Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation

By Andreas Foth, Janek Zimmer, Felix Lauermann, and Heike Kalesse

General comments:

This paper proposes to discriminate MRR measured rain patterns into stratiform, convective and inconclusive categories, based on the sole MRR observations. Therefore, it compares two dedicated approaches, i.e. Probability Density Functions or Artificial Neural Networks, to convection scores obtain using both MRR and COSMO model variables and defined and the reference classification.

The paper is of good interest, well written and easy to read. Overall, it carries the required information to understand the arguments developed but, although the methodology approaches are well described, sometimes the paper lacks necessary details and/or preciseness, especially concerning the rationale behind some choices.

Also, it appears that the article has already been through a review process and that the authors have provided a complete and significant response to the expert’s comments during this review.

Specific comments:

Convection score section 3.2:
- one could precise that the weighting factors were define to obtain a total score comprised between 0 and 10.
- more importantly, one must argument the choices made for the respective weight of those factors (ranging from 1 to 3) as well as the threshold values (3 and 5.5) chosen to make the classification.
- some discussion or references regarding the defined transition values for each variable would be useful (for example on what base is rain stratiform for $\sigma_{\text{vD, max}}$ below 0.8 and convective above 1.2 ?)
- P5, L 18: give an estimate of the number (or relative number in %) of inspected cases for verification of the classification effectiveness

ANN section 3.4:
- One could have expected some further discussion about the network architecture was it predefined through Tensor-Flow or did you have options of number of layers and number of nodes, and if so, how did define the network used.
- P 10, L 7 and 12: reading those two passages set some confusion on the actual node output in the process: a value between 0 and 1, or values of -1, 0, or 1. May be the text could make the understanding easier

Conclusions
Conclusions:

This paper introduces a comparison of two interesting approaches for self-standing MRR classification of rain between convective and stratiform. It is well written and easy to follow hence it should make a nice contribution and find good use in the community. Nonetheless, I believe that some arguments would benefit from more extensive justification and/or description of the rationale behind some set choices.

Thus, it is my recommendation that the paper be published after accounting for the requested minor revisions outlined.