect to
the gauge in case of intense precipitation.
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Figure 15. Evaluation scores at hourly resolution for the RZC, CPC.CV, RF_dualpol (with Gaussian smoothing), RF_dualpol_AC (advection-
corrected) and RF_hpol (with Gaussian smoothing) methods for the six events using the rain gauge measurements from all Swiss stations as
reference. Green colors correspond to good relative performance and red colors to poor relative performance.

6 Conclusions

In this work we propose a new data-based QPE method for
Switzerland that is able to generate 2D estimates of precipi-
tation intensities over a 1 km2 grid, every 5 min, in real time.

The first step of this work involved the creation of a large
database comprising 4 years of radar measurements from
the five operational polarimetric weather radars, simulations
from the operational COSMO NWP (numerical weather pre-
diction) model and gauge measurements from the 288 op-
erational rain gauges, aggregated to a common spatial and
temporal representation.

This database was then used to adjust and train a ran-
dom forest (RF) algorithm able to predict the gauge obser-
vation at the ground from the radar observations aloft. Com-
pared to other machine learning regression models, RF has
the advantage of being easy to parallelize, being very fast
for prediction in real-time application and never generating
non-physical precipitation amounts. Since machine learning
methods such as RF typically require the response and the
input features to have the same dimensions, the observations
aloft are aggregated to the ground using a weighted average
that depends exponentially on the altitude of each observa-
tion. The relative importance of each input feature was as-
sessed using a random shuffling scheme, and the final choice
of features includes nine features, which are by order of im-
portance the horizontal reflectivity Zh, the vertical reflectiv-
ityZv, the specific differential phase shiftKdp, the fraction of
observations that come from each of the five radars, the co-
polar correlation coefficient ρhv, the spectral width Sw, the
temperature from the COSMO model, the static radar visibil-
ity and the radar gate altitude. It was observed that the trained
RF method has a natural tendency to overestimate weak pre-
cipitation and underestimate strong precipitation, which is

a well-known behavior of many machine learning methods.
This tendency can be alleviated to a large extent with an a
posteriori bias-correction method that relies on a fit between
observed precipitation and predicted precipitation. The final
model includes the following hyperparameters: (1) the slope
in the exponential altitude weighting of the input features,
(2) the number of trees, (3) the maximum depth of the trees,
(4) the number of variables randomly chosen at each split and
(5) the type of a posteriori bias correction. By running a five-
fold cross-validation for every parameter combination, it was
observed that the performance differs greatly as a function of
the precipitation intensity range and the type of metrics that
is used. There is thus no single best choice but a good trade-
off could be found with a multi-criterion decision scheme.
The learning curve computed for this fine-tuned algorithm
reveals that the training data are sufficient but that the re-
quired data are quite large in regard of the small number of
input features. This result can be explained by the intrinsic
loss of information due to the aggregation of the gauge data
to the spatial and temporal support of the gauge and the in-
herent noisiness of some of the radar variables.

A comparison of this new algorithm with RZC, the cur-
rent single-polarization QPE product of MeteoSwiss, reveals
that it decreases significantly the estimation error and bias
in most areas of Switzerland. This is particularly true in the
central Alpine regions, where RZC tends to underestimate.
Nevertheless, even though the bias-correction method solves
to a large extent the issue of underestimating heavy precipi-
tation, for which the RF QPE is generally better than RZC,
the RF algorithm still has a visible tendency to overestimate
weak precipitation. When training an RF QPE without the
polarimetric information, the performance is generally much
poorer and worse than or comparable to RZC. Some effort
was also invested in the computation of an error model which
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allows us to estimate the error associated the predicted pre-
cipitation intensities. This model reveals that the polarimetric
information reduces the error clearly when compared with
RZC or RF without polarimetry.

To be able to provide 5 min precipitation maps, the algo-
rithm was adapted with a disaggregation scheme that predicts
5 min estimates from 10 min averaged input features (which
is the temporal support of gauge observations and hence the
one used for training the RF algorithm). This scheme relies
on the Z–R relationship used in the operational RZC model.
It was observed that the resulting QPE fields could display
locally sharp discontinuities which are not visible in RZC,
which is generally smoother. These discontinuities can be ex-
plained by the use of new additional input variables in the
QPE, as well as the discretization performed by the RF re-
gression. To improve the spatial structure of the output, the
QPE scheme was complemented with a 3×3 local outlier re-
moval filter and a Gaussian low-pass filter with σ = 0.5 km. A
series of six case studies for typical precipitation events over
Switzerland reveals that the generated precipitation looks re-
alistic and gives a better performance than RZC for five out
of six events.

This new RF QPE method has proven to deliver promis-
ing results and has the advantage of replacing many of the
a posteriori corrections required by RZC (global and local
bias corrections, VPR correction) by one single fast estima-
tion step. Further work is required to improve its capability to
predict weak precipitation intensities, which might require a
more sophisticated aggregation scheme of radar observations
aloft. This QPE algorithm offers vast perspectives for oper-
ational real-time applications, indeed it is fast (less than a
minute of computation every 5 min), and because of its sim-
ple structure (ensemble of decision trees), the RF regressor
can easily be used in the operational MeteoSwiss framework,
provided the radar variables are transformed into input fea-
tures accordingly. In parallel, the database will periodically
be updated with newly acquired data, and the RF regressor
will be retrained. Ultimately this new RF QPE should serve
as input for the CPC algorithm which provides the best pos-
sible QPE estimate over Switzerland by merging radar QPE
and gauge data (Sideris et al., 2014).
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Appendix A: Computation of Kdp and Ah

To create a database of 4 years of radar data, more than
10 million radar PPI scans have to be processed (five radars,
20 elevations every 5 min). Because of this, it is computation-
ally impossible to use an advanced Kdp estimation method,
such as a Kalman filter method (Schneebeli et al., 2014) or
a Gaussian-mixture regression (Wen et al., 2019). Hence a
simple method is used in this study which is also used in
Wolfensberger et al. (2018) and is similar to the one in Tim-
othy et al. (1999). The raw total differential phase shift 9dp
is first corrected for the system offset and then filtered with
a moving median filter to give an estimate of the total dif-
ferential phase shift on propagation 8dp. To estimate Kdp,
which is half of the slope of 8dp, a moving linear regression
is used, in which the slope is estimated in a moving window.
For the sake of consistency the same window length is used
both for the median filtering of the phase and the linear re-
gression. Tests showed that the best results are obtained by
using a large window of 6 km.

Concerning Ah, we use the ZPHI method (Testud et al.,
2000), in liquid phase only. The COSMO temperature is used
to identify the height of the freezing level. Attenuation is ne-
glected in the solid phase (i.e., Ah is always zero above the
freezing level). In the liquid phase, we use constant values
of γ = 0.08 and b = 0.64884, as provided by default in the
Pyart package (Helmus and Collis, 2016).
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Appendix B: Cross-validation results

Figures B1 and B2 show the RMSEs for all precipitation in-
tensities and only high precipitation intensities, respectively.
It clearly shows that even at large precipitation intensities,
using no bias correction (first column) gives quite large er-
rors. These plots also show that even when considering only
RMSE, it is difficult to find a good trade-off in the choice of
hyperparameters.

Figure B1. Overall RMSEs for all observations as a function of number of trees, maximum depth, β parameter and bias-correction method.
The maximum number of randomly chosen variables at each split is here set to seven.

Figure B2. Overall RMSEs for observations≥ 10 mm h−1 as a function of number of trees, maximum depth, β parameter and bias-correction
method. The maximum number of randomly chosen variables at each split is here set to seven.
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Appendix C: Overall performance at different
precipitation ranges

Figure C1 shows the overall cross-validation performance
of RZC, CPC.CV, RF_dualpol and RF_hpol over the whole
database, separated by precipitation phase and intensity.

Figure C1. Five-fold cross-validation performance of RZC, CPC.CV, RF_dualpol and RF_hpol for different observed precipitation ranges for
liquid and solid or mixed precipitation and for both together (which includes all additional observations from stations where no temperature
measurement is available). The y scale is different for all precipitation ranges since the scores are significantly different.
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Appendix D: Choice of σ in the Gaussian smoothing

The optimal σ value in the Gaussian smoothing of the 2D
QPE fields has been chosen by analyzing the overall per-
formance in terms of RMSE and linear bias during the six
representative precipitation events as a function of the value
of σ . Intuitively, if the smoothing is too intense, the natural
tendency of the RF to overestimate weak precipitation and
underestimate strong precipitation could be worsened. The
results, displayed in Fig. D1, show that increasing σ leads
to a decrease in the RMSE but also to a sharp increase (in
magnitude) in the bias. A value of σ = 0.5 km seems to be a
good trade-off since it leads to a comparatively low increase
in bias for a comparatively large decrease in RMSE.

Figure D1. Hourly RMSE and linear bias (average of estimated versus observed value) as a function of the value of σ (a) for low intensities
and (b) for higher intensities.
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Remarks from the typesetter

TS1 There is a missing exponent in the equation. It is just a typo, indeed in the original equation the left part of the equation
is not equal to the right part, because the exponent 2

3 is missing over ( 1
316 ). It should be applied everywhere and not only

over zh."
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