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Abstract. A method to distinguish cloud thermodynamic phase from polarized Micro Pulse Lidar (MPL) measurements is 

described.  The method employs a simple enumerative approach to classify cloud layers as either liquid water, ice water, or 15 

mixed-phase clouds based on the linear volume depolarization ratio and cloud top temperatures derived from Goddard Earth 

Observing System, version 5 (GEOS-5) assimilated data.  Two years of cloud retrievals from the Micro Pulse Lidar Network 

(MPLNET) site in Greenbelt, MD are used to evaluate the performance of the algorithm.  The fraction of supercooled liquid 

water in the mixed-phase temperature regime (-37 °C – 0 °C) calculated using MPLNET data is compared to similar 

calculations made using the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board 20 

the Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, with reasonable consistency.    

1 Introduction 

Due to their high temporal and vertical resolutions, and unique spectral sensitivity, lidars are key instruments for 

atmospheric profiling of gaseous species, aerosols and translucent clouds.  In addition to providing unambiguous layer height 

information, lidars are used for retrievals or direct measurements of backscatter, extinction, optical depth, temperature, and 25 

concentrations of these respective atmospheric constituents (Weitkamp, 2005).  Polarized lidar systems transmit light in one 

linear state and by use of an optical device, typically a beam splitter, detect the returned signal from both the initial and 

orthogonal polarization states.  The ratio of these two signals is referred to as the linear depolarization ratio (LDR), 

δ = !!
!∥

,                      (1) 

where 𝑃" is the signal measured from the orthogonal polarized state and 𝑃∥ is that from the signal parallel to the initial 30 

polarization state.  From the time the earliest polarized lidar measurements were made, it was realized that the LDR could be 
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used to distinguish certain atmospheric constituents (Cohen et al., 1969; Schotland et al., 1971; Pal and Carswell, 1973).  

Specifically pertaining to clouds, liquid water clouds exhibit low LDRs (near zero) because of their spherical shape; while 

ice water clouds, due to their irregular shape, tend to have higher values (between 0.3 – 0.6) and mixed-phase clouds exhibit 

LDRs in-between these two extremes (Sassen, 2005 and references therein).  It is noted that multiple scattering induces an 35 

increase in the apparent LDR measured increasingly further into the clouds (Sassen and Petrilla, 1986; Sassen, 1991; Hu et 

al., 2006), which can lead to values for liquid water clouds approaching the threshold for ice water clouds with increasing 

depth.  Conversely, oriented ice plates produce relatively low LDRs that can be mistaken for liquid water clouds if the lidar 

is not tilted slightly off-zenith (Sassen, 1991).           

 40 

Reliable, long-term observations of cloud thermodynamic phase are critical for studies of the Earth’s radiation budget.  

Liquid water clouds are broadly characterized by relatively warmer temperatures, smaller droplet sizes and higher number 

concentrations.  Therefore, they are more efficient at reflecting shortwave radiation and are generally associated with an 

overall negative cloud radiative effect (CRE) or cooling (Yi et al., 2017).  Conversely, ice water clouds (and specifically 

cirrus clouds) are broadly characterized by colder temperatures, larger particle sizes, and lower number concentrations.  45 

Therefore, they can be more efficient at trapping longwave radiation and are generally associated with an overall positive 

CRE or warming, though its magnitude and sign exhibit latitudinal and daytime temporal diurnal variations (Campbell et al., 

2016; Lolli et al., 2017; Campbell et al., 2020).  The CRE of mixed-phase clouds will vary depending on the ratio of ice to 

liquid within the cloud (Sun and Shine, 1994; Korolev et al., 2017).   

 50 

Future changes in Earth’s climate may result in changes in the occurrence and global distribution of cloud types (Stephens, 

2005; Hu et al., 2010; IPCC, 2013), so it is important to record and monitor cloud phases across all climate regions.  

Furthermore, current numerical weather prediction and climate models misrepresent cloud phase (particularly, ice and 

mixed-phase) as seen by observations because the processes that govern phase transitions are still not fully understood 

(Ramanathan et al., 1989; Ringer et al., 2006; IPCC, 2013; Tan et al., 2016; Costa et al., 2017).  Because these processes 55 

take place on spatial scales much smaller than model grid sizes, more frequent and diverse observations are needed to 

improve cloud parameterizations.              

 

The National Aeronautics and Space Administration (NASA) Micro Pulse Lidar Network (MPLNET) is a federated network 

of Micro Pulse Lidar (MPL) systems deployed worldwide in support of basic science and the NASA Earth Observing 60 

Systems (EOS) program (Wielicki et al., 1995; Welton et al., 2001).  Since beginning in 2000, MPLNET has operated using 

a standardized instrument and common suite of data processing algorithms with thorough uncertainty characterization, which 

makes for straightforward comparisons between sites.  Some typical parameters for the MPL are provided in Table 1.  Most 

MPLNET sites are collocated with the Aerosol Robotic Network (AERONET), providing profile and column measurements 

of aerosols and clouds in tropical, mid-latitude, and polar climate regions (Holben et al., 1998; Welton et al., 2002; Campbell 65 
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et al., 2003).  Following the modified EOS convention, data are publicly available at Level 1 (L1; near real time, no quality 

screening), Level 1.5 (L15; near real time, quality screened) and Level 2 (L2; upon request, not real time) product levels 

(http://mplnet.gsfc.nasa.gov).     

 

The lidar signal data, normalized relative backscatter (NRB; Campbell et al., 2002; Welton and Campbell, 2002), are utilized 70 

in the processing of all other MPLNET products (i.e. aerosols, clouds, planetary boundary layer).  The Version 3 (V3) 

MPLNET cloud algorithm is described fully by Lewis et al. (2016).  Cloud layer height retrievals are performed using two 

methods.  The first relies on gradients in the lidar backscatter profile and is primarily used for low-level liquid water phase 

clouds. The other uses the uncertainty in the lidar signal, as described by Campbell and Sassen (2008), and is primarily used 

for high-level clouds (i.e. cirrus).  A multi-temporal averaging scheme is used to improve high-altitude cloud detection 75 

beyond the previous Version 2 cloud algorithm.  In addition to layer height information, the V3 cloud products include 

estimates of extinction and optical depth for thin cirrus clouds, cloud fractions and cloud thermodynamic phase.  Polarized 

MPLs were introduced to the network at the time Lewis et al. (2016) was written; however, the depolarization variables were 

still in development and not used as part of the algorithm.  The goal here is to present a method by which ice water, liquid 

water, and mixed-phase clouds can be identified from polarized MPL measurements to fully describe the cloud 80 

thermodynamic phase.   

2 Determining cloud thermodynamic phase  

2.1 Polarized micropulse lidar data  

The concept of a polarized MPL was introduced by Flynn et al. (2007).  The original design used a single detector and a 

nematic liquid crystal retarder (LCR) to switch between linearly and circularly polarized states.  However, the LCR was 85 

limited to millisecond switching speeds, at best, which was too slow for some cloud observations, and generally unwieldy 

overall relative to the data acquisition system available for MPL instruments at the time.  Therefore, the original polarized 

MPL design was never used within MPLNET.  A new design, using a ferroelectric liquid crystal (FLC) to provide switching 

speeds on the order of microseconds, has been thoroughly tested and characterized within MPLNET and is the basis for the 

new cloud thermodynamic phase algorithm.  Polarized MPL data have previously been used to autonomously detect light 90 

precipitation (Lolli et al., 2013, 2020).  The polarized MPL requires temperature and polarization calibrations to reduce 

systematic biases in the measured signal and depolarization ratio to within fractions of a percent.  Without proper calibration, 

systematic biases as large as 30% may occur (Welton et al., 2018).   

 

Despite the design change, the data produced using the FLC is similar to that shown by Flynn et al. (2007), and the 95 

relationships given to obtain the total lidar signal power and LDR are still applicable.  Here, and from this point forward, we 

refer exclusively to the linear volume depolarization ratio, which includes contributions from both particulate and molecular 
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backscatter. This is in contrast with retrievals of the linear particle depolarization ratio, which removes the molecular 

contributions.  The total lidar signal is given by the normalized relative backscatter (NRB),  

NRB(𝑧) = 	𝑃$%(𝑧) + 2𝑃$&%''(𝑧),                  (2)  100 

where 𝑃$% is the co-planar signal and 𝑃$&%'' is the cross-planar signal.  The LDR, equivalent to (1), and its uncertainty are 

given by  

𝛿(𝑧) = !#$%&&())
!#%())+!#$%&&())

                     and                                                                                                                                     (3) 
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An example of the NRB and LDR measurements collected at the NASA Goddard Space Flight Center (GSFC) site on 5 Oct 

2019 are shown in Fig. 1.  The LDR in Fig. 1 suggests the presence of supercooled liquid water/mixed-phase stratified 

clouds around 9 km, liquid water clouds below 2 km, and ice water (cirrus) clouds near 11 km toward the end of the day.   

2.2 Algorithm description 

Cloud thermodynamic phase is determined using the LDR and its uncertainty, and the cloud top temperature (CTT) obtained 110 

from the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model (AGCM; Rienecker 

et al. 2008; Molod et al. 2012).  Specifically, the Forward Processing for Instrument Teams (FP-IT) GEOS-5, version 5.9.1, 

data are utilized (http://gmao.gsfc.nasa.gov/products).  A schematic of the cloud phase algorithm is shown in Fig. 2.  The 

first step in the process is to obtain the LDR and uncertainty for each altitude bin within the detected cloud layer.  The reason 

for using individual altitude bin values instead of layer-integrated values is to avoid the ambiguity that exists for mixed-115 

phase clouds due to the stronger signal return from liquid water compared to that from ice crystals.  An example of this is 

shown in Fig. 3 for the mixed-phase cloud presented from 5 Oct 2019 at GSFC.  The cloud layer observed between 8 – 9 km 

(CTT = -32.1 °C) exhibits higher NRB near the cloud top in both the co-polar and cross-polar signals compared to the 

signals nearer the cloud base.  However, the co-polar signal peaks to almost two orders of magnitude larger than the cross-

polar signal at the cloud top.  The resulting LDR is nearly 0.3 just above the cloud base (indicative of precipitating ice 120 

crystals) and less than 0.02 at the cloud top (indicative of liquid water).  In contrast, the layer-integrated LDR, 

𝛿̅ = ∫ !#$%&&())	0)	
+%,
-.&/

∫ [!#%())	+	!#$%&&())]0)
+%,
-.&/

 ,                                   (5) 

has a value of 0.035 that could be mistakenly identified as pure liquid water cloud phase.  The ability to detect mixed-phase 

clouds in this manner is unique to ground-based lidar systems.  Spaceborne lidar (e.g. Cloud-Aerosol Lidar with Orthogonal 

Polarization or CALIOP) view clouds like the one shown in Fig. 3 from above and thus risk the signal being attenuated 125 

within the liquid water portion of the cloud, before reaching the underlying ice virga.  As such, there is the potential for 

CALIOP to misidentify mixed-phase clouds as consisting solely of liquid water (Zhang et al., 2010).          
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Figure 4 shows the relationship between LDR and temperature derived using the altitude bins resolved within each cloud 

layer detected using the combined V3 algorithm at GSFC from 2018 – 2019.  As explained in Lewis et al. (2016), strong 130 

aerosol layers at high altitudes can be misclassified as cloud layers due to their highly variable scattering ratios.  Given 

recent pyrocumulonimbus and volcanic activity in the stratosphere (Peterson et al., 2017, 2018; Kirin et al., 2019; Torres et 

al., 2020), cloud retrievals in this study are limited to the troposphere in order to reduce the impact of false cloud retrievals.  

The LDR in Fig. 4 is averaged in 5-C° increments and median values are plotted along with the interquartile range (IQR).  

The increase in LDR with decreasing temperature is qualitatively similar to Fig. 10 within Yorks et al. (2011), though they 135 

use layer-integrated values.  The LDR at warmer (colder) temperatures most likely associated with liquid (ice) water clouds 

remains below 0.05 (above 0.30).  Based on these results, each altitude bin is assigned a cloud phase diagnostic (CPD) value 

based on the LDR and its uncertainty as defined in Table 2.  This diagnostic value provides the likely cloud phase for each 

altitude bin.  An enumerative approach is then used to determine the thermodynamic phase of the entire cloud layer, based 

on the CTT and CPD. 140 

 

Accurately measuring the cloud top with ground-based lidar is problematic (Pal et al. 1992; Platt et al. 1994).  Optically-thin 

clouds can be penetrated by the laser pulse.  The transition to molecular signal above the cloud may then be used to report 

the true cloud top.  However, many optically-thicker clouds completely attenuate the lidar signal and only an apparent cloud 

top can be reported (Lewis et al., 2016), which produces an inherent warm bias in the CTT.  Nevertheless, the cloud 145 

thermodynamic phase is presumed to be liquid water for all clouds, regardless of the CPD, if the CTT is warmer than 0 °C.  

Similarly, cloud phase is presumed ice water (cirrus genus) for all clouds with CTT colder than -37 °C (Sassen and 

Campbell, 2001; Campbell et al., 2015).  Cirrus clouds are unaffected by the warm CTT bias, because only ice water is 

physically possible at colder temperatures.  However, the presumption of liquid-water phase based on CTT alone has an 

unknown influence on phase retrievals of optically-attenuated clouds warmer than 0 °C (less than 5% of the GSFC sample).  150 

In such cases, ice water may very well exist above the apparent cloud top.  But since the necessary information is not 

contained in the lidar return, supplementary data (e.g. from radar) are needed to make such a determination.                     

 

Only clouds in the temperature regime where water can exist in either liquid water, ice water or some combination of those 

use the CPD to classify the thermodynamic phase.  As mentioned previously, multiple scattering effects can induce increases 155 

in the LDR of liquid water clouds to values similar to that of ice water clouds.   Though the narrow field-of-view of the MPL 

(~100 µrad) minimizes such effects, the reliability of the CPD to detect ice is limited to a certain height above the cloud 

base, denoted as Dh.  The value of Dh is empirically determined as the height where the estimated two-way transmittance 

falls below 0.25, calculated as described by Lewis et al. (2016) using the iterative equation,  

𝑇$,(𝑍3) = 	𝑇$,(𝑍345)exp <−2𝑆∗ ?
70(81)
9#'(8123)

@ 𝛽:(𝑍3)Δ𝑧C,                                                                                                            (6) 160 
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where 𝑆∗  is the effective extinction-to-backscatter ratio, 𝑅;  is the attenuated backscatter ratio, 𝛽:  is the molecular 

backscatter determined from GEOS-5, Δ𝑧 is the range resolution of the instrument, and 𝑍3 is the altitude of bin k above the 

cloud base.  At the cloud base, we assume 𝑇$,(𝑍<) = 	1.  Retrievals from the 2018 – 2019 GSFC data, exhibited mean values 

of Dh ranging from 0.4 km (for liquid water clouds) to 1.2 km (for ice water clouds) within the mixed-phase temperature 

range (-37 °C – 0 °C).          165 

 

The remainder of the cloud phase algorithm simply counts the occurrences of the CPD to determine a classification for the 

cloud layer.  If multiple ice bins are found within Dh, then we inspect above the last ice bin for the presence of liquid or 

mixed bins (i.e. a decrease in the LDR) to determine if the layer is pure ice or mixed-phase.  If no ice bins are found within 

Dh but multiple liquid bins are present, then we look within Dh for the occurrence of mixed bins to determine if the layer is 170 

pure liquid or mixed-phase.  If neither ice nor liquid bins are found, the layer is classified as undetermined if more than 25% 

of the bins CPD are undetermined or mixed-phase, otherwise.  Figure 5 shows a mask of the retrieved cloud thermodynamic 

phase for the 5 Oct 2019 case presented in Section 2.1.  The liquid water clouds below 2 km and the ice water clouds near 11 

km are classified using only the CTT.  The supercooled water clouds and mixed-phase clouds are effectively classified using 

the enumerative approach.            175 

3 Results  

3.1 Frontal cloud example  

Well-established temperature thresholds are used to classify thermodynamic phases in absolute terms for liquid water 

(warmer than 0 °C) and ice water (colder than -37 °C) clouds; therefore, we focus attention here on clouds occurring in the 

ambiguous mixed-phase temperature regime between these two temperature thresholds.  Figures 1, 3, and 5 illustrate an 180 

example of stratified liquid and mixed-phase clouds in the mixed-phase temperature regime.  To provide an example with 

very different synoptic conditions, Fig. 6 shows a frontal cloud occurring on 27 Mar 2018.  Frontal cloud systems are 

common in the mid-latitudes and may contain any combination of liquid, ice, and mixed-phase clouds (Hogan et al., 2003; 

Costa et al., 2017).   

 185 

The anvil cloud structure at the beginning of the day is consistent with convection and is classified as ice from the CTT, 

which is also consistent with high LDRs.  As the cloud base descends below 7 km, the cloud phase alternates between ice 

and mixed-phase clouds and is classified as mostly liquid water clouds below 3 km.  The limitations of using only ground-

based lidar to retrieve thermodynamic phase are evident as the signal is attenuated within optically-thick liquid water and ice 

clouds, which results in under sampling of the atmospheric column above such clouds.  Furthermore, precipitation (starting 190 

at 17 UTC) reaching near the surface is occasionally included as part of the cloud layer, which may affect the quality of the 
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cloud phase retrieval.  For instance, raindrops have an irregular shape that enhances the LDR (Lolli et al., 2020).  Therefore, 

precipitation included within in a true liquid-phase cloud might be interpreted as a mixed-phase cloud.               

3.2 Cloud thermodynamic phase statistics  

Two years of GSFC cloud data (2018 – 2019) are used to examine cloud thermodynamic phase statistics derived and 195 

prescribed from the method described in the previous section.  Figure 7 shows the distribution of LDRs for each altitude bin 

within cloud layers detected during the two-year period.  The bimodal distribution shows two peaks at ~0.01 and ~0.37 

representing the liquid water and ice water cloud phases, respectively.  The fractional probability for liquid water clouds also 

peaks near ~0.01 and a very small percentage of liquid water clouds contain LDRs with values above 0.1.  The fractional 

probability for ice water clouds has a clear minimum within the range where liquid water clouds are expected (0 – 0.05).  200 

However, the fractional probability everywhere else typically remains above 0.50.  This is partially attributed to sampling, as 

there are many more bins within ice clouds than other phases because the lidar signal does not attenuate as quickly in such 

layers.   

 

Table 3 indicates the number of layers and altitude bins associated with each of the cloud phases.  Another consideration is 205 

that ice layers (especially those including virga streaks) are generally more tenuous and, because linear volume 

depolarization values are used, the contribution from molecular backscatter becomes more significant.  As a result, the LDR 

for individual altitude bins can be much lower than what is typically expected for pure ice.  Mixed-phase clouds peak at 0.05 

and skew right until ~0.47.  Though they represent a small percentage of the distribution, undetermined phase cases most 

frequently occur with negative LDRs.  While the layer-integrated LDR is not used in the algorithm, the mean values shown 210 

in Table 3 agree well with the median LDRs for each cloud thermodynamic phase.                   

 

Figure 8 shows the distribution of CTTs and fractional probabilities of each cloud thermodynamic phase collected at GSFC 

(2018 – 2019).  The large majority of ice water clouds (nearly 90%) are found using the -37 °C CTT threshold only.  

Similarly, but to a lesser extent, most liquid water clouds (54%) are found using only the 0 °C threshold.  Within the mixed-215 

phase temperature regime, where water can exist as pure liquid, pure ice, or some combination of the two, liquid and ice 

water distributions show an inverse relationship.  As a qualitative comparison, Campbell et al. (2015; see their Fig. 1) 

present similar analysis using CALIOP observations.  They find that the fractional probabilities of liquid and ice water 

clouds intersect near -27 °C, which is colder than the intersection point in this work (-22 °C).  In addition to the different 

methodologies used to determine the cloud thermodynamic phase, the instruments also have different viewing geometries 220 

(zenith for MPLNET and nadir for CALIOP), footprints, and sensitivities that prevent any quantitative comparisons.  

Coopman et al. (2020) use passive spaceborne sensors to determine the glaciation temperature at which ice and liquid equal 

50% and report a global value of -24 ± 1 °C.  The fractional probability for mixed-phase clouds in this work peaks near -22 

°C, while undetermined phase remains relatively flat and is less than 7% at all temperatures.  The shape of the mixed-phase 
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distribution is similar to that found by Shupe et al. (2006; see their Fig. 5) for Arctic mixed-phase clouds, though the peak 225 

shifts toward warmer temperatures in their study.            

3.3 Supercooled liquid fraction 

Much attention has been paid to the amount of supercooled liquid water in the mixed-phase temperature regime (Choi et al., 

2010; Hu et al., 2010; Tan et al., 2014; Tan et al., 2016; Tan and Storelvmo, 2019; Wang et al., 2019).  As liquid water 

presence decreases, so generally does the cloud albedo, which results in a reduced solar-reflective cooling effect.  230 

Additionally, cloud lifetime and precipitation are governed by the transition from liquid water to ice (Korolev et al., 2017).  

Studies have shown that low biases in the amount of supercooled liquid present in climate models leads to 

misrepresentations of the outgoing shortwave radiation and feedback response to a doubling of CO2 (Furtado et al., 2016; 

Tan et al., 2016).   

 235 

The CALIOP instrument on board the Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

satellite (Winker et al., 2010) can estimate the global distribution of supercooled liquid water in the atmosphere.  Choi et al 

(2010) and Tan et. al. (2014) use CALIOP retrievals to examine the supercooled liquid fraction (SLF) or the ratio of the 

number of liquid-phase footprints to the number of the total number of footprints (liquid-phase + ice-phase) within a 

specified grid box and isotherm.  Similarly, we define the MPLNET SLF as the ratio of the number of liquid-phase cloud 240 

layers to the total number of cloud layers (liquid-phase + ice-phase + mixed-phase) for a specified isotherm.  Because 

MPLNET includes mixed-phase as a possibility, without partitioning ice from liquid, the resulting SLF represents a lower-

limit on the presence of liquid water in the atmosphere.  The repercussions of this distinction from the CALIOP SLF will be 

discussed further.   

 245 

A comparison of SLFs derived from each instrument (CALIOP and MPLNET) averaged from 2015 – 2019 is shown in Fig. 

9.  Instead of direct comparisons using coincident overpass times of the GSFC site by the satellite, the comparison uses a 

statistical approach to investigate the representativeness of the two independent datasets.  The CALIOP SLFs were 

calculated for a 2.5° latitude × 5.0° longitude grid box using the procedure described by Tan et al. (2014).  The version 4.20, 

level 2 Vertical Feature Mask (VFM) product was used in conjunction with National Centers for Environmental Prediction 250 

(NCEP)-Department of Energy (DOE) Reanalysis 2 air temperature and pressure data (Kanamitsu et al., 2002) at a 

resolution of ~2.5° latitude × 2.5° longitude.  Only nighttime CALIOP retrievals are used in order to avoid artifacts from 

solar noise.  The CALIOP SLFs below -10 °C are excluded because strong lidar return-signal attenuation from clouds at 

these temperatures leads to significant measurement errors (Choi et al., 2010).   

 255 

Comparisons between ground-based and spaceborne lidars are difficult, because the satellite moves quickly over the 

stationary point-source of the ground-based lidar.  Satellites, like CALIPSO, provide good spatial coverage, but poor 
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temporal sampling.  In contrast, ground sites in MPLNET provide poor spatial coverage globally; but, continuous 

observations at 1-minute data rate provide full diurnal sampling.  Low, attenuating clouds also obstruct the view of high 

clouds from the surface that are easily observed from space.  These two factors result in very different sampling volumes for 260 

ground-based and spaceborne measurements.  Furthermore, as demonstrated by the example in Fig. 3, the opposite viewing 

geometries may lead to differing cloud phase classifications, even if the same cloud is observed from both platforms.  

Despite these unpreventable differences, Fig. 9 demonstrates that MPLNET and CALIOP (at least qualitatively) observe 

very similar patterns in regard to SLF.  The inset of Fig. 9 also suggests that the correlation lengths for SLF may be rather 

large, based on the similar values for adjacent grid boxes.   265 

 

We note that the CALIOP SLFs are always higher than and outside the standard error of MPLNET SLFs at all isotherms 

warmer than -30 °C, but nearly match MPLNET at colder temperatures where liquid-phase is less likely to exist.  A possible 

explanation for this difference (aside from those mentioned previously) is the potential misclassification of mixed-phase 

clouds as liquid-water by CALIOP (Zhang et al., 2010).  It is also plausible that MPLNET is underestimating the presence of 270 

liquid-water phase at warmer temperatures, due to precipitating clouds, as indicated in the frontal cloud example presented in 

Sect. 3.1.  The final consideration follows from the inclusion of mixed-phase in the MPLNET SLF, that is not present in the 

CALIOP VFM.  As stated above, the MPLNET SLF represents a lower-limit because the percentage of liquid water in the 

mixed-phase layer is undetermined.  Therefore, it is reasonable for the MPLNET SLFs to be lower than the CALIOP SLFs at 

warmer temperatures.  However, more extensive analysis is necessary in order to address these differences with any 275 

certainty.  Such analysis is beyond the scope of the current work, but warrants exploration in a future study.      

4 Discussion and summary 

The radiative impact of clouds is known to depend on the partitioning of liquid and ice phases (Sun and Shine, 1994; 

Korolev et al., 2017).  However, sparse local observations have limited the amount of information necessary to evaluate and 

improve model parameterizations (Matus and L’Ecuyer, 2017).  Mixed-phase clouds, which occur in all climate regions and 280 

multiple cloud types, are particularly not well understood.  Polarized lidar has the ability to provide vertical profiles of cloud 

structure, at least to the limit of signal attenuation, and add insight as to how ice and liquid water are partitioned in the 

atmosphere.   

 

This work introduces a simple, enumerative method to determine the cloud thermodynamic phase from polarized Micro 285 

Pulse Lidar (MPL) measurements.  In addition to the typical liquid and ice phases, we also attempt to assign mixed-phase to 

cloud layers within the -37 °C – 0 °C temperature regime.  The zenith-viewing geometry and narrow field-of-view of the 

MPL make such classifications possible, though low-level liquid water clouds may inhibit observations of the full 

atmospheric column.  Results using two years of cloud observations at the Greenbelt, MD site are at least qualitatively 
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consistent with previous studies of thermodynamic phase distributions.  A five-year comparison with Cloud-Aerosol Lidar 290 

with Orthogonal Polarization (CALIOP) showed reasonable agreement.  However, a more extensive, long-term study 

involving multiple MPLNET sites is needed in order to address the differences between the complementary observations.      

 

Though the polarized MPL was fairly new at the time an advanced cloud algorithm for MPL was introduced by Lewis et al. 

(2016), the instrument has since been fully tested and characterized and the Micropulse Lidar Network (MPLNET) is now 295 

fully polarized.  The ability to provide continuous observations of cloud properties, including thermodynamic phase, across 

all climate regions using a standardized instrument and retrieval process is a distinctive feature of MPLNET.  In a future 

work, we endeavor to explore how cloud properties differ amongst MPLNET sites.  Such studies have already been 

performed investigating the cirrus cloud radiative effect at tropical, mid-latitude, and polar MPLNET sites (Campbell et al., 

2016; Lolli et al., 2017; Campbell et al., 2020).    300 

 

In closing, it must be noted that no one instrument or platform will be able to fill the void in our understanding of cloud 

thermodynamic phase.  The results presented here have highlighted some of the strengths and limitations of ground-based 

and spaceborne lidar retrievals.  However, it is fundamentally required to use a synergetic approach (combining in-situ and 

remote sensing, passive and active sensors, observations and models, etc.) in order to gain a better perspective of how liquid 305 

and ice phases are partitioned and transition from one phase to another in the atmosphere.  Adding to the complexity, there is 

no one definition for mixed-phase clouds that can be universally applied.  Instead, the definition or threshold for mixed-

phase depends on the spatial and temporal resolutions and sensitivities associated with each observational method, making it 

even more important to use multiple, simultaneous measuring techniques to grasp the “big-picture”.  The cloud 

thermodynamic phase data presented in this work, along with the other MPLNET datasets (some sites with 10+ years of 310 

data), offer a valuable piece of the picture for long-term studies of clouds and aerosol-cloud interactions.                          
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Table 1: Instrument parameters 

Parameter  

Wavelength 532 nm 

Laser pulse energy 6 – 8 µJ 

Repetition rate 2500 Hz 

Receiver diameter 178 mm 

Vertical resolution 75 m 

Temporal average 60 s 

 460 
  

 

 

 

 465 
Table 2: Cloud phase diagnostic 

CPD Likely phase Definition 

1 no cloud - 

2 liquid d – Dd ³ 0.00 and d + Dd £ 0.05 

4 ice d – Dd ³ 0.30 and d + Dd £ 0.50 

8 mixed d – Dd > 0.05 and d + Dd < 0.30 

16 undetermined All others, including Dd / d > 1.0 

 

 

 
 470 
 
 
 
 
 475 
 
 
 
 
 480 
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Table 3: Cloud phase properties for GSFC, 2018 – 2019.  Number of layers (NLayers) and altitude bins within each layer (NBins), 
mean layer-integrated LDR (𝜹"Layers), median LDR (𝜹Bins) and interquartile range (IQR) for all altitude bins within each layer, and 
the mean cloud top temperature (CTT).   485 

Phase NLayers 

(%) 

NBins 

(%) 

𝜹"Layers 

Mean ± St. Dev.   

𝜹Bins 

[IQR] 
CTT  

(°C) 

Liquid 146 983 

(29.0) 

996 025  

(14.5) 

0.018 ± 0.017 0.013 

[0.007, 0.024] 

-0.7 ± 10.3 

Mixed 58 816 

(11.6) 

1 001 234 

(14.6)  

0.161 ± 0.125 0.207 

[0.074, 0.310] 

-19.4 ± 9.6 

Ice 294 227  

(58.0) 

4 796 681 

(70.0) 

0.306 ± 0.105 0.336 

[0.248, 0.390] 

-51.5 ± 12.1 

Undetermined 7 293  

(1.4) 

56 068 

(0.8) 

0.093 ± 0.122 0.088 

[0.008, 0.266] 

-18.0 ± 11.3 
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Figure 1: Examples of the NRB (top) and volume depolarization ratio (bottom) at GSFC on 5 Oct 2019.  Altitude bins where the 490 
signal uncertainty is twice the signal strength have been suppressed for easier viewing.   
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Figure 2: Schematic of the cloud phase algorithm.  Lowercase phases (e.g. ice) indicate the cloud phase diagnostic (CPD) for 
individual altitude bins and capitalized phases (e.g. Ice) indicate the phase determination for the entire cloud layer.     495 
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Figure 3: Profiles of the cross-polar (solid line) and co-polar (dash-dotted line) components of the NRB for a mixed-phase cloud at 
GSFC on 5 Oct 2019 (6:40 UTC).  The volume depolarization ratio within the cloud layer is indicated by the red line (diamond 
symbol).     
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 500 

Figure 4: Median volume depolarization ratio as a function of temperature for each altitude bin within all detected cloud layers at 
GSFC (2018 – 2019) in temperature increments of 5-C°.  Horizontal bars indicate the interquartile range (IQR).  Dashed vertical 
lines indicate the thresholds for the cloud phase diagnostics (CPD) as defined in Table 2.  Temperatures above 25 °C are not 
displayed because of small sample and cloud precipitation.        

  505 
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Figure 5: Example of the cloud thermodynamic phase retrieval at GSFC on 5 Oct 2019.  The phase mask indicates liquid water 
clouds (grey), mixed-phase clouds (magenta), ice clouds (cyan), and unknown phase (pink).   The GEOS-5 temperature is shown 
by the contour lines (in 10-C° intervals).  The -37 °C isotherm is indicated by the dashed contour line.      

  510 



23 
 

 
Figure 6: Frontal cloud system at GSFC on 27 Mar 2018: NRB (top), volume depolarization ratio (middle) and phase mask 
(bottom).  Altitude bins where the signal uncertainty is twice the signal strength have been suppressed for easier viewing.  Note the 
use of a log scale for the NRB.  The phase mask indicates liquid water clouds (grey), mixed-phase clouds (magenta), ice clouds 
(cyan), and unknown phase (pink).   The GEOS-5 temperature is shown by the contour lines (in 10-C° intervals).  The -37 °C 515 
isotherm is indicated by the dashed contour line.      
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 520 

 
Figure 7: (Top) Distribution of volume depolarization ratios for each altitude bin within all detected cloud layers at GSFC (2018 – 
2019).  The vertical dashed lines indicate the thresholds for the cloud phase diagnostics (CPD) as defined in Table 2.  (Bottom) 
Fractional probability of retrieved cloud phases in 0.01 increments for the volume depolarization ratios shown in the top figure.  
Cloud phases written in lowercase letters of the top figure indicate these are altitude bin designations, while phases written in 525 
uppercase of the bottom figure represent the layer-determined designations.       
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Figure 8: (Top) Distribution of cloud top temperatures for all detected cloud layers at GSFC (2018 – 2019).  The vertical dashed 
lines indicate the boundaries of the mixed-phase regime (-37 °C – 0 °C).  (Bottom) Fractional probability of retrieved cloud phases 530 
in 2-C° increments for the cloud top temperatures shown in the top figure.    
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Figure 9: Supercooled liquid fraction (SLF) averaged over GSFC (2015 – 2019) from MPLNET (solid line) and CALIOP (black ×) 
observations.  The inset shows the horizontal distribution of CALIOP SLFs at the -20 °C isotherm surrounding GSFC (indicated 
by the red ×).  The CALIOP SLF profile is calculated using the 2.5° latitude × 5° longitude grid box containing GSFC. The shaded 535 
area indicates the standard error for MPLNET observations.  CALIOP standard errors are less than 0.7 at all isotherms.      


