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Abstract. In this paper, we present two micro rain radar-based approaches to discriminate between stratiform and convective

precipitation. One is based on probability density functions (PDFs) in combination with a confidence function and the other

one is an artificial neural network (ANN) classification. Both methods use the maximum radar reflectivity per profile, the

maximum of the observed mean Doppler velocity per profile and the maximum of the temporal standard deviation (±15min)

of the observed mean Doppler velocity per profile from a micro rain radar (MRR). Training and testing of the algorithms5

were performed using a two year data set from the Jülich Observatory for Cloud Evolution (JOYCE). Both methods agree well

giving similar results. However, the results of the ANN are more decisive since it is also able to distinguish into an inconclusive

class, in turn making the stratiform and convective classes more reliable.

Copyright statement. TEXT

1 Introduction10

Evaporation of precipitation below cloud base is a crucial process in the water- and energy cycle. Precipitation can be of

two clearly distinguishable types – stratiform and convective. Both types originate from different clouds (Houze Jr, 2014).

Stratiform precipitation mainly falls from nimbostratus whereas convective precipitation originates from active cumulus and

cumulonimbus clouds. These cloud types may occur separately or entangled in the same cloud complex.

15

The parameterization of the precipitation evaporation process is highly empirical in current general circulation models (Rot-

stayn, 1997). Evaporation of precipitation generates cold pools that lead to convective organisation (Schlemmer and Hoheneg-

ger, 2014) and Tropical storms (Pattnaik and Krishnamurti, 2007); it is highly relevant for boundary-layer humidity (Worden

et al., 2007) and subsequently for the Tropical general circulation (Bacmeister et al., 2006). However, also in the midlatitudes,

precipitation evaporation is an important factor in the water cycle (Morrison et al., 2012) and the simulated water cycle pro-20
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cesses are highly sensitive to the empirical parameters and assumptions.

In order to improve the parameterization of evaporation from convective rain a big data set of convective rain cases is needed to

generate robust statistics. Since it is a large effort to manually discriminate between stratiform and convective cases, automated

algorithms were developed.5

In previous approaches, stratiform and convective rain are separated based on the rain drop size distribution measured by

a disdrometer (Caracciolo et al., 2006; Thompson et al., 2015; Ghada et al., 2019). Precipitation was also classified using radar

images and radar wind profiler data (Rosenfeld et al., 1995; Williams et al., 1995; Tokay and Short, 1996; Tokay et al., 1999;

Yang et al., 2013). Deng et al. (2014) classified convective precipitation based on thresholds of the radar reflectivity and the10

gradient of accumulative radar reflectivity retrieved from a vertically pointing cloud radar. Geerts and Dawei (2004) used a de-

cision tree to separate different precipitation types by means of cloud radar variables. Additionally, discrimination algorithms

using an ANN were developed (Yang et al., 2019; Ghada et al., 2019) . The ANN approach of Yang et al. (2019) is based on

ground-based Doppler Radar observations. Lazri and Ameur (2018) combined a support vector machine, ANN and random

forest to improve the stratiform convective classification using spectral features of SEVIRI data. Jergensen et al. (2020) classify15

thunderstorms into three categories: supercell, part of a quasi-linear convective system, or disorganized using radar data in a

machine learning approach.

In summary, several approaches such as ANN, fuzzy logics, or decision trees based on different instruments such as dis-

drometer, cloud radar, precipitation radar, or radar wind profiler were developed in the past. In this paper, two methods are20

developed which classify rain as stratiform or convective event based only on MRR observations to enable a wide spread and

straightforward usage for ground-based remote-sensing sites.

2 Instrumentation

2.1 Supersite JOYCE

In recent years, the Jülich Observatory for Cloud Evolution (JOYCE1) was equipped with a combination of synergistic ground-25

based instruments (Löhnert et al., 2015). JOYCE is situated at 50◦54′31′′N and 6◦24′49′′E with an altitude of 111 m MSL.

In 2017 JOYCE was transformed into a Core Facility (JOYCE – CF) funded by the DFG (Deutsche Forschungsgemeinschaft)

with the aim of high quality radar and passive microwave observations of the atmosphere. The supersite operates a variety of

ground-based active and passive remote sensing instruments for cloud and precipitation observations, for example: X, Ka, and

W-Band radars, ceilometers, a Doppler wind lidar, an atmospheric emitted radiance interferometer (AERI), a Sun photometer,30

disdrometers, several radiation measurement systems, as well as an MRR. The latter is the main instrument in this study and

1JOYCE webpage: http://cpex-lab.de/cpex-lab/EN/Home/JOYCE-CF/JOYCE-CF_node.html, last accessed: 2020-12-01
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is explained in detail in the following sub-section. The data used in this study was gathered in 2013 and 2014. The data from

2013 covers the entire year and was used to train the algorithms (training data set). The data from 2014 covers almost the entire

year apart from February. It is a completely independent data set and is used as test data set for the algorithms. In 2013 and

2014, 471 and 683 hours of rain were observed, respectively.

2.2 Micro rain radar5

The micro rain radar (MRR) which is built by the Metek (Meteorologische Messtechnik GmbH) company, is a compact FM-

CW (frequency modulated-continuous wave) Doppler radar operating at 24 GHz (Peters et al., 2002). The MRR at JOYCE

(in 2013 and 2014) is an MRR-2 system operating with 32 range gates. The lowermost range gates (number 0, 1 and 2) up to

200m are affected by near-field effects and the last range gate of 3100m is too noisy. These range gates are usually omitted

according to Maahn and Kollias (2012). Hence, 28 range gates from 300 to 3000 m remain for the analyses in this study. The10

vertical and temporal resolution amounted to 100 m and 1 min, respectively. The MRR data was processed according to Peters

et al. (2005). The instrument was zenith pointing and measured the radar Doppler spectrum from which the mean Doppler

velocity (vD) were derived. The radar reflectivity factor (Z) is derived via integrating over the drop size distribution according

to Peters et al. (2005).

15

3 Stratiform convective discrimination

3.1 Convection indices

Several weather indices can be used to describe the stability of the atmosphere (Kunz, 2007). Three indices that are based

on thermodynamic profiles are described in the following. All give a hint on the probability of convection based on COSMO

(Consortium for Small-scale Modeling) EU model data. COSMO-EU has a horizontal resolution of 7 km and a vertical reso-20

lution between around 60 m and 370 m below 3 km. The temporal resolution amounts to 1 h. The weather index total totals is a

combination of the vertical totals (V T ) and cross totals (CT ). The V T is the temperature (ϑ in ◦ Celsius) difference between

850 hPa and 500 hPa while the CT is 850 hPa dewpoint (τ ) minus the 500 hPa temperature:

TT = V T +CT

= (ϑ850−ϑ500)+ (τ850−ϑ500). (1)25

The higher the TT , the more probable is convection.

The second index, named KO index (Andersson et al., 1989), describes the potential instability between lower and higher

levels of the atmosphere (at 1000 hPa, 850 hPa, 700 hPa, and 500 hPa). It is thus based on the pseudo-potential temperatures θe:

KO = 0.5(θe,700 + θe,500− θe,1000− θe,850). (2)30
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Figure 1. Weight of the meteorological and radar-based convection criteria: total totals (TT ), convection index (KO), soaring index (S),

maximum of the reflectivity (Zmax) per profile, maximum of the Doppler velocity (vD,max) per profile and the maximum (per profile) of the

temporal standard deviation of the Doppler velocity (σvD,max) within a ±15min interval.

The lower the KO index the higher the potential of convection.

The soaring index2 (S) is intended to be a tool in soaring and sporting aviation because it gives a hint on thermal lift and

hence on instability. It is defined as:

S = ϑ850−ϑ500 + τ500− (ϑ700− τ700). (3)5

The higher the S index the higher the probability of convection.

3.2 Convection score

First, a convection score to classify three types of precipitation labelled as stratiform, convective and inconclusive, is defined

by applying a threshold range to six different variables. Three variables are based on thermodynamic profiles (TT , KO, S)

and three are based on the MRR observations. Specifically, the used MRR variables are: the maximum of reflectivity (Zmax)10

per profile, maximum of the mean Doppler velocity (vD,max) per profile and the maximum (per profile) of the temporal standard

deviation (±15min) of the mean Doppler velocity (σvD,max). The profile maxima are calculated between ground and 3 km.

It is expected that larger rain drops are usually caused by convective precipitation (Niu et al., 2010) which leads to higher Z

and vD values, respectively. Furthermore, stratiform precipitation is expected to be less variable over time whereas convective

precipitation results in a larger standard deviation of vD over time. It is assumed that ± 15 min is a reasonable time span for15

classification of rain events. If the rain event is shorter than 30 min (±15min) the variability is determined over this shorter

period. The maxima of the height dependent Z, vD and σvD are used to assign the vertical properties to profile properties. In

case of cold stratiform rain there might be a clearly defined melting layer. The so-called radar ’bright band’ is indicated by

erroneously high reflectivity values Z in the layer of melting ice particles which force the detection to be convective. There-

fore, two other variables (vD and σvD) are chosen which are not affected by the melting layer and both will counteract the false20

2http://www2.wetter3.de/soaring_index.html, last accessed: 2020-12-01
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classification and force the retrieval to classify stratiform.

Different weightings are assigned to the six variables as visualized in Fig. 1. Whenever a variable exceeds a convection

threshold range (or falls below in case of KO index), the weight to be convective increases. The
::
A

:::::::
detailed

:::::::::
description

:::
of

::
the

:::::
value

:::::
range

:::
of

:::::::::
convection

::::::
indices

::::
such

::
as
::::
TT

:::
and

::::
KO

::
is
:::::
given

:::
by

:::::::::::
(Kunz, 2007)

:
.
:::
The

::::::::
threshold

:::::
range

::
of
:::

the
:::::::::::

MRR-based5

:::::::
variables

::
is
::::::::::
determined

::::::::::
empirically.

::::
For

:::
this

::::::::
purpose,

:::
the

::::::::
variables

::::
were

:::::::
closely

::::::::
examined

::::
and

:::::::
adjusted

:::
for

::::::
clearly

:::::::
evident

:::::
cases.

::::
The weightings of all variables are summed up resulting in the convection score

:::::
which

::::::
ranges

::::
from

::
0
:::
to

::
10. The

application of a smooth linear threshold range of weights between stratiform and convective is more realistic and leads to

a more homogeneous distribution of the convection score compared to using strict binary thresholds. By using six variables

the classification is more robust against false classifications than those based on one single variable. The MRR-based variables10

have a stronger weighting than the model-based variables due to their smaller uncertainties
:::::::::::
model-based

:::::::
variables

:::::
have

:::::
lower

:::::::::
weightings

:::::::
because

::::
they

:::
are

:::::
based

::
on

::::::::::
temperature

::::
and

:::::::
humidity

:::::::
profiles

::::
from

:::
the

:::::::
nearest

:::::::::::
COSMO-EU

:::::
model

::::
grid

:::
cell

::::::
which

:::
may

:::::
differ

::::::::
crucially

::
in

:::::::
whether

:
it
::
is

:
a
:::::::::::
precipitating

::
or

:
a
::::::::::::::
non-precipitating

::::
grid

::::
cell.

:::::::::
Therefore,

:::
the

:::::
model

::::::
derived

::::::::
measures

:::::
(TT ,

::::
KO,

:::
and

:::
S)

::::
have

:::::
lower

::::::::
weights,

::::::
because

:::
the

:::::::::
measured

:::::
MRR

:::::::
variables

:::
are

:::::
more

::::::::::
trustworthy

::::
than

:::
the

:::::::
modeled

:::::
ones. σvD,max

is assigned to have the highest weight because the variability of the rain intensity is assumed to be the best criterion for the15

stratiform-convective discrimination.

Figure 2 illustrates the distribution of the convection score. Whenever a convection score is less than 3 the profile is assigned to

be stratiform. Values between 3 and 5.5 are stated as inconclusive. Values larger than or equal to 5.5 are assigned as convective.

These strict thresholds enable a very certain classification with a low amount of false classifications. The inconclusive zone20

between stratiform and convective indicates a transition between both. The thresholds of 3 and 5.5 were chosen to confidently

separate two classes which are mainly free of false classified rain events resulting in a confident data set for training the algo-

rithms. This approach replaces a manual inspection by visual classification of each single profile. However, several rain events

:::::::
(approx.

:::::
10%)

:
were reviewed by eye to verify a correct classification. That means randomly selected cases were checked if

the convection score worked as intended and the synoptic situation was reviewed.25

At this step, each profile is either classified as stratiform, inconclusive, or convective using the convection score and this

assignment is stated as true state to train the algorithms explained below. Since the motivation of this work is to classify the

precipitation type and its confidence purely based on the MRR observations the following methods based on PDFs or ANN

are developed. Since the PDF and ANN method are based on training, the MRR data has to be free of extreme or unphysical30

values. Therefore the MRR data (input) is filtered. Only measurements with Zmax between -10 and 50 dBZ, vD,max between 0

and 10ms−1 and σvD,max between 0 and 2.5ms−1 are taken into account.

Here, the question might arise why inconclusive profiles should be learned by algorithms. In fact, rain events can be am-

biguous and cannot be classified into stratiform or convective, especially stratiform rain moving towards mountainous area35
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Figure 2. Relative frequency of occurrence of the convection score.

Figure 3. Frequency of occurrence of rain rate at 300m height for stratiform (blue) and convective (red) rain cases.

which causes convection. On the other hand, vertical air motion and turbulence influence vD,max and might shift stratiform

profiles towards higher convection scores and convective profiles to lower scores. A class with inconclusive profiles accounts

for the mentioned features and avoids misclassifications into the stratiform and convective classes, respectively.

The frequency distribution of rain rate at 300m height is shown in Fig. 3. The precipitation cases are separated by the convec-5

tion score. The stratiform precipitation mostly causes low rain rates below 1mm h−1 whereas high rain rates above 15mm h−1

are very rare. In contrast, high rain rates above 15mm h−1 are caused by convective precipitation. It has to be considered that

the absolute number of occurence differ from Fig. 2 because precipitation disappears due to evaporation on the way through

the atmosphere and is not reaching 300m which is the lowest available MRR height.

10

6



Figure 4. Overview about the one-dimensional (1D:d,e,f), two-dimensional (2D:g,h,i), and three-dimensional (3D:j) probability density

functions for the maximum radar reflectivity Zmax per profile (d), the maximum of the observed Doppler velocity vD,max per profile (e), the

maximum of the temporal standard deviation of the observed Doppler velocity σvD,max per profile (f), and each 2D combination of these three

variables (g-i). (j) shows the 3D scatterplot of the three variables with the contour of the corresponding confidence values in each plane. (a-c)

show the confidence function of the corresponding 1D distributions. The dashed lines represent the thresholds of a confident classification

with values beyond -0.9 and 0.9, whereas values in between are indicated by a grey area (g-i). Stratiform or convective profiles are indicated

by blue or red colours and by low or high values of the confidence functions, respectively.
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3.3 Rain classification method based on PDF

This algorithm was developed based on the classification algorithm by Liu et al. (2004) which was originally developed for the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol cloud discrimination (Winker et al.,

2009). It shows that the confidence of a discrimination algorithm can be improved by using three measurement variables in-

stead of only one or two. Later on, Liu et al. (2009) improved the algorithm by using five instead of three variables. Here, this5

separation approach is modified for MRR variables to classify precipitation into stratiform or convective.

The confidence function is defined as:

f(X) =
nc(X)−ns(X)

nc(X)+ns(X)
(4)

=
Pc(X)−Ps(X)/Ns/Nc

Pc(X)+Ps(X)/Ns/Nc
(5)10

with ni being the number of occurrences of class i (stratiform s or convective c) having attribute X and Ni the total number of

events for the ith class. P is the PDF of X which can be multidimensional X = [X1, . . . ,Xm]. The used bin size of the distri-

butions of Z, vD,max, and σvD,max amounts to 0.5 dB, 0.125ms−1, and 0.025ms−1, respectively. The value of f is bounded by

[-1,1]. The lower the value, the more probable the MRR-observed rain profile is of stratiform nature. Values of exactly −1 are

treated as certainly stratiform and values of +1 correspond to certainly convective profiles. Values around 0 indicate uncertain15

classifications. On the basis of the return value of f a classification and a measure of the confidence of this classification can be

derived. The sign of f determines the class assignment and the absolute magnitude of f assigns the confidence to the classifi-

cation. In the following the PDFs are smoothed using a Gaussian filter with a standard deviation of 3 bins in each dimension to

account for gaps in the PDF due to missing variable combinations in the training data. Applying such a Gaussian filter makes

the PDF method more robust.20

Figure 4 (d), (e) and (f) show the one-dimensional distribution of the three MRR variables (Zmax, vD,max and σvD,max) and

their corresponding confidence functions f (a,b,c). Here, the stratiform and convective precipitation profiles are distinguished

by the convection score explained above. However, Zmax at values between 5 and 25 dB shows a region of overlap between

both classes resulting in low magnitude of f ranging between−0.8 and 0.8. Zmax below 5 dBZ or above 25 dBZ can be reliably25

classified as stratiform or convective, respectively (Fig. 4 d). The distribution of vD,max (Fig. 4 e) as well as σvD,max (Fig. 4 f)

show significant overlap regions between stratiform and convective profiles between 2.5 and 5.5m s−1 and between 0.4 and

1.1m s−1, respectively. This results in absolute magnitudes of f below 0.8 for both vD-related variables. The overlap area of

stratiform and convective profiles is smallest for σvD,max but since vertical air motion and turbulence influence vD,max, it can not

serve as stand-alone value. In conclusion, a classification algorithm based on only one of the mentioned MRR variables is not30

able to unambiguously distinguish between stratiform and convective precipitation indicated due to existing overlap regions.

The ambiguity can be reduced by adding a second dimension to the PDF. Figure 4 (g), (h) and (i) illustrate the distribution of

8



Figure 5. Comparison of the mean stratiform convective discrimination failure rates for two data sets, the training data set from 2013 (light

grey) and the test data set from 2014 (dark grey). The shown failure rate is separated for PDFs with increasing dimension: 1D is based on

only one MRR variable, 2D is a two dimensional PDF based on two MRR variables and, 3D is a three dimensional PDF based on three MRR

variables, as mentioned in the legend.

each two-dimensional (2D) combination of the three MRR-based variables. The dashed lines indicate the f values of−0.9 and

0.9. The values in between represent the overlap where no unambiguous assignment can be made (grey area). The peaks of the

two classes are clearly separated for all three variable combinations (g,h,i). Nevertheless, there are still observations leading to

an ambiguous assignment. In principle, these ambiguous assigned profiles with f values between −0.9 and 0.9 could be stated

as inconclusive. However, the PDF algorithm is not trained to classify inconclusive cases. A quantitative estimation of how5

well the discrimination works is given at the end of this sub-section.

By using all three mentioned MRR-based variables a three-dimensional (3D) PDF can be created which is visualized in

Fig. 4 (j). It is indicated that both stratiform and convective profiles are clearly separated with a very small region of over-

lap. The quality of the 3D PDF-based classification in contrast to 2D and 1D can be explained in terms of failure rates Rf (Liu10

et al., 2009):

Rf(X) =
|f(X)− 1|
−2

. (6)

As explained above the performance of the classification is limited by the amount of overlap in the PDFs. The smaller the

overlap, the more clear is the separation between stratiform and convective profiles. Figure 5 presents the mean failure rate for

the 1D-, 2D-, and 3D PDFs of the training data set 2013 and the independent test data set 2014. The training data was used to15

build the PDF for the calculation of f . For each profile from the test data, the according f value can be read out from the trained

confidence function. To account for measurement uncertainties or turbulence influencing all radar variables, the f underlying

PDFs are smoothed using a Gaussian filter with a standard deviation of 3 bins in each dimension corresponding to a Zmax of

1.5 dB, vD,max of 0.38ms−1, and σvD,max of 0.08ms−1. In Fig. 5 it is obvious that a reduction of the overlap by adding another

attribute (MRR-based variable) results in smaller failure rates. Highest failure rates result from the 1D-PDFs. The mean failure20

rate for the 3D-PDF based rain classification discrimination for training and test data is less than 1 % and 3 %, respectively.
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Figure 6. Diagram of the neural network with an input layer consisting of three nodes (green) according to the three MRR-based variables,

two hidden layers with six nodes each (blue) and the output layer with one node (red).

This is much lower than the failure rates of 1D and 2D PDFs for stratiform-convective discrimination, which range between 2

to 7 % for the training data set and 3 to 15 % for the test data set.

It was shown that the algorithm performance could be improved by adding more variables. However, the amount of inde-

pendent variables only obtained by MRR is limited. Z calculation is based on the drop number concentration. Other MRR5

variables such as rain rate or liquid water content are also based on drop number concentration and are hence not independent

from Z and would not add any more information to the discrimination algorithm.

3.4 Method based on an artificial neural network (ANN)

A classification of rain as stratiform, convective or inconclusive can also be based on an ANN. The ANN model used here10

::::::
created is a multi-layer perceptron approach implemented using the open source machine learning library for research and

production TensorFlow3. It is trained with Zmax, vD,max and σvD,max from the training data set (2013). The ANN model (Fig. 6)

consists of 3 input nodes (Zmax, vD,max and σvD,max) and is further composed of two hidden layers with 6 nodes each, and

one output node to learn how to classify rain events according to the true classification made by the convection score.
::::
With

::
the

:::::::
chosen

:::::::
number

::
of

::::::
hidden

::::::
layers

:::
and

::::::
nodes,

::::::::
nonlinear

:::::::::::
relationships

::::
can

::
be

:::::
better

::::::::::
represented

::::
and

:::
the

:::::
ANN

::::::
shows

::::
best15

:::::::::::
performance. Giving Zmax, vD,max and σvD,max as input to the ANN it will classify the rain event with probabilities to be

stratiform (labeled as −1), inconclusive (0), and convective (1). To finally classify the rain event the class with the highest

3TensorFlow: An end-to-end open source machine learning platform, https://www.tensorflow.org/, last accessed: 2020-12-01
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probability is stated to be the actual rain type.
:::
For

::::::::
example,

:::
the

:::::
ANN

:::::::
outputs

:::
the

:::::::::::
probabilities

:::
0.7

:::
for

:::::::::
stratiform,

::::
0.2

:::
for

:::::::::::
inconclusive,

:::
and

:::
0.1

:::
for

:::::::::
convective.

:::::
Then

:::
this

::::::
profile

::
is

::::::::
classified

::
to

::
be

:::::::::
stratiform

::::
with

:::
the

::::
label

::::
−1. The model is trained for

500 epochs (iteration steps) and the training data is shuffled before each epoch. The algorithm Adam4 is used to optimize the

model. As activation functions relu (rectified linear unit) and softmax are used for the two hidden layers and the output layer,

respectively. Relu avoids negative output whereas softmax produces an output which is a range of values between 0 and 1,5

with the sum of the probabilities been equal to 1. As loss function the categorical cross-entropy is used to compute the cross-

entropy loss between the truth and the predictions. The cross-entropy is a measure of the difference between two probability

distributions. The accuracy of the neural network can be described in terms of how often the predictions equal the truth. The

ANN accuracy of the independent test data set (2014) amounts to 80%.

4Kingma, D.P. and Ba, J.: Adam: A Method for Stochastic Optimization, 2014. web: https://arxiv.org/abs/1412.6980, last accessed: 2020-12-01

11

https://arxiv.org/abs/1412.6980


Figure 7. Discrimination indices: Zmax (a,h), vD,max (b,i), σvD,max (c,j) and the convection score indicating the true rain type (d,k). MRR

reflectivity (e,l) and the rain classification based on the PDF method given by the confidence function (f,m) and based on the ANN (g,n). The

data points in the time series are coloured according to the convection criteria whether the values indicate stratiform or convective rain. Left

panels refer to the case study of 26 May 2013, right panels show 23 July 2013.

4 Results

After the successful development and evaluation of the classification algorithms, both the 3D-PDF-based and the ANN were

applied to two case studies. The first one was a rainy night on 26 May 2013 (Fig. 7 a-g). Figure 7 (e) shows the time–height

display of the radar reflectivity factor. The day began with rain from 00:00 UTC to 02:30 UTC. The rain fell homogeneously

with only small variations in Zmax (a), vD,max (b) and σvD,max (c). The calculated convection score (d) was very low which5

means that these rain events were stated to be stratiform. For this springtime rain events, the PDF (f) and ANN (g) method

produce very similar results and both agree with the true class given by the convection score.

The right panel of Fig. 7 shows the same quantities as on the left panel but for 23 July 2013. This case indicates convec-

tive rain falling between 15:00 UTC and 16:00 UTC. Zmax (h), vD,max (i) and σvD,max (j) and the calculated convection score10

12



are characterized by high values representing convective rain. Figure 7 (l) shows the radar reflectivity factor of the shower. The

PDF- and ANN method are in a very good agreement and classify each profile as convective in conformity with the convection

score (truth).

The performance of both algorithms over a whole year (test data year 2014) is illustrated in Fig. 8. It shows the relative5

frequency of occurrence of precipitation profiles that are defined by the convection score (truth) to be stratiform (a), inconclu-

sive (b), or convective (c). For the PDF method cases are stated as stratiform when the f value is lower than−0.9, inconclusive

when f is between−0.9 and 0.9, and convective when f is larger than 0.9. For the stratiform cases the PDF and ANN methods

classify most stratiform cases to be stratiform (84.7% and 96.1% for ANN and PDF, respectively, see Fig. 8 a). Only 15.3%

and 3.9%, respectively, are erroneously classified as inconclusive. These are cases with higher convection scores with averaged10

values around roughly 2.5 which is closer to the transition of convection scores larger than 3 that are stated as inconclusive. As

expected, neither ANN nor PDF misclassified true stratiform cases as convective. The performance of the classification of true

convective cases (c) is very similar. There are almost no completely misclassified cases and only a few percent of erroneously

inconclusive cases. Here the averaged convection scores are roughly 6 which means on the lower edge of the convective clas-

sification and close to the transition of convection scores of less than 5.5 that are stated as inconclusive. 85.8% and 98.1%15

(ANN and PDF) of the true convective cases are correctly classified as convective.

However, the most critical point is the classification of the true inconclusive cases (Fig. 8 b). Only 71% and 35.8% (ANN

and PDF) are correctly classified. That means that nearly 30% of ANN-based profiles and nearly 65% of PDF-based profiles

of all true inconclusive cases are classified as stratiform or convective. The ANN is performing better here. This is caused by20

the strict convection score discrimination which was stated as truth. In fact, these inconclusive cases might be classified as

stratiform or convective but the thresholds were chosen very strict to confidently separate two classes which are mainly free of

misclassified rain events. The averaged convection score of the false stratiform inconclusive cases (ANN) amounts to 3.6 and

of the false convective inconclusive amounts to 5 (Fig. 8 b). The erroneously stratiform and convective classified inconclusive

cases of the PDF method (25.9% and 38.3%) has averaged convection score values of 3.6 (stratiform) and 4.9 (convective).25

Apparently, these cases would be correctly classified in case of less strict convection score thresholds than currently used (3

and 5.5, see Fig. 2). It is expected to improve the ANN and PDF performances by gathering more data for algorithm training.

It has to be considered that the total amount of data is different for both methods. This is due to the fact that some combi-

nations of the three input variables do not appear within the training data causing gaps in the 3D-PDF. Those combinations30

cannot be classified but its amount is less than 0.2% for the 2014 test data set.
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Figure 8. Relative frequency of occurrences of stratiform, inconclusive and convective rain classification for both ANN (light pink) and

PDF (grey) method separated by the true class (a,b,c) based on the test data 2014. The true class is defined by the strict convection score

discrimination. The colored numbers denote the sample size. The numbers on top of each bar indicate the actual value.

5 Conclusions and outlook

In order to improve microphysical parametrizations within small-scale models one has to deal with large data sets. The pre-

sented rain type classification methods based on PDF and ANN algorithms are suited to process micro rain radar data from

long time seriesand outperform traditional convection score methods. The effort of creating a robust training data set without

unphysical data between both methods is similar and the application of both methods is straightforward. The main advantage5

of the ANN in contrast to the PDF method is that the ANN method was trained to directly classify inconclusive profiles which

leads to a lower amount of false classified profiles.

In a next step, evaporative cooling rates will be estimated for convective rain events to parametrize the cooling by means

of temperature, relative humidity and rain droplet number concentration. It is also planned to apply the algorithms to different10

ground-based remote-sensing sites that have long-term MRR observations to create stratiform-vs-convective rain event clima-

tologies. At present, the new MRR of the University of Leipzig5 is running 24/7. In the near future, the classification algorithms

will be applied operationally and will be improved with continuously gathered data.
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