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Abstract. The RAman Lidar for Meteorological Observations (RALMO) is operated at the MeteoSwiss station of Payerne

(Switzerland) and provides, amongst other products, continuous measurements of temperature since 2010. The temperature

profiles are retrieved from the pure rotational Raman (PRR) signals detected around the 355-nm Cabannes line. The transmitter-

receiver system of RALMO is described in detail and the reception and acquisition units of the PRR channels are thoroughly

characterized. The FastCom P7888 card used to acquire the PRR signal, the calculation of the dead-time and the desaturation5

procedure are also presented. The temperature profiles retrieved from RALMO data during the period going from July 2017

to the end of December 2018 have been validated against two reference operational radiosounding systems (ORS) co-located

with RALMO, i.e. the Meteolabor SRS-C50 and the Vaisala RS41. These radiosondes have also been used to perform seven

calibrations during the validation period. The maximum bias (∆Tmax), mean bias (µ) and mean standard deviation (σ) of

RALMO temperature Tral with respect to the reference ORS Tors are used to characterize the accuracy and precision of Tral in the10

troposphere. The ∆Tmax, µ and σ of the daytime differences ∆T = Tral−Tors in the lower troposphere are 0.28 K, 0.02± 0.1 K

and 0.62± 0.03 K, respectively. The nighttime differences suffer a mean bias of µ= 0.05± 0.34 K, a mean standard deviation

σ = 0.66± 0.06 K, and a maximum bias ∆Tmax = 0.29 K over the whole troposphere. The small ∆Tmax, µ and σ values

obtained for both daytime and nighttime comparisons indicate the high stability of RALMO that has been calibrated only

seven times over 18 months. The retrieval method can correct for the largest sources of correlated and uncorrelated errors, e.g.15

signal noise, dead-time of the acquisition system and solar background. Especially the solar radiation (scattered into the field

of view from the Zenith angle Φ) affects the quality of PRR signals and represents a source of systematic error for the retrieved

temperature. An imperfect subtraction of the background from the daytime PRR profiles induces a bias of up to 2 K at all

heights. An empirical correction f(Φ) ranging from 0.99 to 1, has therefore been applied to the mean background of the PRR

signals to remove the bias. The correction function f(Φ) has been validated against the numerical weather prediction model20

COSMO suggesting that f(Φ) does not introduce any additional source of systematic or random error to Tral. A seasonality

study has been performed to help understanding if the overall daytime and nighttime zero-bias hides seasonal non-zero biases

that cancel out when combined in the full dataset. Finally, the validated RALMO temperature has been used in combination

1

https://doi.org/10.5194/amt-2020-289
Preprint. Discussion started: 10 September 2020
c© Author(s) 2020. CC BY 4.0 License.



with the humidity profiles retrieved from RALMO to calculate the relative humidity and to perform a qualitative study of

supersaturation occurring in liquid stratus clouds.

1 Introduction

Continuous measurements of tropospheric temperature are essential for numerous meteorological applications and in particu-

lar for numerical weather predictions, for satellite CAL/VAL applications (Stiller et al., 2012; Wing et al., 2018) and for the5

understanding of climate change. Co-located temperature and humidity measurements allow to calculate the relative humidity,

a parameter playing a key role in several thermodynamic processes, such as the hygroscopic growth of condensation nuclei, fog

and cloud formation. When considering the thermodynamic processes occurring within a stagnant air mass, a strong increase

in relative humidity it is often a precursor of fog, while the onset of supersaturation is linked to a consolidated radiation fog

or a cloud forming at the top of a convective layer. Another important thermodynamic parameter is the convective available10

potential energy (CAPE); the CAPE is directly related to the temperature difference between two layers in the atmosphere.

The knowledge of temperature as a function of altitude allows to monitor the atmospheric thermodynamic stability and to

diagnose and forecast the onset and intensity of a thunderstorm. Despite its importance in all these processes, the atmospheric

temperature is still undersampled in the lower troposphere where the traditional and well established observing systems (e.g.,

radiosounding, AMDAR, Mode-S, satellites) do not provide continuous measurements. A vertical profile of temperature in the15

troposphere can be measured efficiently by ground-based remote sensing instrumentation; differently from other technologies,

remote sensing is best suited to operate continuously and to satisfy real-time data delivery requirements. Moreover, remote

sensing instruments operating continuously for many years ensure long time series of data, which are fundamental for clima-

tology studies. This study focuses on the measurement of the atmospheric temperature done by a LIght Detection And Ranging

(LIDAR) instrument. Best known methodologies to retrieve temperature profiles using a LIDAR can be split into four groups20

of techniques, the differential absorption LIDAR (DIAL), the high spectral resolution LIDAR (HSRL), the Rayleigh and the

Raman techniques (Wulfmeyer et al. (2015) and references therein). Measurements with DIAL are based on the dependency

of the molecular absorption on the atmospheric temperature, namely oxygen molecules with their constant mixing ratio in the

dry atmosphere are used as targets by DIAL to retrieve the temperature profile (Behrendt, 2005; Hua et al., 2005). The HSRL

technique uses the Doppler frequency shifts produced when photons are scattered from molecules in random thermal motion;25

the temperature dependence of the shape of the Cabannes line is used directly for temperature measurements (Theopold and

Bösenberg, 1993; Wulfmeyer and Bösenberg, 1998; Bösenberg, 1998). The Rayleigh method is based on the assumption that

measured photon-count profiles are proportional to the atmospheric mass-density profile in a atmosphere that behaves like an

ideal gas and that is in hydrostatic equilibrium. The mass-density profile is used to determine the absolute temperature profile

(Hauchecorne et al., 1991; Alpers et al., 2004; Argall, 2007). The Pure Rotational Raman (PRR) method relies on the depen-30

dence of the rotational spectrum on atmospheric temperature (Cooney, 1972; Vaughan et al., 1993; Balin et al., 2004; Behrendt

et al., 2004; Di Girolamo et al., 2004; Achtert et al., 2013; Zuev et al., 2017). A combination of the Rayleigh and Raman

methods is also possible and allows to extend significantly the atmospheric region where the temperature is retrieved (Li et al.,
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2016; Gerding et al., 2008). The four methods have the common objective to produce a temperature profile as close as possible

to the true atmospheric status. In the attempt of doing that, a reference must be used to calibrate the LIDAR temperature and

calculate the related uncertainty. Trustworthy references can be provided by co-located radiosondes, satellites or a numerical

models. A co-located RS can act as reference to calibrate and monitor the stability of a LIDAR system over long periods of

time (Newsom et al., 2013).Our study presents a characterization of the radiosounding systems (RS) in use at Payerne and5

their validation with respect to the Vaisala RS92 certified by the Global Climate Observing System (GCOS) Reference Upper-

Air Network (GRUAN). Assimilation experiments using validated Raman LIDAR temperature profiles have been performed,

among others, by Adam et al. (2016); Leuenberger et al. (2020). Both studies highlight the big potential of Raman LIDAR to

improve numerical weather prediction (NWP) models through data assimilation (DA).

In this study we characterize and validate RALMO temperature profiles and demonstrate the high stability of the system.10

The paper is organized as follows: In Section 2 we establish the quality of the reference radiosonde data sets. The LIDAR

system is described in detail in Section 3 followed by an uncertainty estimation in Section 4. In Sections 5 and 6 we present the

statistics of the comparison between LIDAR and radiosondes.Moreover, the validated RALMO temperature has been used in

combination with the humidity profiles retrieved from RALMO to calculate the relative humidity and to perform a qualitative

study of supersaturation occurring in liquid stratus clouds (Section 7).15

The maximum (∆Tmax) and mean bias (µ) of the difference (∆T ) of several LIDAR temperature profiles with respect

to temporally and spatially co-located radiosonde profiles represent the systematic uncertainty of the LIDAR temperature.

The variability of all differences ∆T over the entire dataset yields the random uncertainty (σ) of the LIDAR temperature. In

section 5 we present the statistical analysis of the ∆T = Tral−Tors dataset and we analyze the possibles causes of µ and σ over

the period July 2017−December 2018. An additional statistical study has been performed splitting the ∆T dataset into seasons20

to investigate the effect of solar background and its correction function f(Φ) on the retrieved temperature profiles in terms of

µ and σ (Section 6). Moreover, the validated RALMO temperature has been used in combination with the humidity profiles

retrieved from RALMO to calculate the relative humidity and to perform a qualitative study of supersaturation occurring in

liquid stratus clouds (Section 7).

2 Validation of the reference radiosounding systems25

In the framework of the operational radiosonde flight programme, the operational radiosonde is launched twice daily at Payerne

at 11 UTC and 23 UTC (in order to reach 100 hPa by 00 UTC and 12 UTC) and provides profiles of humidity (q), temperature

(T ), pressure (P ) and wind (u). In addition to the operational programme, MeteoSwiss is part of the Global Climate Observing

System (GCOS) Reference Upper-Air Network (GRUAN) since 2012 with the Vaisala sonde RS92. In the framework of

GRUAN, MeteoSwiss has launched from the aerological station of Payerne more than 300 RS92 sondes between 2012 and30

2019, contributing significantly to its characterization (metadata, correction algorithms and uncertainty calculation) and to

its GRUAN certification (Dirksen et al., 2014; Bodeker and Kremser, 2015). Before being part of GRUAN and since 2005,

MeteoSwiss has used the RS92 sonde as working standard in the framework of the quality assurance programme of the different

3

https://doi.org/10.5194/amt-2020-289
Preprint. Discussion started: 10 September 2020
c© Author(s) 2020. CC BY 4.0 License.



versions of the Meteolabor Swiss RadioSonde (SRS). Different versions of the SRS systems were operated at Payerne since

1990, starting from the analog SRS-400 (from 1990 to 2011) getting to the digital sondes SRS-C34 and C50. Starting from

2012, different versions of the SRS-C34 and SRS-C50 have been compared to the RS92 in the framework of GRUAN. In 2014,

the Vaisala RS41 (Dirksen et al., 2019) was added to the GRUAN programme where it performed numerous multi-payload

flights with the RS92 and the SRS carried under the same balloon.5

(a) (b)

Figure 1. Temperature deviation of the RS41 with respect to the RS92 calculated from the GRUAN multi-payload flights dataset during

2015/06 - 2018/12. The boxes are centered in the mean bias and span the 25th − 75th percentile range. Statistics are based on 58 flights at

11 UTC (Fig.1a) and 59 at 23 UTC (Fig.1b).

During the studied period, two different operational radiosounding systems (ORS) have been launched regularly at 11 UTC

and 23 UTC, the SRS-C50 (February 2017- March 2018) and the Vaisala RS41 (March-December 2018 ). Thanks to the

multi-sensor flights performed with the SRS-C50, the Vaisala RS41 and the Vaisala RS92, the SRS-C50 and RS41 have been

validated by the GRUAN-certified RS92. Figures 1 and 2 show the statistical biases of the RS41 and the SRS-C50 with respect

to the reference RS92 as a function of height for the day and night-time launches. The differences have been co-added into10

altitude boxes of 2 km and the profiles have been sampled every 30 s starting from 15 s after launch. The boxes in the plots

have boundaries at the 25th and 75th percentile and are centered (black dot in each box) in the mean value bias.

The RS41 and the SRS-C50 show an overall negative bias during both day and night never exceeding −0.1 K along the

whole troposphere. Only in the mid-stratosphere, above 30 km, the daytime biases reach −0.5 K. In the framework of our

study, the region of interest for the temperature profiles measured by RALMO is the troposphere and, more rarely, the UTLS15

(upper troposphere and lower stratosphere, ≈ 0-14 km). In this region, as the statistic show, the two ORS perform very well.

For the daytime comparisons (11 UTC), the mean bias of the RS41 over the region 0-14 km is −0.05 K ±0.03 K with a mean

standard deviation of 0.15 K ±0.05 K. For the nighttime comparisons (23 UTC), the mean bias of the RS41 over the region

0-14 km is −0.05 K ±0.02 K with a mean standard deviation of 0.11 K ±0.06 K. The statistics of the SRS-C50 for daytime

(11 UTC) show a mean bias over the region 0-14 km of −0.08 K ±0.02 K and a mean standard deviation of 0.19 K ±0.09 K.20

For the nighttime comparisons (23 UTC), the mean bias of the SRS-C50 over the region 0-14 km is −0.01 K ±0.02 K with a

mean standard deviation of 0.13 K ±0.04 K.
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(a) (b)

Figure 2. Temperature deviation of the SRS-C50 with respect to the RS92 calculated from the GRUAN multi-payload flights dataset during

February−December, 2018. The boxes are centered in the mean bias and span the 25th − 75th percentile range. Statistics are based on 25

flights at 11 UTC (Fig.2a) and 26 at 23 UTC (Fig.2b.

The comparisons with the RS92 show that for both ORS the daytime differences undergo a larger variability along the 0-

14 km vertical range compared to the nighttime statistics. The main reason for the larger variability is that, during the daytime

flights, the RS92 and the two ORS undergo different exposure to the solar radiation, which causes a different response of the

thermocouple sensors. The effect on the thermocouple becomes larger with the altitude as the solar radiation increases with

height. All RS are corrected by the manufacturer for the effects of solar radiation on the thermocouple sensors. However,5

different manufacturers use different radiation corrections, which contributes to the statistical broadening of the differences at

all levels. The overall (11 UTC and 23 UTC) performance of the two ORS in terms of bias with respect to the reference RS92 is

summarized in figure 3. The distribution and mean value of the differences confirm that in the first 15 km the two ORS remain

well below the −0.1 K-bias. The RS41 shows closer values to the RS92 than the SRS-C50 especially in the stratosphere. The

better statistics of the RS41 should be interpreted also in light of the fact that the RS92 and the RS41 are both manufactured10

by Vaisala.

(a) (b)

Figure 3. Overall temperature deviations at 11 and 23 UTC of the RS41 (Fig. 3a) and the SRS-C50 (Fig. 3b) with respect to the reference

sonde RS92. The interpretation of the graphics is the same as for the previous figures
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3 The RAman LIDAR for Meteorological Observations - RALMO

RALMO was designed and built by the École Polytechnique Fédérale de Lausanne (EPFL) in collaboration with MeteoSwiss.

After its installation at the MeteoSwiss station of Payerne (N 46°48.0′, E 6°56.0′, 491 m a.s.l.) in 2007 it has provided profiles

of q, T and aerosol backscatter (β) in the troposphere and lower stratosphere almost uninterruptedly since 2008 (Brocard et al.,

2013; Dinoev et al., 2013). The T data during the 2008-2010 period are unexploited due to low quality of the analog channel.5

RALMO has been designed to achieve a measurement precision better than 10 % for q and 0.5 K for T with a 30 min integration

time and to reach at least 5 km during daytime and 7 km during nighttime in clear-sky conditions. RALMO uses high-energy

emission, narrow receiver’s field of view and a narrow-band detection to achieve the required daytime performance. The data

acquisition software has been developed to ensure autonomous system’s operation and real-time data availability. RALMO’s

tripled Nd:YAG laser emits 400 mJ per pulse at 30 Hz and at 355 nm. A beam expander expands the beam’s diameter to 14 cm10

and reduces the beam divergence to 0.09 mrad±0.02 mrad. The returned signal is an envelope of the 355 nm elastic- and

Raman-backscattered signals, i.e., PRR, water vapour, oxygen, nitrogen and Rayleigh. Next, the Raman lidar equation (RLE)

for the PRR signal is presented along with the detailed description of how RALMO selects the high and low quantum shift

wavelengths used in the RLE to retrieve the temperature.

3.1 Pure Rotational Raman Temperature15

Raman LIDAR measurements of the atmospheric temperature rely on the interaction between the probing electromagnetic

signal at wavelength (λ) emitted by the LIDAR and the molecules of O2 and N2 encountered along the probing path. In

addition to the Rayleigh light backscattered by the aerosols and molecules at the same frequency as the incident light, the O2

and N2 molecules return a frequency-shifted Raman signal back to the LIDAR’s receiver. The Raman-backscattered signal

is shifted in frequency due to the rotational and vibrational Raman effect. In this study only the pure rotational part of the20

spectrum around the Rayleigh frequency (Cabannes line) is detected by RALMO and analyzed (Fig. 4).

The Raman LIDAR equation, RLE, yields the intensity of the PRR signal SPRR:

SPRR(z) =
C

z2
O(z)n(z)Γ2

atm(z)


 ∑

i=O2,N2

∑

Ji

τ(Ji)ηi(
dσ
dΩ

)iΠ(Ji)


+B (1)

The received SPRR signal measured over the time t is a function of the altitude z; C is the LIDAR constant; O(z) is the

geometrical overlap between the emitted laser and the receiver’s field of view; n(z) is the number density of the air; Γatm(z)25

is the atmospheric transmission; τ(Ji) is the transmission of the receiver for each PRR line Ji; ηi is the volume mixing ratio

of nitrogen and oxygen; (
dσ
dΩ

)iΠ(Ji) is the differential Raman cross section for each PRR line Ji and B is the background of

the measured signal. Air mainly contains oxygen and nitrogen (≈ 99%) whose ratio remains fairly constant in the first 80 km

of atmosphere, so ηi can be regarded as a constant in eq. 1. The LIDAR constant C depends on the overall efficiency of the

transciever (transmitter and receiver) system including the photo multipliers (PMT) efficiency, on the area of the telescope,30

and on the signal’s intensity. The full expression of the differential Raman cross section for single lines of the PRR spectrum

can be found in the reference book chapter by Behrendt (2005).
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Figure 4. Temperature dependence of the Stokes and Anti-Stokes pure-rotational Raman spectrum of N2 calculated at 220 K and 300 K. The

intensity of the spectral lines are in normalized relative units. The wavelength scale is for a laser wavelength of 355 nm. The total intensity

of the high and low quantum-shifted PRR channels is the summation of the single line intensities underneath the bell-shaped black curves.

3.2 Temperature polychromator of RALMO

The two-stage temperature polychromator, hereafter referred to as PRR polychromator, represents the core of the the signal

selection. The PRR polychromator separates several pure-rotational Raman spectral lines and isolates elastic scattering con-

sisting of Rayleigh and Mie lines (Cabannes line).

The PRR signal from the O2 and N2 atmospheric molecules is collected by four parabolic high-efficiency reflecting mirrors5

each one with diameter of 30 cm. The mirrors have dielectric reflection coating withR> 99% for the vibrational Raman wave-

lengths and R> 96% for the elastic and pure-rotational Raman for both cross and parallel polarized light. Nine-degrees tilted

Semrock Razor Edge Filters (REF) are installed just below the focal points of two of the four mirrors (Fig. 5a). The REF are

long-wavelength pass filters and have a cut-off wavelength at 364 nm (Fig. 5b). The ro-vibrational Raman scattering from the

atmospheric H2O, O2 and N2 is transmitted by the REF onto the optic fibers placed above the REF at the exact focal distance10

of the parabolic mirrors. The elastic (Rayleigh and Mie) and PRR scattering are reflected by the tilted REF onto 0.4-mm optic

fibers and transmitted to the PRR polychromator.

The two optic fibers transmitting the PRR and the elastic signals enter the temperature polychromator through the first fibers’

block shown in Figure 6. The fibers are fixed into the fiber’s block ensuring no or negligible temperature and mechanical-
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(a) (b)

Figure 5. (a) Telescopic mirrors, Razor Edge Filter and optic fibers. (b) The REF cut-off frequency applied to the 355-nm Raman spectrum

induced drifts of the fiber alignment with respect to the other optical elements inside the polychromator (detailed in Fig. 7).

The outline of the two fibers’ blocks Cartesian coordinates system in figure 6a shows the position of the input, output and

intermediate fibers (from stage−1 to stage−2) as a function of their abscissa-ordinate, x− y, positions. At x= 21.5 mm, the

input fibers, coming from the mirrors, are located at the y = 20 mm and y = 24 mm, the output “elastic” fibers are located

at y = 18 mm and y = 22 mm. The two output elastic signals are then transmitted through the fibers and combined together5

just before entering the PMT installed outside the polychromator’s box. The two input fibers transmit the PRR and the elastic

signals onto an aspheric lens with focal length of 300 mm and diameter of 150 mm. The two signals are then transmitted

through the lens onto a reflective holographic diffraction grating with groove density 600 grooves/mm oriented at a diffraction

angle of 48.15◦ with respect to the axis of the lenses in a Littrow configuration. The two input signals (one from each mirror)

are diffracted by the grating polychromator and separated into high- and low quantum number lines from both Stokes and Anti-10

Stokes parts of the Raman-shifted spectrum. Two groups of four spectral lines are then diffracted, i.e. JStokeshigh , JAntiStokeshigh ,

JStokeslow , JAntiStokeslow .

The theoretical polychromator efficiencies ξ (ξ ∈ [0-1]) for the nitrogen and oxygen PRR lines JStokeshigh , JAntiStokeshigh , JStokeslow

and JAntiStokeslow are shown in Table 1 and Table 2, respectively. The low and high quantum-number signals Jlow and Jhigh

Raman-backscattered by the nitrogen molecules are diffracted by the polychromator most efficiently at lines with quantum15

number n= 6 (JAntiStokeslow , λ= 353.97 nm, JStokeslow , λ= 355.47 nm) and n= 12 (JAntiStokeshigh , λ= 353.37 nm, JStokeshigh ,

λ= 356.07 nm). Similarly to the nitrogen, the PRR signals backscattered by the oxygen molecules are diffracted by the

polychromator most efficiently at lines with quantum number n= 9 (JAntiStokeslow , λ= 353.96 nm, JStokeslow , λ= 355.48 nm)

and n= 17 (JAntiStokeshigh , λ= 353.38 nm, JStokeshigh , λ= 356.06 nm).
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Table 1. Theoretical polychromator efficiencies for the Nitrogen PRR lines

Nitrogen

Jlow Jhigh

JAntiStokes
low (n) λ ξ JAntiStokes

high (n) λ ξ

3 354.2501 0.0325 10 353.5532 0.2197

4 354.1503 0.2032 11 353.4540 0.6577

5 354.0505 0.6270 12 353.3549 0.9636

6 353.9509 0.9565 13 353.2559 0.6915

7 353.8513 0.7217 14 353.1570 0.2433

8 353.7519 0.2694 15 353.0582 0.0420

Jlow Jhigh

JStokes
low (n) λ ξ JStokes

high (n) λ ξ

3 355.1511 0.0526 10 355.8543 0.2577

4 355.2514 0.2709 11 355.9548 0.6922

5 355.3518 0.7166 12 356.0554 0.9500

6 355.4523 0.9735 13 356.1560 0.6668

7 355.5527 0.6796 14 356.2566 0.2395

8 355.6532 0.2439 15 356.3572 0.0441

Table 2. Theoretical polychromator efficiencies for the Oxygen PRR lines

Oxygen

Jlow Jhigh

JAntiStokes
low (n) λ ξ JAntiStokes

high (n) λ ξ

5 354.2305 0.0493 15 353.5124 0.3759

7 354.0864 0.4535 17 353.3696 0.9524

9 353.9425 0.9598 19 353.2272 0.5496

11 353.7989 0.4686 21 353.0851 0.0727

Jlow Jhigh

JStokes
low (n) λ ξ JStokes

high (n) λ ξ

5 355.1708 0.0765 15 355.8956 0.4195

7 355.3157 0.5454 17 356.0404 0.9457

9 355.4607 19 356.1852 0.5308

11 355.6057 21 356.3298 0.0747
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Signals Jlow and Jhigh are sums of the respective Stokes and anti-Stokes lines for nitrogen and oxygen. The eight J−signals

diffracted by the polychromator are then re-focused by the aspheric lens onto the intermediate fibers positioned at the y−
ordinates y = 18 mm and y = 22 mm and at the x−abscissae x= 18.93 mm, x= 20.075 mm, x= 22.925 mm, x= 24.07 mm.

(a) (b)

Figure 6. (a) Telescopic mirrors, Razor Edge Filter and optic fibers. (b) The REF cut-off frequency applied to the 355-nm Raman spectrum

The eight Stokes and Anti-Stokes J−signals are transmitted through the intermediate fibers into the second fibers’ block

(Fig. 6b) and subsequently transmitted along an optical path almost identical to the one in stage−1. Differently from stage−1,5

the eight J−signals are recombined by the diffraction grating polychromator into two groups of total J−signals (Jhigh and

Jlow). The general outline of the the two-stage PRR polychromator is shown in Fig. 7.

The total J−signals are focused by the aspheric lens onto the output fibers positioned in the fibers’ block in Fig. 6b at the

same x−abscissa x= 21.5 mm and at the y−ordinates, y = 24.5 mm (Jhigh), y = 21.5 mm (Jhigh), y = 19 mm (Jlow) and

y = 16 mm (Jlow). The output fibers transmit the four Jhigh and Jlow signals from the two mirrors to two separate PMT boxes10

installed outside the polychromator unit. Inside each PMT box two J−signals are combined by an imaging system made by

two lenses focusing onto a common spot. This last recombined signal is then divided by a beam splitter into two signals, one

at 10 % and the other at 90 % of the intensity, which are focused onto two independent PMTs. A total of four signals are then

obtained at the end of the receiver chain, i.e., J10%
high, J90%

high, J10%
low and J90%

low

3.3 PRR channel acquisition system15

The acquisition of RALMO’s PRR channels have been migrated in August 2015 from the Licel acquisition system to the FAST

ComTec P7888 (FastCom). The Model P7888 Series is one of the fastest commercially available multiple-event time digitizer

with four inputs (one for each PRR channel) with very short acquisition system’s dead-time and consequently minimum

saturation effects of the photon-counting channels. Compared to the Licel acquisition system, FastCom acquires the PRR

10
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Figure 7. Optics block diagram of PRR polychromator

channels solely in photon counting mode, with higher range resolution and with about twice shorter dead-time, τ . The FastCom

acquisition system acquires two low-transmission channels (J10%
high, J10%

low ) and two high-transmission channels, (J90%
high, J90%

low ).

Most photon-counting acquisition systems are limited in performance by the dead-time τ , i.e. the minimum amount of time

in which two input signals may be resolved as separate events. Whenever two consecutive photons impinge on the detector

with separation time t < τ the system counts only one event. Certain type of acquisition systems can be corrected for the5

underestimation induced by τ , the correction of the PRR signals measured by the FastCom system is presented in the section

4.

4 Retrieval of Tral and calculation of the uncertainty

The high and low-frequency-shifted SPRR signals have the expression given in eq.(1). In order to use them to retrieve the

temperature profile, eq.(1) shall be corrected for the dead-time and the background. Once the signals are corrected, their ratio10

is used used to retrieve the temperature from eq.(3) scaled by two coefficients A and B. The atmospheric temperature is then

obtained from the calibration of eq.(3) with respect to Tors and the determination of A and B. The calibrated temperature is

then provided along with its uncertainty. Table 3 summarizes the vertical and temporal resolution of the SPRR signal at different

stages of the data processing. The vertical resolution of Tral is not constant with the altitude and depends on the calculated

total random uncertainty in eq.(6). A Savitzy-Golay digital filter with polynomial degree K = 1 is applied to the Tral profiles15

to degrade the sampling resolution and reduce the sampling noise. The adopted procedure and the definition of the obtained

vertical resolution are compliant with the NDACC recommendations detailed in the work by Leblanc et al. (2016). The initial

and highest resolution is δzmax = 30 m, which is degraded to a minimum δzmin = 400 m corresponding to the regions where

11
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the error is large (normally, the upper troposphere and lower stratosphere). For clear-sky measurement, an upper altitude cut-off

is set at the altitude where the error exceeds 0.75 K, in presence of clouds, the upper limit is set by the cloud base detected by

a colocated ceilometer. Very often, the clear-sky cut-off altitude corresponds to an altitude between 5 and 7 km during daytime

measurements.

Table 3. Spatial and temporal resolution of SPRR signals and Tral

level δt in min δzmin in m δzmax in m

raw SPRR 1 2.4 2.4

corrected SPRR 1 2.4 2.4

Tral 30 400 30

4.1 Correction of SPRR5

The PRR signals are corrected for the systematic underestimation of the true photon-counting signal (dead-time) and for the

offsets (instrumental and solar). The first correction is then for the acquisition system’s dead-time τ . The low-transmission

channels J10%
high and J10%

low do not become saturated and are used as reference channels to identify the saturation of the high-

transmission channels J90%
high and J90%

low . Assuming that the PMTs and the associated electronics obey the non-paralyzable

assumption (Whiteman et al., 1992), we have studied the departure from the constant ratio J10%/J90% as a function of τ . We10

have applied a method based on the non-paralyzable condition (Newsom et al., 2009) to a year of data and have calculated τ

for all the cases when the saturation clearly affected the high-transmission channels J90%.

As soon as the saturation has its onset, the ratio J10%/J90% ceases to be constant and the saturated J90% yields smaller

count rates than the true ones. When the J90% is desaturated using the correct τ , it gives the τ−corrected signal Jdesat(τ) =

J90%/(1− τJ90%). One thousand linear fits J10% = f(Jdesat(τi)) are performed with τi varying in the interval τi ∈ [0 ns-15

10 ns] at steps of 0.1 ns. The linear fits J10% = f(Jdesat(τi)) are performed over a temporal interval of 30 min and a vertical

range defined by the count rates range 0.5 MHz to 50 MHz, respectively Cmin and Cmax in Fig.8. For each linear fit we

calculate the value e(τi) that provides the distance in the count-rate domain between J10% and f(Jdesat(τi)) as a function

of τi. The minimization of e(τ) with respect to τi determines the value of the acquisition system’s dead-time τi = τmin ∈
[0 ns-10 ns] for each channel. The obtained value τmin is used to desaturate J90% and to reestablish the constant ratio20

J10%/f(Jdesat(τmin)) = constant. Figure 8 shows an example of calculation of τmin for the high-transmission channel

of Jlow. The curve function e(τ) in the figure’s left panel has a minimum at τmin =3 ns. On the right panel, the uncorrected

and the τ−corrected relations are shown. The uncorrected relation J10% = f(Jdesat(τ = 0)) (solid black) departs from the

linear relation J10% = f(Jdesat(τmin)) (dashed green) as soon as the count rates exceed the lower bound Cmin (dashed red).

Applying this method to a year of data and collecting more than hundred cases we have determined the mean dead-times25

τ =1.4 ns and τ =3 ns for Jhigh and Jlow, respectively. The desaturated Jhigh and Jlow are further corrected for the back-
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Figure 8. Dead-time calculation and correction of the high-transmission channel J90%. The left panel shows the minimization of the distance

vector e(τi) in terms of τi yielding the deadtime τ = 2.99 ns. The right panel shows the saturated J10% = f(Jdesat(τ = 0)) (solid black),

the desataturated linear relation J10% = f(Jdesat(τmin)) (dashed green) and the count-rate domain [Cmin,Cmax] (dashed red)

ground and the procedure is described hereafter.

The electronic and solar background must be subtracted from SPRR before retrieving Tral. While the electronic background is

stable and does not undergo daily or seasonal cycles, the solar background changes in intensity with the position of the sun Φ

(the angle between the zenith and the centre of the Sun’s disc). We have found that subtracting the mean value of the far-range

signal (z ∈ [50-60] km) from SPRR, (subtraction of term B from eq. 1) causes a systematic negative bias with respect to Tors of5

about 1 K at all altitudes z during daytime. A relative change of 1% in the ratio Jlow/Jhigh due to an imperfect background

subtraction can lead to a variation of up to 2 K in the retrieved temperature Tral. Because the solar background (SB) dominates

the total background of SPRR, we focus on the correction of the background B only as a function of the position of the sun. We

have developed an empirical correction function f(Φ) applied to the background prior to subtraction from SPRR. The function

f(Φ) is applied to the background B, and provides the corrected background Bcorr = f(Φ) ·B. Through the year’s cycle, B is10

reduced by a maximum amount of 1 % via the action of f(Φ). As eq. (2) shows, f(Φ) reaches daily minima when Φ = Φdaymin

(noon), and returns to 100 % when Φ≥ 90◦ (after sunset and before sunrise). During the daily and annual cycle, f(Φ) then

oscillates within the range f(Φ) ∈ [99%− 100%] reducing B by the maximum amount of 1 % (f(Φ) = 99%) at noon on the

21st of June when Φ = Φyearmin .

f(Φ) = 1− 0.01 · cosΦ
cosΦmin

δΦ, δΦ ≡ 1 for 0≤ Φ< π/2, δΦ ≡ 0 for π/2≤ Φ< 2π (2)15

If uncorrected, the retrieved daytime Tral suffers a bias at all heights with respect to Tors. The bias is largest when Φ = Φdaymin.

The correction f(Φ) is applied only to the background of Jhigh. The intensity of Jhigh is generally lower than Jlow at all
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atmospheric temperatures (see Sect. 4), and so is also its signal-to-noise ratio (SNR). Even a small error of ≈ 1% when

subtracting B from Jhigh has a major impact on its SNR; f(Φ) corrects the imperfect subtraction of B from Jhigh and

minimizes the daytime bias of Tral with respect to Tors almost perfectly.

4.2 Estimation of total random uncertainty

Once Bcorr is subtracted from the τ−corrected SPRR, the deviation of Tral from Tors depends only on how precisely eq. (3),5

derived from the RLE, represents the true atmospheric temperature at the altitude z and time t. The random uncertainty does

not account then for the error induced by the saturation and the background, which are considered as purely systematic. The

high-frequency-shifted, Jhigh, and low-frequency-shifted, Jlow, signals in the Stokes and anti-stokes Q−branches depend on

the temperature of the probed atmospheric volume (Fig. 4). The ratio of the SPRR intensities Q(z) = Jlow(z)/Jhigh(z) is a

function of the atmospheric temperature T at the distance z. Based on the calculations shown by Behrendt (2005) and for10

systems that can detect independent J−lines in each channel, the relationship between T and Q would take the form of eq. (3)

with the equals sign. The approximation sign in eq. (3) indicates that the detection system detects more than one J−line

and thus brings an inherent error. The calibration coefficients A and B are a-priori undetermined and can be determined by

calibration of Tral with respect to Tors.

Tral ≈
A

B+ lnQ
. (3)15

The coefficients A and B are determined calibrating Tral with respect to Tors. The coefficient A has units in Kelvin as eq. (3)

is not normalized for the standard atmospheric temperature (Behrendt and Reichardt, 2000). The linear relation y =A/(x+B)

is used, where x is the ratio Q and y is the reference temperature Tors. The mean error on Tors for both the RS41 and SRS-C50

is ≈−0.04± 0.15 K at 11 UTC and 23 UTC between 0 and 14 km (section 2). Due to the very small error on Tors, we can

calculate the uncertainty Ufit of the fitting model only in terms of the fitting parameters’ errors σA and σB (eq. 4). As it will20

be shown in the next section, the covariance σAB of A and B is very close to zero (< 10−3), thus σA and σB can be treated

as statistically independent and used to calculate Ufit from the first-order Taylor’s series of propagation of fitting parameters’

uncertainties.

Ufit =
1

(B+ lnQ)

[
σ2
A +

A2σ2
B

(B+ lnQ)2

]1
2
, (4)

Ufit is not the only error source, a second contribution to the total uncertainty comes from the fact that SPRR is acquired by25

a photon-counting system and is affected by the measurement’s noise that can be calculated using standard Poisson statistics.

The error σJ for Poisson-distributed data is equal to the square root of the SPRR signals, σJlow
=
√
Jlow and σJhigh

=
√
Jhigh.

In eq. (5), coefficients A and B can be regarded as independent from the noise on SPRR, as the contribution of it is already

included in σA and σB in eq.(4).

Usig =
A

(B+ lnQ)2

[
1

Jhigh
+

1
Jlow

]1
2
. (5)30
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The total uncertainty of the calibrated Tral is a type B uncertainty (for Guides in Metrology, 2008) and is the sum of the

independent error contributions Ufit and Usig .

UT =
√
U2
fit +U2

sig =

√
1

(B+ lnQ)2

[
σ2
A (B+ lnQ)2 +A2

(
σ2
B +

1
Jhigh

+
1

Jlow

)]
. (6)

4.3 Calibration of SPRR

For a very stable system like RALMO, calibrations can be performed once every few months to compensate for any occurring5

drift of the detection system’s sensitivity and/or efficiency. Calibrations of RALMO are performed using eq. (3) in clear-sky

conditions during nighttime to remove the effect of solar background and have a larger vertical portion of Tral available for

calibration (the daytime profiles have normally a lower cut-off altitude). Figure 9 shows a case of RALMO calibration, the

green-shaded area represents ±2UT (k = 2).

Figure 9. RALMO temperature profile calibrated by the ORS RS41. The left panel shows TRS41 (solid black) and Tral (solid red) with

the confidence interval (green shading) corresponding to kUT (k = 2). The right panel shows the differences ∆Tral−RS41 within the UT

k−boundaries for k = 1 (dashed blue) and k = 2 (dashed red).

The calibrated Tral results from the integration of 30 τ− and B−corrected SPRR profiles (δt= 30 min) into eq. (3). At a10

given atmospheric altitude z during the time interval δt, UT (z)|δt is made of the single contributions Usig(z, t) and Ufit(z, t).

Usig(z, t) can be regarded as independent with respect to time; on the other hand, the errors Ufit(z, t), depend on the atmo-

spheric processes occurring within the layer [z− δz/2,z+ δz/2] during the time interval [t− δt/2, t+ δt/2] and are, a-priori,

not statistically independent. By assuming that all errors in eq. (6) are statistically independent, we assume that the off-diagonal
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elements of the variance-covariance matrix are all zero. By doing so, UT (z)|δt could be underestimated by an amount equal

to the non-zero covariance terms, including the covariance σAB . A method to assess the exhaustiveness of the theoretical error

UT is to calculate how many points in the vector ∆T = Tral−Tors fall within the interval [−kσ,+kσ] and check if they are

compatible with the Gaussian probability levels 68.3%, 95.5% and 99.7% for k = 1,2,3, respectively. As it is shown in the

right panel of figure 9, almost all points along the vector Tral−Tors fall within the interval [−2σ,+2σ], i.e. the 98.1%. For k = 15

the percentage falls slightly below the expected level for a Normal distribution with only 61.2% of the points within [−σ,+σ].

Between July 2017 and December 2018, a total of seven calibrations have been performed (three SRS-C50 and four Vaisala

RS41). The mean percentage of points over all performed calibrations is 65.1% for k = 1, 97.9.1% for k = 2 and 99.98% for

k = 3. These values seem to confirm an overall exhaustiveness of UT with a slight underestimation of 3.2% at k = 1.The list

of calibrations is shown in Table 4. For each calibration, the table lists the date and end time of the calibration, the calibration10

coefficients A and B used in the fitting model eq. (3), the errors σA and σB , the covariance σAB and the ORS used to calibrate

Tral. As to further support the assumption of zero covariance of the coefficients A and B, all covariances σAB in the table are

smaller than 1.71×10−3. Between two consecutive calibrations performed at times ti and ti+1 the coefficientsA(ti) andB(ti)

are used to calibrate all profiles Tral during the time interval t ∈ [ti, ti+1].

Table 4. Calibrations of RALMO T profiles by the working standards

YYYY-MM-DD HH:MM A [K] B σA [K] σB σAB ORS

2017-07-06 23:30 372.97 0.42 0.7275 0.0027 0.78× 10−3 SRS-C50

2017-08-24 23:30 375.63 0.43 1.1184 0.0041 1.71× 10−3 SRS-C50

2017-10-16 23:30 376.44 0.42 0.5987 0.0022 0.93× 10−3 SRS-C50

2018-04-21 23:30 372.94 0.41 0.6980 0.0026 0.76× 10−3 RS41

2018-05-11 23:30 373.14 0.41 0.9510 0.0036 1.35× 10−3 RS41

2018-07-07 23:30 374.42 0.41 0.9877 0.0037 1.46× 10−3 RS41

2018-09-11 23:30 374.78 0.41 0.9276 0.0034 1.30× 10−3 RS41

5 Validation of PRR temperature15

More than 450 profiles Tral (245 nighttime, 215 daytime) have been compared to Tors and assessed separately for daytime and

nighttime based on the bias and standard deviation (σ) of the differences ∆T = Tral−Tors over the period 1st of July 2017-

31st of December 2018. Two criteria to select the cases for the dataset have been used:

1. Only cases with no precipitation and no low clouds or fog are retained.

2. Only cases with ∆T < 5 K are retained.20
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Criterion 1 is performed setting a threshold for minimum cloud base, hb, at 1000 m (a.g.l.), for any values of hb < 1000 m

Tral is not retrieved. Whenever hb > 1000 m, the cut-off altitude will correspond to hb. Indeed, above hb, the SNR drops

abruptly and UT (z)� 1 K. For this reason, especially during winter, when long-lasting stratus clouds occur in the altitude

range 1 km to 4 km, the nighttime and daytime Tral is limited in range to the altitude hb (or are is calculated if hb < 1000 m).

Criterion 2 is performed setting a threshold at 33% of the number of elements along the profile ∆T exceeding 5 K. If more5

than 33% of the elements along ∆T exceed the threshold, the whole Tral is rejected and not included in the statistics. For any

value below the threshold, the outliers are removed from Tral. This is justified by the fact that exceedances counting more than

33% are caused by temporary misalignment of the transceiver unit. On the other hand, exceedances well below the threshold

can always occur (especially in the higher part of the profile) due to low SNR or unfiltered clouds. In Table 5 we present a

summary of the statistical parameters characterizing the daytime and nighttime differences ∆T that will be discussed in detail10

in the following sections. The dataset ∆T is described in terms of maximum mean bias ∆Tmax, average mean bias µ, standard

deviation σ and maximum availability Nmax of the differences ∆T along the atmospheric range.

Table 5. Summary of the statistical parameters of the day and night ∆T dataset

night

∆Tmax µ σ Nmax range

0.24 K 0.05± 0.34 K 0.66± 0.06 K 244 0.5−10 km

day

∆Tmax µ σ Nmax range

0.25 K 0.02± 0.1 K 0.62± 0.03 K 212 0.5−6 km

Besides a global validation we also present and discuss the seasonal statistics in order to better characterize the system

performance.

5.1 Nighttime temperature statistics15

The nighttime ∆Tmax, µ, σ and Nmax of ∆T are are the metric to assess the accuracy and precision of Tral with respect to

Tors. Figure 10 shows ∆Tmax = 0.24 K, µ= 0.05± 0.34 K, σ = 0.66± 0.06 K and Nmax = 244 over the tropospheric region

0.5 km to 10 km.

In addition to the uncertainty assessment performed in section 4.3, the exhaustiveness of the theoretical total uncertainty

UT can be further assessed comparing UT with σ. The mean value of UT along the troposphere and over the seven nighttime20

calibrations is UT = 0.64 K, the mean nighttime standard deviation averaged over the tropospheric column in figure 10 is

σ = 0.66 K. The two 1− k uncertainties are then fully compatible.

The nighttime ∆T data are characterized by values of µ and σ smaller than 1 K, with minimum values in the lower troposphere

from 0 km to 5 km. It is indeed in the lower troposphere, where σ is ≈ 0.6 K, i.e. 0.1 K larger than the 0.5 K requirement
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(a) (b)

Figure 10. Nighttime bias and STD of ∆T over the period July 2017-December 2018. In fig.10a, on each box of 200 m vertical span, the

central mark indicates the median, and the left and right edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers

extend to the most extreme data points not considered outliers, and the outliers are plotted individually and shown by the ’+’ symbol. Fig.10b

shows the vertical profile of standard deviation (thick red) calculated over the altitude-decreasing number of ∆T points (thin green).

for data assimilation into the numerical weather prediction COSMO forecasting system (Fuhrer et al., 2018; Klasa et al.,

2018, 2019). In order to achieve a successful assimilation of Tral into COSMO, the overall impact of the assimilation shall

correspond to an improvement of the forecasts without increasing the forecasts’ uncertainty. Assimilation of high-SNR, well-

calibrated Tral into numerical models leads to the improvement of the forecasts. In the study by Leuenberger et al. (2020), the

authors assimilate, amongst other data, temperature and humidity profiles from RALMO showing the beneficial impact on the5

precipitation forecast over a wide geographical area.

5.2 Daytime temperature statistics

During daytime, the retrieved temperature profiles are limited in range to about 6 km. Figure 11a and 11b show the bias ∆T and

the standard deviation σ, respectively. The ∆Tmax, µ, σ and Nmax of the daytime ∆T over the lower troposphere (0.5−6 km)

are 0.25 K, 0.02± 0.1K, 0.62± 0.03K and 212, respectively. The data availability goes rapidly to zero above 5 km.10

The daytime Tral profiles have been corrected for the solar background by f(Φ), which proves to be very efficient in removing

the noon bias with respect to Tors. To ensure that the correction f(Φ) does not introduce any additional bias during the daily

cycle, we have compared Tral with the temperature calculated by the COSMO model. More than three months of clear-sky 24-
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(a) (b)

Figure 11. Daytime bias and STD of ∆T over the period July 2017-December 2018. In fig.11a, on each box of 200 m vertical span, the

central mark indicates the median, and the left and right edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers

extend to the most extreme data points not considered outliers, and the outliers are plotted individually and shown by the ’+’ symbol. Fig.11b

shows the vertical profile of standard deviation (thick red) calculated over the altitude-decreasing number of ∆T points (thin green).

hour Tral−Tcos differences have been collected yielding a mean daily cycle at the level 1.4 km to 1.7 km a.s.l.. The comparison

in Fig. 12 shows that RALMO does not suffer any systematic daily Φ−dependent bias.

Figure 12. RALMO-COSMO-1 temperature at 1400-1700 m asl during Sept. 2017-Jan. 2018. The green shading accounts for the k = 1

standard deviation of the differences. The dashed vertical lines show the sunrise and sunset time, the mean daily cycle shows that no artefacts

are introduced by the application of f(Φ) during daylight.
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6 Seasonality study

In order to study the seasonal effects on µ and σ, the ∆T dataset has been divided into seasons. The four seasons are defined as

it follows: summer, from 1st of June to 30th of August, autumn from 1st September to 30th of November); winter from 1st of

December- 15th of March; Spring from 16th of March to 31st of May. Because of the less favourable conditions in winter due

to precipitation and low clouds, only few temperature profiles are available during this period. Additionally, during winter 2018,5

from January till mid-March, RALMO measurements have been stopped for about 80% of the time due to maintenance works.

The results are summarized in Tables 6 and 7 in terms of µ, σ and maximum availability Nmax over the lower tropospheric

range 0 km to 6 km for daytime and over 0 km to 10 km for nighttime. With the only exception of winter, the other seasons

have enough profiles to perform a statistical analysis and to draw quantitative conclusions about the contribution of each season

to the overall values µ and σ.10

6.1 Seasonal daytime temperature statistics

The seasonal daytime µ and σ profiles are analyzed to understand if sources of systematic errors other than SB affect the

retrieved Tral. The seasonal profiles are shown in Fig. (13) and (14) and summarized in Table 6. Due to the less favourable

weather conditions and the maintenance works, the winter statistics count only 8 profiles. The statistical characterization of the

winter dataset can then only be qualitative. Summer and spring are the seasons with the minimum values of Φ at noon, during15

these two seasons Tral is most affected by SB. If uncorrected for f(Φ), the noon Tral suffers a negative mean bias of about

2 K at all heights (not shown here). Summer counts more than twice the number of cases in the spring dataset, nevertheless

for both seasons the values of µ are compatible with a zero bias within their uncertainties (both σ = 0.64 K). Despite the less

favourable weather conditions compared to spring and summer, autumn is the season with most cases and this is because there

are two autumn seasons in the dataset. Likewise spring and summer, also autumn has µ compatible with the zero-bias within20

its uncertainty. Through the four seasons the mean σ spans from 0.4 K to 0.65 K.

Table 6. Seasonal bias and TD at 12 UTC

season µ [K] σ [K] Nmax

0.5− 6 km a.s.l.

summer +0.03 0.64 74

autumn +0.005 0.61 102

winter +0.24 0.41 8

spring -0.03 0.64 31
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Fig. (13) suggests that Tral is not affected by any obvious systematic error (µ' 0 ∈ [−σ,+σ]) and no seasonal cycle appears

in the statistics. From the perspective of the statistical validity of the studied data, any sub-sample chosen randomly from the

total Tral dataset can be described by the same µ and σ that characterizes ∆T .

Differently from the Fig. (13), the σ profiles in Fig. (14) show different behaviors in summer-autumn and in winter-spring.

The σ-profiles in Figs. (14a) and (14b) undergo a decoupling between the lower and upper part of the profile with inversion5

point slightly higher in autumn. An increase in σ with height is something expected and can be explained with the decreased

data availability and the decreased SNR due to the increasing distance from the laser emission. However, the abrupt increase

in spread at ≈ 3 km in summer and at ≈ 4.5 km in autumn is more related to the atmospheric dynamics than to the SNR.

In summer, the transition between the boundary layer and the free troposphere is a region of high variability in terms of

temperature and humidity. The alternating cold downdrafts and warm updrafts engendered by the overall fair weather conditions10

and the continuous development of thermals through the boundary layer (Martucci et al. (2010)) cause a large variability of

Tral at ≈ 3 km, which translates into large σ-values. In autumn, the thermal activity at the top of the boundary layer is less

pronounced than in summer, on the other hand, a temperature inversion linked to the formation and dissipation of stratus

clouds above Payerne occurs at ≈ 4.5 km causing larger discrepancies in the comparison with Tors.

6.2 Seasonal nighttime temperature statistics15

At nighttime, f(Φ) has no impact on the temperature retrieval and the seasonal statistics can reveal sources of systematic error

other than the SB causing |µ|> 0. The separation into seasons, helps understanding if the overall zero-bias shown in Fig. 10

hides seasonal non-zero biases that cancel out when combined in the full dataset. Compared to daytime cases, the availability

of the nighttime dataset is higher including the one of winter cases that allows now to perform a statistical analysis. Indeed,

the number of cases in the nighttime dataset is 245, versus 215 in the daytime. All seasonal µ values are compatible with the20

zero bias along the troposphere within [−σ,+σ]. Likewise the daytime seasonal statistics, also the nighttime do not reveal any

obvious source of systematic error. The mean µ and σ in the troposphere are summarized in Table 7.

Table 7. Seasonal bias and TD at 00 UTC

season µ [K] σ [K] Nmax

0.5− 6 km a.s.l.

summer +0.11 0.66 77

autumn +0.02 0.65 118

winter +0.18 0.60 19

spring +0.08 0.64 31

The nighttime cases undergo different dynamics than the daytime cases. The absence of solar radiation removes almost all

convection in the boundary layer and minimizes the variance of the temperature at the top of the nocturnal and residual layers.
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(a) (b)

(c) (d)

Figure 13. Seasonal daytime bias of ∆T over the period July 2017-December 2018. The boxplot characteristics are the same as in Fig. 10

and Fig. 11, but restricted over the seasonal periods. Based on the definition of seasons provided in the text, panel 13a shows the summer

data, panel 13b shows the autumn data, panel 13c shows the winter data, panel 13d shows the spring data.
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(a) (b)

(c) (d)

Figure 14. Seasonal daytime STD of ∆T over the period July 2017-December 2018. The vertical profiles of standard deviation (thick red)

are calculated over the altitude-decreasing number of ∆T points (thin green). Based on the definition of seasons provided in the text, panel

14a shows the summer data, panel 14b shows the autumn data, panel 14c shows the winter data, panel 14d shows the spring data.
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(a) (b)

(c) (d)

Figure 15. Seasonal nighttime bias of ∆T over the period July 2017-December 2018. The boxplot characteristics are the same as for Fig. 10

and Fig. 11, but restricted over the seasonal periods. Based on the definition of seasons provided in the text, panel 15a shows the summer

data, panel 15b shows the autumn data, panel 15c shows the winter data, panel 15d shows the spring data.
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Consequently, no sharp increase of σ is detected at specific levels during any of the seasons. The σ−profiles increase in value

with height as a response to the drop of the SNR due to the distance from the emission.

7 Measurement of supersaturation in liquid stratus clouds

A reliable real-time measurement of the temperature in the troposphere along with a reliable measurement of the humidity

allows to calculate trustworthy profiles of relative humidity. A validation of the relative humidity measured by RALMO has5

been performed by Navas-Guzmán et al. (2019). The authors have characterized the relative humidity (RH) measured by

RALMO using a similar procedure like for the temperature, finding that in the first 2 km the RH suffers a mean systematic and

random error of ∆RH = +2%± 6 % RH.

When studying cases of cloud supersaturation a great accuracy is needed, especially when the supersaturation is assessed

at the cloud base or inside a fog layer where the supersaturation is at its onset value. Previous studies (Hudson et al. (2010);10

Martucci and O’Dowd (2011)) show that for different types of liquid stratus clouds forming within continental (polluted) or

marine (clean) air masses, the characteristic values of supersaturation span between 0.1 % to > 1 %, respectively. In this

sense, we cannot use here the RH measurements quantitatively, as the RH relative error is bigger than the expected maximum

supersaturation. However, this limitation does not prevent to perform a qualitative study about the occurrence of supersaturation

in liquid clouds. The two case studies presented in Figures 17 and 18 show the temporal evolution of the RH and the total back-15

scattering ratio (BSR) for two liquid stratus clouds. The RH time series shown in the Figures 17a and 18a have maxima

co-located in time and space with the maxima of the BSR (Figs. 17b and 18b), i.e. where the actual stratus clouds are located.

A LIDAR cannot measure through a fully developed liquid cloud as the laser becomes totally extinct after 2-3 optical depths

above the cloud base (≈ 100−150 m penetration). For this reason, normally, the retrieved profiles from a ground-based LIDAR

refer strictly to the lower part of the stratus cloud. The cloud cases presented here, are not completely opaque stratus and so they20

allow a partial LIDAR return from higher altitudes above the cloud. In Fig. 17b, the observed maxima along the RH profiles

for the case of 15th of November 2017 occur during 21:30-22:00 UTC and between 860 m and 950 m. The RH maxima during

these temporal and spatial intervals reach RH= 102.16% at 21:30 UTC and RH= 102.53% at 22:00 UTC, by correcting the

RH for its mean bias in the first 2 km (∆RH = +2%), the resulting supersaturation is in the range ss= 0.16− 0.53%. These

values of ss are typical for continental warm stratus cloud and, although qualitative, fit very well the expected microphysical25

scenario.

The case of the 20th of May 2018 in Figure 18 shows the convective growth of the boundary layer above Payerne from the

late morning till the central hours of the day. At the top of the developing convective boundary layer, fair-weather cumulus

clouds form starting from very low altitude above the ground before 11:00 UTC and reaching≈ 2 km between 14:00 UTC and

15:00 UTC. The RH (Fig. 18a) reach local maxima of supersaturation correspondingly to the maxima in BSR (Fig. 18b). By30

performing the same qualitative analysis as for the previous case, the supersaturation is observed at 11:30 UTC between 830 m

and 1160 m asl (ss= 100.43%− 102.32%) and at 14:00 UTC between 1400 and 1520 m asl (ss= 102.25%− 102.93%).
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(a) (b)

(c) (d)

Figure 16. Seasonal nighttime STD of ∆T over the period July 2017-December 2018. The vertical profiles of standard deviation (thick red)

are calculated over the altitude-decreasing number of ∆T points (thin green). Based on the definition of seasons provided in the text, panel

16a shows the summer data, panel 16b shows the autumn data, panel 16c shows the winter data, panel 16d shows the spring data.
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(a)

(b)

Figure 17. Case of 15 Nov. 2017. Top panel: RH supersaturation in a liquid stratus cloud (thick contours show the zone in the cloud where

supersaturation occurs). Bottom panel: total backscatter ratio (contour lines show zones where the cloud has the largest backscatter ratio).

Correcting the RH for its mean bias in the first 2 km, the resulting supersaturation is achieved only at its high-end for the first

event with ss= 0.32% and results in the range of values ss= 0.25%− 0.93% for the second event.

8 Conclusions

More than 450 LIDAR temperature profiles have been compared to temperature profiles measured by the reference radiosound-

ing system at Payerne at 11 UTC and 23 UTC during 1.5 years (July 2017−December 2018). The reference radiosounding5

systems (SRS-C50 and Vaisala RS41) have been validated by the GRUAN-certified Vaisala RS92 sonde in the framework of

the quality assurance programme carried out at Payerne. A semi-empirical modification has been developed and applied to the

background correction procedure to reduce a daytime bias. The temperature profiles retrieved from RALMO PRR data show

an excellent agreement with the reference radiosounding system during both daytime and nighttime in terms of maximum bias

(∆Tmax), mean bias (µ) and standard deviation (σ). The ∆Tmax, µ and σ of the daytime differences ∆T = Tral−Tors over the10

tropospheric region 0.5−6 km are 0.28 K, 0.02± 0.1K and 0.62± 0.03K, respectively. The nighttime ∆T dataset is character-
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(a)

(b)

Figure 18. Case of 20/May/2018. Top panel: RH supersaturation in a liquid stratus cloud (thick contours show the zone in the cloud where

supersaturation occurs). Bottom panel: total backscatter ratio (where the cloud has the largest backscatter ratio).

ized by a mean bias µ= 0.05±0.34 K and σ = 0.66±0.06 K, while ∆T is smaller than ∆Tmax = 0.29K at all heights over the

tropospheric region 0.5−10 km. We further compared the lidar data against model output and found no daytime dependence of

the bias nor the standard deviation and conclude that essentially the same data quality is achieved for day and night.A season-

ality study has been performed to help understanding if the overall daytime and nighttime zero-bias hides seasonal non-zero

biases that cancel out when combined in the full dataset. The study reveals that all independent seasonal contributions of µ5

are compatible with the zero-bias within their uncertainty. In general, the seasonal datasets confirm the fact that sub-sampling

the total ∆T dataset, the sub-samples can still be described by the same µ and σ. The validated Tral has then been used to

calculate the relative humidity using the humidity profiles also provided by RALMO. The relative humidity product has been

validated in a parallel work by Navas-Guzmán et al. (2019) that shows that in the first 2 km the RH suffers a mean systematic

and random error of ∆RH = +2%± 6 % RH. The validated RH data have been used to perform a qualitative study to assess10

the supersaturation of water vapour in liquid stratus clouds measured by RALMO. Two cases have been investigated and the

observed supersaturation values, once corrected for the RH systematic error, found compatible with the values characteristics
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for continental liquid stratus clouds (ss= 0.16− 0.53%). The possibility to study supersaturation is critical to disentangle the

microphysics of liquid clouds and better predict the amount of liquid water within the cloud.

We have shown that RALMO temperature profiles meet the OSCAR breakthrough uncertainty requirement of 1 K for high res-

olution NWP (https://www.wmo-sat.info/oscar/requirements). Combined with the water vapor measuements the Raman lidar

has a high potential to improve NWP through data assimilation as we have demonstrated recently (Leuenberger et al., 2020)5

and MeteoSwiss plans to assimilate the Raman lidar in Payerne operationally in the near future.
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