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Abstract. The incomplete understanding of aerosol-cloud interactions introduces large uncertainties when simulating the cloud

radiative forcing in climate models. The physical and optical properties of a cloud, as well as the evolution of precipitation, are

strong functions of the cloud hydrometeor phase. Aerosol particles support the phase transition of water in the atmosphere from

a meta-stable to a thermodynamically preferred, stable phase. In the troposphere, the transition of liquid droplets to ice crystals

in clouds, via ice nucleating particles (INPs) which make up only a tiny fraction of all tropospheric aerosol, is of particular5

relevance. For accurate cloud modeling in climate projections, the parameterization of cloud processes and information such

as the concentrations of atmospheric INPs are needed. Presently, only few continuous real-time INP counters are available

and the data acquisition often still requires a human operator. To address this restriction, we developed HINC-Auto, a fully

automated online INP counter, by adapting an existing custom-built instrument, the Horizontal Ice Nucleation Chamber. HINC-

Auto was able to autonomously sample INPs in the immersion mode at a temperature of 243 K and a water saturation ratio10

of 1.04 for 97% of the time for 90 consecutive days. Here we present the technical setup used to acquire automation, discuss

improvements to the experimental precision and sampling time, and validate the instrument performance. In the future, the

chamber will allow a detailed temporal analysis (including seasonal and annual variability) of ambient INP concentrations

observing repeated meteorological phenomena compared to previous episodic events detected during campaigns. In addition,

by deploying multiple chambers at different locations, a spatio-temporal variability of INPs at any sampling site used for15

monitoring INP analysis can be achieved for temperatures ≤ 243 K.

1 Introduction

The interaction between aerosols and clouds contributes to the global energy budget by indirectly influencing the radiative

forcing of the climate system. Yet, predictive climate models struggle to accurately simulate aerosol-cloud interactions, e.g.

the Intergovernmental Panel on Climate Change attributed a low confidence level of the aerosol-cloud interactions in their fifth20

assessment report (Boucher et al., 2013). Clouds containing ice have special relevance to the Earth’s climate. Not only does

the cloud phase strongly influence climate-relevant physical properties, such as albedo (e.g., Sun and Shine, 1994; Lohmann

and Feichter, 2005), but ice is also shown to be responsible for the development of most mid-latitude precipitation processes

(e.g., Mülmenstädt et al., 2015). Consequently, it is essential to understand the mechanism of ice formation within mixed-phase
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clouds. One such mechanism is immersion freezing, the formation of ice crystals on ice nucleating particles (INPs) immersed25

in liquid droplets (Vali et al., 2015), which has been studied extensively in laboratory studies (see e.g., Zuberi et al., 2002;

DeMott et al., 2003; Marcolli et al., 2007; Lüönd et al., 2010; Niemand et al., 2012; Murray et al., 2012; Atkinson et al., 2013;

Hiranuma et al., 2015). A large number of field studies based on intensive observation periods to quantify the concentration,

properties, identity and sources of immersion mode INPs have also been reported (see e.g. Dufour, 1862; Rogers and Vali,

1978; Demott et al., 2003; Richardson et al., 2007; Chou et al., 2011; Boose et al., 2016; Lacher et al., 2017). These studies30

have substantially improved our understanding of such atmospheric INP properties and sources, but some aspects such as diur-

nal variability, seasonal and and annual trends as well as general spatio-temporal variability of INPs remains poorly constrained

(see e.g., Demott et al., 2011; Cziczo et al., 2017; Kanji et al., 2017; Lacher et al., 2018) and insufficiently understood, needing

more research to accurately represent atmospheric ice formation in climate models (Demott et al., 2010; Phillips et al., 2013).

For example most field studies on INP measurements in the atmosphere have to focus on cases rather than drawing conclusions35

about the long term trends because of the lack of such data sets. To quantify the free troposphere INP concentration in the Swiss

Alps, data from 9 field campaigns over the course of 3 years was required in order to quantify this parameter representing a

background INP concentration at a single temperature (242 K) (Lacher et al., 2018), making such research data costly and

inaccessible to cloud modellers. Furthermore, with the lack of long term frequent data sets, cloud model research is limited

to the small specific case studies for validating INP parameterizations in global or regional climate models (see e.g., Niemand40

et al., 2012).

To sample INPs, either offline or online techniques are available. In offline INP counters, air is sampled through a filter or an

aerosol-to-liquid cyclone impinger. The filter is washed in pure water to extract the sampled aerosols while the cyclone is filled

with a small amount of water in which the aerosols accumulate. The sample is then divided into small droplets on cold stages.45

The freezing of the droplets as a function of temperature allows deducing the INP concentration of the sampled air (Vali, 1971).

The advantages of the offline technique are the ability to detect low INP concentrations thus reporting INP concentrations at

fairly low (272 K) as well as high supercooling (235 K) (e.g., Conen et al., 2015; Petters and Wright, 2015; Mignani et al.,

2019; Wex et al., 2019; Brubaker et al., 2020). Furthermore, the ability of having the aerosols contained for future additional

analysis is also possible because not all the sample has to be used in this method of processing and neither is the analysis50

method of the sample destructive. This comes at the sacrifice of lower time resolution due to the continuous sampling for 8 - 12

hours or more per sample, in order to generate appropriate signal to noise ratio in the freezing spectra. Additional drawbacks

include the chance for sample modification when INPs impact the filter or during sample handling and storage (e.g., Cziczo

et al., 2017, and references therein). Most recently, Beall et al. (2020) found losses of up to 72% to INP concentration caused

by storage at room temperature versus losses of 25% by storage at 253 K over up to 166 days.55

Online techniques sample and detect INPs in one step in real time. The measurement of INPs in ambient air is challenging

since their number concentrations are on the order of 10−1 to 102 std L−1 (at 242 K, Sw = 1.04, (see e.g., Lacher et al., 2018;

Kanji et al., 2017)) while the sensitivity of portable INP counters is on the order of 10−2 std L −1 (Cziczo et al., 2017). This
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makes online counters good candidates for reporting INP concentrations at moderate (with the presence of aerosol concentra-60

tors) to high supercooling (≤ 248 K). Online counters have the advantage of resampling INPs downstream of cloud chambers

for further single particle analysis, but often times these measurements are technically challenging and time consuming because

of the low concentrations of INPs. Online and offline data acquisition of INP concentrations often needs human operation and

is subsequently limited to isolated or planned field campaigns. A prime limitation for the absence of long term monitoring

data sets was that online real-time measurements of INP concentrations via INP counters required human operators as no65

autonomous online INP counter were available. Bi et al. (2019) presented the first autonomous online INP counter based on

a CFDC. A novel paper by Möhler et al. (2020) introduced the Portable Ice Nucleation Experiment (PINE), an autonomous

online INP counter that uses the adiabatic cooling during expansion to activate the INPs at the targeted supersaturation. Of-

fline techniques can be automated in their sampling but require substantial sample handling, storage, and finally processing of

samples to derive INP concentrations, all by dedicated trained scientists. Furthermore automated aerosol sampling techniques70

will suffer significantly lower time resolution with the advantage of quantifying INP concentrations at higher temperatures

compared to online techniques (Cziczo et al., 2017, and discussion therein).

In this work we present an automated continuous online INP counter, HINC-Auto. Besides a technical description and

findings to enhance the chamber precision and sampling time, the chamber is validated with laboratory tests and experiments are75

compared to a theoretical model. HINC-Auto has been implemented for continuous monitoring of INPs at center temperature

(T ) = 243 K and and saturation with respect to water (Sw) = 1.04 at the High Altitude Research Station Jungfraujoch (JFJ,

3580 m a.s.l., 46◦33’ N, 7◦59’ E). From the collected data set, since Feb 2020, it is expected that a continuous and more

detailed temporal analysis of ambient INP concentrations will be possible, thereby observing repeated meteorological episodes

compared to previous singular events detected during a single field campaign.80

2 Materials and Methods

2.1 Working principle

In the 1980s, continuous flow thermal gradient diffusion chambers were developed to study cloud condensation and ice nucle-

ation (Hussain and Saunders, 1984; Al-Naimi and Saunders, 1985; Tomlinson and Fukuta, 1985; Rogers, 1988). Continuous

flow chambers (CFC) used a temperature gradient ∇T to produce water vapor supersaturation in the region between two85

water- or ice-covered walls. Rogers (1988) defined the term continuous flow thermal gradient diffusion chamber (CFDC) and

described the underlying working principle: The annular volume between two vertically oriented concentric cylinders forms

the chamber’s cavity. The outer and inner walls of the chamber are chilled individually and are covered with a thin layer of

ice. For the experiment, one wall is held at a warmer temperature than the other wall, thereby, heat as well as water vapor

are diffused from the warm to the cold wall, forming radially linear steady-state temperature and water vapor pressure fields.90

Because the saturation vapor pressure with respect to water and ice are exponential functions, a supersaturation with respect to

ice, Si > 1, is formed between the two walls. Supersaturation with respect to water Sw ≥ 1 can be achieved with large enough
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temperature gradients. A steady flow passes coaxially through the chamber, entraining the sample aerosols in its center lamina.

The surrounding sheath air is dried and filtered before entering the chamber. T and S are adjusted to the desired experimental

conditions. A more detailed description can be found in Rogers (1988).95

The CFDC of Kumar et al. (2003) was developed to probe aerosols and investigate their ability to acts as cloud condensation

nuclei (CCN). In contrast to the design of Rogers, the chamber consisted of two horizontally oriented parallel walls. Kanji and

Abbatt (2009) altered the design to the University of Toronto CFDC (UT-CFDC) to study ice nucleation at low temperatures.

A horizontally oriented ice nucleation chamber offers two major advantages: first, the buoyancy of the air within the chamber100

resulting from the temperature gradient stabilizes the desired laminar flow. In vertically oriented chambers, the flow is oriented

from the top to the bottom. The buoyancy at the warm wall favours an upward vertical air movement which counteracts the

overall flow direction. Likewise, the reduced buoyancy at the cold wall adds a relative sinking motion in the proximity of the

cold wall. If the temperature gradient is increased such that the shear between the lamina overcomes the fluid’s viscous forces,

the flow becomes turbulent. The increased mixing not only dislocates the sample particles away from their desired center lam-105

ina but also equalizes the temperature and water vapor profiles. The set conditions then may deviate from the assumed values

(Rogers, 1988; Stetzer et al., 2008). This happens at gradients larger than 10-15 K, depending on the center lamina temperature

(Garimella et al., 2016). Secondly, in horizontally oriented chambers the vapour diffused to the cold wall forming frost tends to

stay on the bottom wall because of gravity. In a vertical ice nucleation chamber, the ice grown on the cold wall has the tendency

to break off, get carried along with the downward moving sheath flow and is in danger of being misinterpreted as ice formed110

on an INP. The biggest drawback of the horizontal orientation is the sedimentation of hydrometeors or large aerosol particles.

The hydrometeors have to grow to a size of d≥ 1 µm to be detected by the sensor placed at the outlet. For particles ≥ 5 µm,

the terminal sedimentation velocity is such that the hydrometeors are subject to gravitational settling and, depending on their

residence time (τ ), will not be sampled by the detector.

115

Lacher et al. (2017) presented the Horizontal Ice Nucleation Chamber (HINC), a close adaption of the UT-CFDC. HINC’s

record sampling times of 14 h make the chamber’s design best suited to be adopted for continuous measurement of ambient

INPs. A basic illustration of HINC is shown in Figure 1.
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Figure 1. A schematic of HINC, the building platform of HINC-Auto. Top: the entire chamber, bottom: the internal parts.
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Figure 2. A schematic of HINC-Auto. a) Top: the entire chamber, bottom: the internal parts. b) External components and flow setup.

Figure 2a shows a schematic of HINC-Auto and 2b the external components and flow setup. The chamber consists of two120

aluminum cooling walls, with a 25 µm copper plating to avoid growth of mold. The chamber walls are cooled with an external

recirculating ethanol chiller (Lauda PRO RP 290E), operated in a parallel-flow constellation to the air flow within the chamber.

A polyvinylidene fluoride (PVDF) spacer physically and thermally separates the two chamber walls. A cut-out section within

the PVDF spacer and the inner surfaces of the metal walls forms the cavity of the chamber. The inner metal walls are each

covered with one layer of self-adhering borosilicate glass microfibre filter paper (PALL 66217, 1 µm, 8x10") which is wetted125

with water and acts as reservoir for water vapor in order to create ice and/or water (super)saturation. During normal operation,

the temperature of the bottom wall is equal to or lower than the one of the top wall. The chillers PID-controller directly controls
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the bottom wall temperature. A Y-connection just upstream of the bottom wall cooling inlet allows some of the chilled ethanol

flow to diverge and flow through the top wall. At the top wall cooling exit, a solenoid valve controls the flow rate of the ethanol

through the top wall before feeding it back into the re-circulating bath via the ethanol outlet of the bottom (colder) wall. If the130

top (warmer) wall is too warm the solenoid is actuated by a PI-controller and if the top wall is too cold, a 12V fan blows room

air at the outer surface of the warm wall to increase its temperature. Three thermocouples (Transmetra TEMI313, type K, NiCr-

Ni) monitor the temperature on each wall. To expose the aerosol particles within the sample air to a predefined temperature and

supersaturation, the sample air has to remain in the center plane between the two chamber walls. Therefore, the center lamina

is sandwiched between equal parts of particle-free sheath air. The sheath to sample air ratio is 9 to 1. The mass flow controlled135

(mass flow controller (MFC) MKS MF1, full scale range: 5 std L min−1, set to 2.547 std L min−1) and dryed (diffusion dryer,

Sw ≤0.008 at 20 ◦C, filled with 4 Å-molecular sieve) sheath air enters the chamber through four holes in the top wall and is

blown on to copper heat sinks mounted on the bottom wall. The sheath air is thereby rapidly chilled and flows through a mesh

which equilibrates the flow and decreases the degree of turbulence. The weaving plain type 304-stainless steel wire mesh has

a mesh-size of 250 mesh inch−1 and a wire diameter of 0.04 mm. It spans over the entire width and height of the chamber’s140

cavity (See Fig. 2a). The filter paper coats the cooling walls only downstream of the mesh. A horizontally aligned injector with

a outer diameter of 6.35 mm and a slit of 0.4x100 mm2 is used to guide the sample air into the chamber. The sampled air also

passes a diffusion dryer identical to the sheath flow dryer before entering the injector. The injector is mounted through one of

six holders in the side wall of the spacer. All unused holes are plugged. Placing the injector in a hole further upstream allows

to increase the particle residence time and vice versa. A 6-channel optical particle counter (OPC, MetOne GT-526S) detects145

the number and size of the particles exiting the chamber via the outlet. A MFC downstream of the OPC (Bronkhorst, F-201EV,

full scale range: 3.5 std L min−1) is set to 2.83 std L min−1 (defined by the specifications of the OPC). The sample air flow

rate of 0.283 std L min−1 results from the difference of the volume flow exiting the chamber through the OPC and the sheath

air directed into the chamber. Consequently, a well sealed chamber is crucial for a representative operation. Downstream of

the OPC and the MFC, a vacuum pump (KNF, N 035 ATE) is used to generate sufficient pressure drop over the MFC and150

to increase the pressure after the pump. A purge valve (Swagelok, SS-RL3S6MM) purges excess air above the set absolute

pressure of 1.5 bar. The air is filtered with a HEPA filter and recycled back into the sheath air MFC.

During operation, water vapor diffuses from the top to the bottom wall, depleting the top wall of the ice layer while adding

additional ice to the bottom wall. To maintain the desired supersaturation within the chamber, the top wall ice layer needs to155

get replenished by re-wetting the filter paper at temperatures T > 273 K. This rewetting procedure requires tilting the chamber

by 25◦ using a linear motor to allow excess water and water collected on the cold wall to drain. A peristaltic pump with a flow

rate of 10 ml min−1 pumps 40 ml water from a water reservoir into one of the three wetting ports, located on the top cooling

plate. Two solenoid valves alternate the used wetting port every 10 seconds. During the rewetting procedure a second peristaltic

pump with a flow rate of 65 ml min−1 is used to drain excess water which is recycled back into the rewetting reservoir. The160

reservoir is initially filled with 500 ml double-deionized water. The reservoir is protected from day light while a piece of copper

and a UV-LED protects the water from spoilage. The total water uptake of the chamber is 100 ml month−1. The molecular
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sieves in the diffusion dryers need to be replaced every 30-60 days, depending on the ambient relative humidity. Sensors are

used to check both sheath and sample air relative humidity to determine when the molecular sieves require replenishing.

2.3 Design changes165

HINC showed differences between the measured and the calculated particle residence times as shown in Figure 3a. The parti-

cle residence times were measured with pulse experiments, where a brief pulse of particles was injected into HINC and then

compared to the delayed temporal evolution of the particle counts exiting the chamber. To analyze the discrepancy, a 3D com-

putational fluid dynamics (CFD) simulation was carried out (STAR-CCM+ V13.04.010). The CFD simulation was validated

with a particle image velocimetry (PIV) experiment. A detailed description of CFD simulation and the PIV experiment can be170

found in the appendix (A1). Only after modelling the tubing of the sheath air and corresponding union tee and union cross to

distribute the sheath air outside of the chamber, the CFD simulation and the PIV-experiment came into good agreement. The

validated simulation showed persistent high velocity regions downstream of the sheath air inlets (see Figure A2) which are not

in agreement with the anticipated flow velocities. This explains the lower residence time in pulse tests compared to the cal-

culated residence time, which assumed ideal velocity distributions within HINC. Besides the high velocity jet regions (Figure175

A2), reversed flows are also present within the chamber, forming two large counter rotating vortices. Particle sedimentation

experiments with HINC also confirmed the two vortices. To smooth the flow field within the chamber and achieve a more

consistent desired unidirectional flow field, a mesh was introduced 20 mm downstream of the sheath air injector holes. PIV

experiments with the mesh installed in HINC showed the anticipated homogenization of the flow velocity. With HINC-Auto

pulse tests are now in good agreement with the calculated values as seen in Figure 3b. Therefore, no additional PIV experiments180

and CFD simulations were performed with HINC-Auto.
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Figure 3. Calculated and measured particle residence time in a) HINC (without mesh) for different injector positions at T = 253 K and b)

HINC-Auto (using a mesh to achieve a more uniform flow) at T = 243 K. Box plots from pulse experiments: median with 25/75% quartiles,

whiskers: 5/95% quantiles. Median of PIV experiment (circles, T = 288 K) and CFD simulation (crosses, T = 243 K).
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2.3.1 Reduction of rewetting duration

Maximizing the time HINC-Auto is sampling ambient air for INPs requires the duration of the rewetting procedure to be

minimal. The limiting factor is warming up and cooling down the chamber from the working temperature (i.e. 243 K) to

temperatures above the melting point of water (e.g. 293 K) and vice versa. The time to warm up and cool down the chamber is185

mostly set by the chiller’s performance and by the heat capacity of the chamber itself. The new chiller (Lauda PRO RP 290E)

had the best performance in comparison to the available products and their parameters, such as cooling power between 290 and

240 K, size, weight and price. Furthermore we decided to minimize the chamber’s total heat capacity by machining the walls

in aluminum instead of copper. A heat conduction analysis using the Finite Element Method in STAR-CCM+ V13.04.010

revealed sufficient temperature equality ≤ 0.02 K at T = 243 K across both walls when changing from copper to aluminum,190

despite the 70% lower thermal conductivity. The 3D CFD simulation revealed for the supersaturation to need a substantial

part of the chamber length to equilibrium to the set conditions. For T = 243 K and Sw = 1.04 a 96% equilibration (Sw = 1.00)

was reached just 20 cm of the sheath air inlets (43% of the entire chamber length in HINC). A faster equilibration allows for

a reduction of the chamber length, and subsequently, a further reduction in total heat capacity. To be more time efficient in

studying the impact of the chamber length, a numerical 2D diffusion model approach was chosen over 3D CFD simulation.195

The newly developed 2D diffusion model has been validated with the analytical solution by Rogers (1988) and the 3D CFD

simulation (see Figure A4). In order for the supersaturation to equilibrate to the set supersaturation, the temperature as well

as the water vapor distribution along the chamber’s height have to equilibrate from the initial conditions. Figure 4a shows the

equilibration of the supersaturation profile in HINC to be temperature limited when injecting sheath air at Tsheath air = 298

K with a dew point of Td = 233 K while the chamber is set to T = 243 K and Sw = 1.04. By precooling the sheath air to200

Tsheath air = 248 K the chamber can be shortened by 10 cm to facilitate an identical degree of supersaturation equilibration

during the final 10 seconds (see Figure 4b). Larger residence times than 10 seconds are prone to hydrometeor sedimentation

and are therefore not targeted. Precooling is achieved by blowing the sheath air onto heat sinks, mounted on the cold wall just

upstream of the mesh. The mentioned changes and the new chiller decrease the duration of rewetting from 110 min with HINC

to 50 min with HINC-Auto.205
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Saturation w.r.t. ice (Si)
Contri. diffusion heat
Contri. diffusion water vapor
Equilibrium/ set point Si

Time after sheath air enters the chamber (s)

Chamber length (m)
0.0            0.1             0.2            0.3

0            7.02          14.04       20.29  21.32

0.0      0.1            0.2             0.3            0.4

0             5.84         11.69        18.03       24.31  25.65
Time after sheath air enters the chamber (s)

Chamber length (m)

a) Tsheath air = 298 K, T = 243 K b) Tsheath air = 248 K, T = 243 K

Figure 4. Simulated ice supersaturation development along the chamber’s center lamina at T = 243 K and contributing factors diffusion of

heat and water vapor for a) Tsheath air = 298 K (original length) and b) Tsheath air = 248 K (allowing for the chamber length to be reduced

by 10 cm).

2.3.2 Change of the axis of rotation during the rewetting procedure
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HINCa)
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HINC-Autob)

Wetting ports
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Axis of rotation
for rewetting

Figure 5. Illustration of the axis of rotation, location of wetting and drainage ports on a) HINC and b) HINC-Auto.

When rewetting HINC, the OPC has to be disconnected from the chamber’s outlet to allow excess water to drain. HINC is

thereby tilted 23◦ around an axis parallel to the width of the chamber (see Figure 5a). During rewetting HINC-Auto is tilted

25◦ around an axis parallel to the length of the chamber. This allows for the OPC to stay attached but required 3 additional

drainage ports in the bottom wall, located just below the spacer’s side wall(see Figure 5b).210

2.3.3 Software

The chamber is controlled via a newly developed guided user interface programmed using Python 3.7 and corresponding open

source packages. The postprocessing of INP concentrations is done in real time. HINC-Auto can be accessed and controlled

remotely if an internet connection is available on site, however this is not a requirement for autonomous operation. A screenshot

of the guided user interface with comments on the basic parameters a user can set is shown in the appendix (A7 -A11).215
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2.4 Derivation of the INP concentration

Immersion mode INP measurements are performed by sampling at T = 243 K and Sw = 1.04. At these conditions, CCN should

activate to supercooled droplets, and INPs, which are active at 243 K, form ice crystals. The size of the hydrometeors exiting

the chamber is used to differentiate between liquid droplets and ice crystals because ice grows to larger sizes at the prevailing

conditions (Si� Sw). Differential measurements between the total aerosol inlet and immediately downstream of the chamber220

with an OPC were used to determine particle losses. The transmission fraction of ambient particles ≥ 2 µm through the tubing

and the dry chamber (both walls held at 293 K) on the JFJ is 33%. No ambient particles ≥ 3 µm were transmitted. Therefore,

to assess the maximum size of droplets in the following diffusional growth calculations a maximum initial radius of d0 = 2 µm

is used.

225

Diffusional growth calculations (Rogers and Yau, 1989) with set fixed T (e.g. constant at 243 K) and Sw (e.g. constant at

1.04) conditions overestimate the final hydrometeor size at the chamber exit since the calculation assumes a constant super-

saturation to be maintained for the entire time the particle passes through the chamber. In reality, the saturation in the particle

stream needs to equilibrate to the set conditions, thus, the particles are exposed to a lower saturation for the first few seconds

(see Figure A4). The 2D diffusion model provides an estimate of the real T and Sw when using the diffusional growth calcu-230

lations by Rogers and Yau (1989). For an initial diameter of d0 = 2 µm, liquid droplets are calculated to grow to a maximum

size of dliq = 3.31 µm (Zurich, 965 hPa, τ = 9.1 s) and dliq = 2.36 µm (JFJ, 645 hPa, τ = 6.1 s). Measurements of a highly

hygroscopic aerosol, ammonium nitrate with an initial mobility diameter of dm = 200 nm (for the sample preparation see

Section 3.2) show the onset of cloud droplets (no ice crystals since T > 235 K) in the ≥ 3 µm-size bin at Sw = 1.038, as seen

in Figure 6a, and support the calculated maximum size of 3.31 µm at Sw = 1.04. The impact on the final diameter for an initial235

size of d00.2 = 200 nm compared to d02.0 = 2 µm is 0.63 µm (dliq2.0 = 3.31 µm vs. dliq0.2 = 2.68 µm at 965 hPa and τ = 9.1

s). If the INPs activate as soon as ice saturation is exceeded, the ice crystals grow to dice2.0 = 7.77 µm, dice0.2 = 7.51 µm at

965 hPa and τ = 9.1 s and dice2.0 = 7.66 µm (JFJ, 645 hPa, τ = 6.1 s). Therefore, for experiments performed at T = 243 K

and Sw = 1.04, all particles detected in the size bin ≥ 4 µm are considered to be ice crystals formed on INPs. Figure 6b shows

a measured activated fraction (AF) curve of ambient air on the JFJ during a high INP concentration period (7:05 22. March240

2020, UTC). AF is the ratio of all particles, that are detected in the indicated size bin, to all sampled particles, measured with a

CPC within the sample flow. The onset of cloud droplets in the ≥ 0.3 µm size bin exactly at Sw = 1 demonstrates the accuracy

of HINC-Auto. At Sw = 1.13 an observed steep increase in AF in the ≥ 3 µm-OPC size bin indicates droplets only grew larger

than 3 µm at this Sw. Compared to the ammonium nitrate measurements performed at Zurich, a delayed activation is observed.

This is expected because of the decrease in ambient pressure, which results in shorter residence times, and the much lower245

hygroscopicity of ambient particles at the JFJ compared to ammonium nitrate. The signal visible in the ≥ 4 µm-OPC size bin

comes from INPs, which nucleate and grow to ice crystals at Sw ≥ 1.028 (Si ≥ 1.378). This validates the calculations above

that at Sw = 1.04 droplets cannot grow to sizes ≥ 4 µm but ice crystals can supporting the use of the ≥ 4 µm size bin to detect

ice crystals.
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b) JFJ ambient air, 242.9 K, τ = 6.1 s (645 hPa)

1.1 1.151.041.00.950.90.85

a) ZRH, NH4NO3, 200nm, 242.9 K, τ = 9.1 s (965 hPa)

≥ 0.3 µm
≥ 1 µm
≥ 2 µm
≥ 3 µm
≥ 5 µm
≥ 8 µm

≥ 0.3 µm
≥ 1 µm
≥ 3 µm
≥ 4 µm
≥ 5 µm
≥ 6 µm

1.1 1.151.041.00.950.90.85

Figure 6. Activation curve at T = 243 K for a) ammonium nitrate, sampled at Zurich and b) ambient air, sampled at JFJ during an period

with enhanced INP concentrations. Both measurements were performed with HINC-Auto with an identical injector position, but resulted in

a shorter particle residence time (τ ) at the JFJ compared to Zurich because of the reduced ambient pressure. Grey shading refers to chamber

uncertainty (see Section 3.1 for details).

False positive counts can arise from large particles other than ice nucleated on an INP. Dominant false positives arise from250

frost grown on inner chamber surfaces which break off and get carried with the prevailing airflow until exiting the chamber,

where they are detected by the OPC. To assess and correct the measurements for these false counts, before and after a sampling

period of 15 min a background measurement of 5 min is performed. During the background measurement the sample air is

directed through a HEPA filter before being sampled in the chamber. The mean time-normalized background counts before

and after each INP measurement in the ≥ 4 µm bin are subtracted from the ≥ 4 µm-OPC counts during the INP measurement255

before the conversion to std L min−1. The INP concentration is calculated as follows:

INP concentration=

( ∑
INP counts∑
NINP samples

−
∑
BG counts∑
NBG samples

)
1

V tOPC
(1)

where
∑
INP counts is the sum of all counts (particle number) in the ≥ 4 µm OPC size bin during the INP measurement,∑

NINP samples is the total number of OPC intervals during the INP measurement,
∑
BG counts is the sum of the back-

ground counts (particle number) in the ≥ 4 µm OPC size bin before and after the INP measurement while sampling through a260

particle filter,
∑
NBG samples is the total number of background OPC intervals before and after the INP measurement, tOPC

is the duration of each OPC interval in minutes (here 5 sec, thus 5/60 min), and V is the sample flow rate, here V = 0.283 std L

min−1. As the volume flow through the OPC is controlled by the MFC in std L min−1, the resulting INP concentration is INP

std L−1.

The limit of detection (LOD) is calculated as follows:265

LOD =

√∑
BG counts∑

NBG samples

1

V tOPC
(2)

where the LOD is in std L−1. If over a period of 120 OPC background sampling intervals with a duration of 5 seconds each

a total of 3 counts where detected in the ≥ 4 µm OPC size bin, the LOD would be = 0.612 std L min−1 (
∑
NBG samples =

120, tOPC = 0.083 min,
∑
BG counts = 3, V = 0.283 std L min−1). The stated LOD provides a 62.3% (1 σ) confidence
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interval. The minimum detectable concentration (MDC) is 1 count (particle) in the≥ 4 µm OPC size bin over a 15-minute INP270

measurement with a sample flow rate of 0.283 std L min−1, which equals MDC = 0.236 std L−1.

2.5 Quality control

The algorithm to derive the INP concentration also performs a quality control. When a deviation from the set conditions (see

below) is observed, the data is stored normally but a flag is added to the measurement. The evaluation of the flag and a potential

exclusion of the data needs to be done by a researcher during post processing. Deviations are flagged (i) if the mean temperature275

of either wall is off by more than a predefined value (here ±0.15 K), (ii) one of the two MFCs reports a deviation between

the set and the measured flow rate by more than ±50 std mL min−1, (iii) the chiller reports an error, (iv) the pressure within

the chamber is different by more than 50 hPa from the ambient pressure or (v) the water reservoir, used to rewet the chamber

walls, is below a defined threshold (approx. 100 mL).

3 Results280

3.1 Accuracy

Warm wall
coolant inlet

Cold wall
coolant inlet

Warm wall
coolant outlet

Cold wall
coolant outlet

Chamber
outlet

TW1:
-0.56 ± 0.1 K

TW2:
-0.14 ± 0.1 K

TW3:
0.14 ± 0.1 K

TC1:
-0.45 ± 0.1 K

TC2:
-0.05 ± 0.1 K

TC3:
0.05 ± 0.1 K

Injector
inlet (2)

(2+3) Particle growth, relevant section

(1)

(1): -0.505 ± 0.14 K (2): -0.095 ± 0.14 K (3): 0.095 ± 0.14 K 
   (2+3): -0.095 - 0.14 to 0.095 + 0.14 K = ±0.24 K 

(3)

Figure 7. Schematic of uncertainty in temperature measurement showing a side view of HINC-Auto. TW and TC refers to one of six

thermocouples installed on the warm wall and cold wall, respectively. Positions (1), (2), (3) and (2+3) indicate the temperature uncertainty

of the center lamina. . For each of the positions (1), (2), and (3) we have the ± 0.1 K form the warm and ± 0.1 K from the cold wall

thermocouple, thus ±
√
0.12 +0.12 K = ±0.14 K

Four main parameters characterize the INP concentration measured: temperature, supersaturation, particle count and volume

flow. The thermocouples have an uncertainty of ±0.1 K and are calibrated measuring the melting of H2O and Hg, in close

agreement with the ITS-90 (the official protocol of the international temperature scale). The measured relative (compared to

set point T ) temperature variation across the warm and cold wall is -0.56 / +0.14 K and -0.45 / +0.05 K at T = 243 K and Sw285

= 1.04, respectively (see Figure 7). However, on each wall only the two thermocouples close to the injector (TW2/TC2) and

the chamber outlet (TW3/TC3) are used to calculate the mean wall temperature. The relative variation therefore decreases to

±0.14 K (at the warm wall) and ±0.05 K (at the cold wall) for a center nominal temperature of T = 243 K at Sw = 1.04. In
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either case, the temperature increases in the direction of the air flow, because of the parallel-flow setup of the cooling liquid

(see Figure 2b). Subsequently, the uncertainty of the center lamina is -0.095 K for the relative variation plus ±0.14 K for the290

thermocouples uncertainty at location (2) and 0.095 K ± 0.14 K at location (3). Therefore, the resulting total temperature

variation in the section relevant for particle nucleation or activation and growth between the two cooling walls is T ±0.24 K.

The accuracy of the supersaturation within HINC-Auto relies indirectly on the measured temperature, too, since the wall tem-

peratures define the supersaturation. In addition, the vertical position of the aerosol layer determines the T and S experienced

by the particles. Thus, the temperature uncertainty translates together with the maximal displacement of the particles within the295

center lamina with a sheath to sample flow ratio of 9:1 resulting in a supersaturation uncertainty of Sw +0.007 and -0.009 and a

total temperature uncertainty of±1.11 K at nominal T = 243 K and Sw = 1.04. This corresponds to a experienced range of 1.03

≤ Sw ≤ 1.05. According to the manufacturer, the used OPC can count 4995 particles per second, and simultaneously classify

their optical size and place them in one of 6 user-defined size bins, with an overall accuracy of ±10% to the calibrated aerosol.

The sheath air MFC has a standard deviation of σ = 1.07%, and the MFC downstream of the OPC a standard deviation of σ =300

0.25%. The CPC used for validation experiments has a counting uncertainty of ±10% which yields in a relative uncertainty in

the reported AF of ±14%.

3.2 Validation

An overview of the validation of HINC-Auto is shown in Figure 8. Ammonium sulfate ((NH4)2SO4), ammonium nitrate305

(NH4NO3) and sodium chloride (NaCl) were sampled from a aqueous solution with 0.1 mol L−1, atomized, dried using a dif-

fusion dryer to Sw ≤ 0.002 at 20 ◦C and size selected to a mobility diameter dm = 200 nm by a differential mobility analyzer

(DMA, TSI 3082, sheath flow set to 8 L min−1, sample flow 1.3 L min−1). A CPC (TSI 3787) measured the particle con-

centration in parallel to HINC-Auto to obtain AF. The particle concentration was targeted to 200 cm−3. The injector position

in HINC-Auto was kept constant yielding in between τ = 8 (273 K) and 10 seconds (218 K) residence time, depending on310

the temperature of the mid lamina. The experiments were conducted with constant mid lamina temperature while the super

saturation is increased with ∆Sw = 0.02 min−1. The onset of activation in the 1 µm-channel is reported for when the signal

exceeds the background noise levels.

NH4NO3 is used to test cloud droplet formation at T ≥ 235 K and homogeneous freezing of solution droplets at T ≤315

235 K. Cloud droplet formation within the uncertainty range of HINC-Auto is detected at water saturation for 235 K ≤
T ≤ 263 K. At the lower end of the temperature spectrum, the activation onset is more sudden (see Figure A5) and starts

lower than water saturation. For homogeneous freezing at 233 K the activation is steep at Sw = 0.97, 0.017 lower than the

parameterized homogeneous freezing onset of solution droplets for d0 = 200 nm and J = 1010 cm−3s−1 (Koop et al., 2000b),

but within the theoretically reported value considering uncertainty. At 228 and 222 K, the measured activation agree well with320

the parameterized homogeneous freezing onset. The deliquescence of ammonium sulfate ((NH4)2SO4) was observed at Sw

= 0.88 (at 234.9K) to 0.86 (at 245.1K) within the range of uncertainty of literature values (Braban et al., 2001) as shown in
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Figure 8. The deliquescence of sodium chloride (NaCl) lies within the range of uncertainty of measured values by Koop et al.

(2000a).
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Figure 8. Data from experiments in HINC-Auto and comparison to values from literature for cloud droplet formation and homogeneous

freezing onset with ammonium nitrate, and deliquescence of ammonium sulfate and sodium chloride. Reported is the activation onset when

the signal increases above the background noise levels. Dashed line: homogeneous freezing onset of solution droplets for d0 = 200 nm and

J = 1010 cm−3s−1 (Koop et al., 2000b).

3.2.1 Improvement in precision325

Figure 9 shows the activation curves of ammonium nitrate size selected to a mobility diameter of dm = 200 nm and measured

at T = 233 K with HINC-Auto compared to measurements performed with HINC. The sample preparation is as described in

section 3.2 for both chambers with a lower DMA sheath flow of 5 L min−1 and a higher sample flow of 1.6 L min−1 to feed

both chambers and the CPC. This resulted in a broader transfer function within the DMA and consequently more larger and

multiple charged particles penetrating the size selection. Due to the hygroscopicity of ammonium nitrate, the multiple charged330

particles are detected in the ≥ 1 µm OPC size bin after hygroscopic growth at Sw < 0.98. In comparison, measurements in

section 3.2 and Figure A5 use a narrower DMA transfer function and show a lower activated fraction below Sw < 0.98 than

in the experiment with the broader transfer function. The injector position was chosen to result in residence times of τ ≈ 9

seconds. The standard sheath to sample flow ratio of HINC-Auto was adjusted to 12:1 to be equal to the ratio used in HINC in

order to compare the performance of the two chambers (note that the standard sheath to sample flow ratio of HINC-Auto is 9:1.335

See Section 2.2). HINC-Auto shows an improved precision compared to HINC. We attribute the improvement to the use of the

mesh and, subsequently, the more uniform flow within HINC-Auto compared to HINC without the mesh. For measurements in

the field with HINC, a defined supersaturation (e.g. Sw = 1.04), temperature and OPC-size bin (e.g.≥ 4 µm) is used to quantify

INPs. Therefore, fluctuations in the activation precision of the ≥ 4 µm size bin can lead to uncertainties in INP concentrations.

In the example of HINC, this is equivalent to more than one order of magnitude, thus an improved precision improves the340
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quality of the INP measurements. In addition, particle sedimentation, as expected by theory (see section below), is visible in

the activation curves of HINC-Auto at Sw ≥ 1.02 (see Section 3.2.2).

HINC-Auto, 3 experiments HINC, 5 experimentsa) b)

 

≥ 1µm
≥ 5µm

Figure 9. Activation curves of ammonium nitrate in HINC-Auto (a) and HINC (b) at T = 233K with identical particle residence times of

τ ≈ 9 sec.; the vertical dashed line indicates the expected homogeneous freezing onset of solution droplets for d0 = 200 nm and J =1010

cm−3s−1 (Koop et al., 2000b). Sizes indicate what fraction of all particles entering the chamber grow to or beyond the indicated size. Grey

shading refers to chamber uncertainty (see Lacher et al. (2017) for details on HINC and Section 3.1 for details on HINC-Auto).

3.2.2 Sedimentation study

The 2D diffusion model can also be used to calculate the diffusional growth of liquid and solid hydrometeors and their subse-

quent sedimentation characteristics. An example is given in Figure 10a and compared to an experiment of silver iodide (AgI,345

Figure 10b) at T = 243 K with a residence time of τ = 13.7 sec at p = 965 hPa. AgI samples were prepared by aqueous solutions

of 0.01 mol L−1 of potassium iodide and silver nitrate, where the silver nitrate solution was slowly added to the potassium

iodide under constant stirring. This procedure favors the formation of β-AgI over α-AgI (Brauer, 1965). After resting for 60

min, the top 80% (consisting only of a clear solution) of the yellow suspension was decanted and the equivalent of removed

volume was added in ultra pure water. A brief swivel lofted the settled precipitate. The decanting procedure was repeated twice.350

The suspension was atomized, dried using a diffusion dryer to Sw ≤ 0.008 at 20 ◦C and size selected to dm = 100 nm by a

DMA. For the simulation, the fraction of INPs has been set to 15% for the simulation to agree best with the experiment. The

fraction of INPs depends on the fraction of ice active β-AgI particles within all particles (Marcolli et al., 2016), which also

contain ice inactive α-AgI particles and cannot be deduced by the 2D diffusion model, and therefore, needs to be prescribed.

The model uses the size distribution after the DMA measured by a Scanning Mobility Particle Sizer (SMPS) setup (DMA,355

TSI 3081, with CPC, TSI 3772) as input for the particle initial sizes and also places the particles (N = 1000 for each, INPs

and CCN) at uniformly distributed vertical positions within the sample lamina. The model assumes instant activation of the

particles as soon as ice or water saturation are reached. Also Köhler-theory is not implemented. Ice crystals are assumed to be

spherical.

360
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b)  Experiment: AgI, 243.2 K, 100 nm ≥ 0.3 µm
≥ 1 µm
≥ 2 µm
≥ 3 µm
≥ 5 µm
≥ 8 µm

a)  Simulation: 243.2 K, 15% INPs

Figure 10. a) Simulated activated fraction curve as a function of Sw with a prescribed fraction of INPs of 15% for Sw < 1 and b) measured

activated fraction of dm = 100 nm silver iodide (AgI) particles, both at T = 243 K, with a particle residence time of τ = 13.7 sec at p = 965

hPa. Sizes stated in the legend indicate what fraction of all particles entering the chamber are activated and grow to or beyond the indicated

size. Grey shading refers to chamber uncertainty around Sw = 1.0 (see Section 3.1 for details).

The model can capture the general trend of the experiment. The rapid onset of ice formation at Sw ≤ 0.8 is not reproduced

because this depends on the nucleation rate of the substance, which is neither parameterized nor simulated using molecular

dynamics or similar approaches. However, the simulation demonstrates an upper bound of possible sizes, which is in agreement

with the experiment. Where the ice growth is limited by the amount of supersaturation required for diffusional growth, e.g. at

Sw ≥ 0.81, the transition of ice crystals growing to a size ≥ 8 µm is reproduced well. The sedimentation of the ice crystals is365

observed at Sw ≥ 0.87 while the simulation predicts Sw ≥ 0.86. The onset of liquid droplets is identical in the experiment for

sizes ≤ 3 µm, and delayed for larger sizes. Water vapor depletion is not likely the cause because running the experiment with a

sample concentration of 20 or 1200 particles cm−3 compared to the original 200 particles cm−3 did not alter the slow growth

of hydrometeors ≥ 5 µm. We expect the delay to be present because of the missing implementation of Köhler-theory. The AF

in the experiment as well as in the simulation is leveling off at AF = 0.85 for 1.02 ≤ Sw ≤ 1.13. Ice crystals (≈ 15 % in the370

experiment) and supercooled droplets are continuously formed at these supersaturations, but ice crystals grow to such large

sizes that they sediment and are not detected at the outlet anymore. Therefore, maximum droplet activation of all non-ice active

particles is observed in this region. The sedimentation of droplets is observed delayed at Sw ≥ 1.16 compared the model output

at Sw ≥ 1.13. This is likely a result of the delayed onset of liquid droplet formation seen in the experiment. While increasing

the supersaturation the droplets remain too small, thus their size-dependent settling is delayed, too.375

3.2.3 INP measurement

To assess HINC-Auto’s capability of fully automated INP measurement, NX Illite was sampled in a controlled laboratory

environment. The goal of this experiment is to assess how reliablly INPs can be detected over different INP concentrations

and what their impact is on the ice layer endurance, thus deciding which rewetting intervals are needed and to test the overall

automation of the chamber. HINC-Auto was, therefore, run autonomously except for a change in when to trigger the rewetting380

sequence. Using the software user interface, a command was sent to the chamber after the chamber was presumed to have
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run dry. This has been inferred based on the decay of the reported INP concentrations. For the experiment, NX Illite was dry

dispersed by a rotating brush generator (PALAS, RBG 1000) into a stainless steel aerosol chamber with V = 2.78 m3, initially

filled with dry, pure nitrogen. The volume within the aerosol chamber was actively stirred with a gold-plated fan (30 cm

diameter). The observed particle number size distribution was 30 - 1000 nm (see Figure 11a). A common sample line from the385

aerosol chamber feeds a two way flow spitter, which connects HINC-Auto and a CPC (TSI 3778) using tubing with identical

length and diameter. A burst of NX Illite was initially added to the aerosol chamber and continuously diluted by sampling 0.883

std L min−1 (0.283 std L min−1 for HINC-Auto and 0.6 std L min−1 for the CPC) and adding 1.0 std L min−1 of dry N2. An

additional bypass valve allowed to vent the excess N2 before entering the aerosol chamber. HINC-Auto was run at mixed-phase

cloud condition at T = 243 K and Sw = 1.04 to sample in the immersion freezing mode with a sheath to sample flow ratio of 9:1390

and a residence time of τ ≈ 8 seconds. The chamber measured intervals of sample aerosols for 15 min and filtered background

for 5 minutes. Figure 11b shows the measured INP and particle concentrations during the course of the experiment. Since the

initial burst of NX Illite is suspended in dry, inert nitrogen, it is expected for the ice active fraction to remain fairly constant or

decrease slightly over time. A slight decrease is expected when larger particles, which tend to be more ice active because of

the higher surface area, sediment within the tank sooner than small particles. A SMPS setup (DMA, TSI 3082, with CPC, TSI395

3787) measured the size distribution at the beginning of the experiment and after 62 hours (see Figure 11a). For the initial scan

(solid line) the sheath flow was set to 5 L min−1, and for the second scan to 2 L min−1 (dashed line). At a lower sheath flow

rate, the SMPS scan shifts to cover a larger range of particle sizes while limiting the scanning range at smaller particle sizes.

Both measured size distributions were similar with a small shift towards larger particles for the later scan. This contradicts

the assumption of large particles sedimenting more quickly than small particles, thus shifting size distribution towards smaller400

particle sizes with time. A reason could be due to particle coagulation in the stainless steel aerosol chamber, which causes

the observed shift in size distribution towards larger particle sizes. The measured INP concentrations show a systematically

repetitive trend: After each rewetting sequence the ratio between particle and INP concentration is approximately 1:1000.

During the operation of the chamber the ratio remains fairly constant and decreases after some time. We expect the decrease to

coincide with the depletion of the top wall ice layer. The higher the particle number concentration (N ), the sooner the decrease405

is expected (due to consumption of water vapor mass), and observed. For atmospheric relevant conditions at the JFJ with

400 cm−3 ≤N ≤ 1000 cm−3 the drop occurs after 8.5 hours, for 95 cm−3 ≤N ≤ 200 cm−3 after 13 hours. N is expected

to contribute more in water vapor depletion than the INP number concentration because approximately 1000 times as many

particles grow to liquid droplets of a size of ≈ 1.3 µm than INPs grow to ≈ 4.7 µm. At particle concentrations ≤ 30 cm−3

and INP concentrations ≤ 30 std L−1 the INP concentration starts to show noise which increases in relative magnitude with410

decreasing particle concentrations. A running mean of 4 subsequent measurements decreases the noise and allows the particle

to INP ratio to remain until ≈ 6 INP std L−1. Based on the above experiment we choose a rewetting time of 8 hours for field

applications in remote areas such as Jungfraujoch.
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a)
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Nx Illite, polydisp., 243 K, Sw = 1.04

Figure 11. INP concentration in HINC-Auto as a function of time and NX Illite particle concentration. a) SMPS retrieved particle size

distribution at time 1 (solid line) and 2 (dashed line). The DMA sheath flow was set to 5 (solid line) and 2 L min−1 (dashed line). b)

Measured INP and particle concentrations within the aerosol tank.

3.3 Application

The automation of HINC-Auto was tested during a field campaign in August 2019 on the JFJ. In this time, HINC-Auto415

was operational for 169 out of the 177 available hours (95.5%) and measured 463 measurements-background sequences of a

duration of 20 minutes each (see Figure 12a). The maximum measurement coverage with HINC in a time window of 177 hours

during previous field campaigns was 191 measurement sequences (see Lacher et al., 2018), also 20 minutes in duration (103

hours, 58%, see Figure 12b). The automation shows a clear improvement in the continuity of the measurements. However,

during the field campaign the LOD of HINC-Auto was appreciably higher than the LOD of HINC during previous field420

campaigns (median LOD HINC-Auto: 3.1 std L−1, HINC: 1.25 std L−1). Design changes implemented in a second field

campaign started in February 2020 resulted in a median LOD of 1.37 std L−1. It was observed that ice crystals and frost

deposited within the cavity of the chamber outlet. We assumed for supercooled liquid droplets, which make up the majority
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of the hydrometeor population exiting the chamber, to impact on the surfaces where the Swagelok fitting (to connect the

OPC) is inserted into the PVDF frame. The change in inner diameter from the cavity within the PVDF frame (di = 10.2425

mm) to the fitting (di = 3.3 mm) is like a step. The design changes included using a conical drill bit (20°) to smoothen the

connection between the chamber outlet and the fitting. In addition, the Swagelok fitting is warmed with a 10 W heat pad during

the rewetting procedure to support the evaporation of residual condensate or molten ice that does not drain due to gravity

while the chamber is tilted. In the first month the chamber was operational for 698 out of 720 available hours (97.0%). A

broken membrane of the recirculating pump caused 10 hours of downtime, the measurement of ramps at the beginning of430

the campaign resulted in 7 hours when the chamber was not performing INP measurement sequences. The remaining 5 hours

were due to multiple software glitches which were fixed. In March 2020, HINC-Auto was operating more reliably with a total

downtime of 3 hours because of software bugs. Bug fixes were implemented and let to an operation without any downtime

in April 2020. Continuous INP measurements of HINC-Auto at the JFJ are planned to proceed. Live data can be accessed at

https://www.psi.ch/en/lac/projects/last-72h-of-aerosol-data-from-jungfraujoch.435

HINC-Auto, Aug 2019, 243 K, Sw = 1.04a) HINC, Aug 2016, 242 K, Sw = 1.04 (green), Sw = 0.94 (blue)b)
Lacher et al., 2018
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Figure 12. INP measurements at the JFJ over a period of 7 days with a) HINC-Auto at T = 243 K and Sw = 1.04 and b) HINC at T =

242 K and Sw = 1.04 (green markers) or Sw = 0.94 (blue markers) (see Lacher et al., 2018). Green/blue markers indicate the ambient INP

concentration, the grey bar indicates the limit of detection (LOD) with a 62.3% (1 σ) confidence interval, red markers indicate measured INP

concentrations below the minimum detectable concentration (MDC, 1 count during the sampling time). Every grey bar with a corresponding

green/blue/red dot represents one measurement.

4 Conclusions

In this study the automated Horizontal Ice Nucleation Chamber (HINC-Auto) is presented, a continuous flow diffusion chamber

to measure atmospheric ice nucleating particle number concentration. During a first field campaign, the chamber was opera-

tional fully autonomously for 95% of the time. Over a 90 day period of a second field campaign, HINC-Auto measured INP

autonomously for 97% of the time. This time includes INP sampling time as well as periodically reoccurring rewetting pro-440

cedures. To realize full autonomous operation, the rewetting procedure in HINC was automated. In HINC-Auto, a peristaltic

pump remoistens the filter paper that coats the top (warm) wall within the chamber while a linear motor tilts the chamber

thereby allowing excess water to drain. The bottom wall passively wets through diffuson of vapour from the cold wall. To max-

imize the sampling time, the duration of the rewetting procedure was reduced by reducing the warming and cooling time of the
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chamber by using a lower thermal mass for the chamber walls. This was done by using aluminium compared to copper and by445

shortening the chamber. To maintain a well developed relative humidity profile within the sampling section in the shortened

chamber, the sheath air is precooled using heat sinks mounted on the cold, bottom wall. Besides the automation, improvements

to the flow uniformity were achieved by the integration of a mesh. The resulting activation curves during experiments with

relative humidity ramps are steeper in expectation to theory and show a better reproducibility. In addition, the experiments

match the predictions of a 2D diffusion model to a high degree. Experiments with HINC-Auto for cloud droplet formation and450

homogeneous freezing onset with ammonium nitrate, and deliquescence of ammonium sulfate and sodium chloride showed

good agreement with values found in literature. HINC-Auto is currently deployed for long-term continuous measurements of

INP at JFJ and analysis after a year of data collection will be presented in a follow up study.

Code availability. The code used for simulations presented here is available upon contacting the authors.

Data availability. The data presented in this publication will be made available at DOI: 10.3929/ethz-b-000429220. Note by authors: Data455

will be made available upon publication

Appendix A

A1 CFD simulations

The CFD simulations were performed using Siemens PLM STAR-CCM+ © V13.04.010. A grid convergence study was con-

ducted prior to the simulations. A 96% convergence of the flow field was observed for the following settings, which were used460

for all subsequent studies. A tetrahedral mesh with a total count of 9.5× 106 cells was generated with the surface remesher

option and 5 prism layers with a stretching of 1.3. The base mesh size was set to 2 mm with a refinement of 0.25 mm around the

injector and the heat sinks and a further refinement of 0.1 mm in the vicinity of the injector’s slit. The physics model consisted

of 3D turbulent Reynolds-Averaged Navier-Stokes equations, k-ω turbulence model, Lagrangian multiphase with water vapor

and air, steady-state, segregated fluid enthalpy, ideal gas, and gravity. Convergence was observed after ∼ 2000 iterations with465

energy-residuals < 10−5 as criterion. An unsteady simulation showed no instationary flow behavior and was consistent with

the steady-state solution.
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A2 Particle Image Velocimetry

Spacer

Camera 
(Sony Alpha 7R II)

500 mW Laser 
(532 nm)

Acrylic Glass
Cold Wall110° Powell Lens

Figure A1. Schematic of the particle image velocimetry experiment with HINC.

Particle image velocimetry (PIV) has been used to validate the CFD-simulations. Figure A1 illustrates the experimental set-

up using HINC. Dry NX Illite size-selected particles to a mobility diameter dm = 400 nm have been used as tracer. Two470

experiments were conducted: first, the chamber without the injector. The particles were added to the sheath air. The goal

was to sample the overall flow within HINC and deduce the 2D-velocity field. The injector was installed for the second

experiment. Here, the areas of interest were to study the impact of the injector on the base-flow within the chamber, as well

as the trajectories of non-sedimentating particles as they exit the injector. All results are for the purpose of validating the

CFD-simulations. The image sequences were recorded by a SONY Alpha 7R II with a resolution of ∆2
low = 3840×2160 pixel475

and ∆2
high = 1920× 1080 pixel. The camera captured images at flow = 25 fps and fhigh = 100 fps. A 500 mW-laser-diode

with a wavelength of λ= 532 nm was used as continuous light source. The laser beam is deflected with a K9 110 degree

Powell lenses into a straight line, and oriented such, that it illuminates a horizontal plane. The laser’s vertical position was

controlled by a stepper-motor and could be adjusted with a resolution of 0.05 mm. This allowed to scan the entire chamber

and produce a 3D matrix containing the xy-planar velocity components. The laser-facing wall of the CFDC’s spacer has been480

replaced by a planar transparent acrylic glass to allow the laser beam to pass. Also, the top cooling wall has been replaced

by clear acrylic glass to allow the camera to capture the illuminated particles. The lower wall was chilled to 279.6 K, while

the top acrylic’s temperature was at ambient (297 K). The resulting temperature difference of 17.4 K is identical to when the

chamber is operated at T = 243 K and Sw = 1.04. It is assumed that the absolute temperature has a minor impact on the flow,

while it is important to mimic the relative temperature differences since it represents the difference in fluid densities. The post-485
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processing has been done using PIVlab (Thielicke and Stamhuis, 2014). Fast Fourier Transform linear window deformation

technique was used as PIV algorithm with an interrogation area of 128 pixel and a step size of 64 pixel. A second pass an

interrogation area of 64 pixel and a step size of 32 pixel followed. Figures A2 and A3 compare the flow field retrieved from

the PIV experiments with the CFD-simulations. For the PIV experiments low-settings were used to capture the flow of the

entire fluid domain, whereas the high-settings were used to extract flow features where the low-settings failed to produce a490

valid output. Nevertheless, in the areas after the sheath flow outlets the flow velocity was too high to be captures with the high-

settings. Also, close to the spacer walls, no velocity information could be computed, because of the Fast Fourier Transform

window deformation technique. Quantitatively the CFD simulations are able to capture the flow structures measured during

the experiment. Quantitatively, the correlation of the u,w-velocity components all voxels resolved by the experiment with the

u,w-velocity components of the simulation with identical locations were rHINC = 0.94 and rmesh = 0.95 for the experiment495

without and with mesh, respectively. Least correlation was observed in the areas of the sheath flow jets where high flow

velocities are present. Also, the simulated particle trajectories were qualitatively stringent with the experiment. Therefore, the

CFD simulations were deemed valid.
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Flow �eld from PIV experiment
Not Resolved

Theoretical �ow �eld

Flow �eld from CFD simulation

Figure A2. Contour plot of flow velocities magnitudes at a horizontal plane of the HINC cavity at mid-height. The chamber is set to T = 243

K and Sw = 1.04. Theoretical flow field (top), flow field measured using PIV (center) and simulated flow field from CFD (bottom). Arrows

indicate flow direction, the hatching marks regions with reversed flow. The dashed line represents a possible position of the injector.
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Flow �eld from PIV experiment, incl.  Mesh
Not Resolved

Theoretical �ow �eld, incl.  Mesh

Flow �eld from CFD simulation, incl.  Mesh

Figure A3. Contour plot of flow velocities magnitudes at a horizontal plane of the HINC cavity at mid-height including a mesh installed

at xinj = 0.022 m. The chamber is set to T = 243 K and Sw = 1.04. Theoretical flow field (top), flow field measured using PIV (center)

and simulated flow field from CFD (bottom). Arrows indicate flow direction, the hatching marks regions with reversed flow. The dashed line

represents a possible position of the injector.
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A3 2D diffusion model

A numerical diffusion model has been developed to simulate the water vapor saturation field within HINC-Auto. The output500

of the model is a 2D vertical plane of a horizontal CFDC and its prevailing temperature and water vapor saturation field.

Assuming a two-dimensional flow along the chambers length, for the prevalent conditions with Reynolds number Re= 6.82×
102 between two long plates the analytical solution of the Navier–Stokes equations describes a Poiseuille flow according to

equations (A1) and (A2):

u∞bulk
(x) =

V̇

Ayz(x)
(A1)505

u(x,z) =
3

2
u∞bulk

(x)

(
1−

(
z− h

2

)2(
h
2

)2
)

(A2)

Where x,y,z are the coordinates along the length, width and height of the chamber. The origin is located on the bottom

cooling wall where the sheath-air enters at mid-width. u∞bulk
(x) is the bulk velocity along the chamber’s length, V is the

preset volume flow of air, Ayz(x) is the vertical cross-section of the chamber’s cavity which varies along the length of the

chamber, u is the stream wise velocity component and h is the total height of the chamber. According to equation (A2) the510

center lamina has a 50% higher flow velocity than the bulk flow velocity. The particle’s theoretical residence time τtheory is

calculated using equation (A3):

τtheory(xinj) =

xoutlet∫
xinj

x

u∞bulk
(x)

dx (A3)

Where xinj is the injector’s x-position and the outlet’s x-position xoutlet.

In CFDCs the temperature and water vapor concentration of the air flow equilibrates from their initial states to form a water515

vapor supersaturated region. To calculate the sedimentation of particles as well as estimate the particle’s final size the two

underlying diffusion processes have to be described. Firstly, the heat flux between the warm and cold wall. We assume in

accordance to Saxena et al. (1970) no radiation. Although the Nusselt number Nu= 15.3 propose otherwise, the calculations

are simplified by considering thermal conduction only and neglecting the forced convection. The heat conduction within the

ice layer can be neglected (Biot number Bi= 7.27× 10−5). The calculated numbers are computed for HINC-Auto, the corre-520

sponding values of the chamber of Rogers (1988) are Nu= 22.3 and Bi= 1.14×10−4 for Tmid = 253.15 K and V̇ = 4 std L

min−1. Besides, the latent heat released or absorbed by the particles or by the wall’s ice layer is neglected for calculation of the

chamber’s internal temperature field. The former is taken into consideration during the diffusion growth calculations (Rogers

and Yau, 1989). This leads to the diffusion of heat in air by changing their kinetic energy, according to the heat equation (A4)

(Amelin, 1967):525

∂Tair
∂t

=
λair

cpairρair

∂2T

∂x2
(A4)
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Where Tair is the temperature of the air, t is the temporal variable, λair is the thermal conductivity of air, cpair
is the heat

capacity of air at a constant pressure, ρair is the density of the air and x is the spatial coordinate.

The second diffusion process is the diffusion of water vapor according to Fick’s law (Fick, 1855) in equation (A5):

∂µH2O

∂t
=DH2O/air

∂2µH2O

∂x2
(A5)530

Where CH2O is the concentration of water vapor, DH2O/air is the diffusivity of water vapor in air and µH2O is the chemical

potential of the water vapor.

Saxena et al. (1970) states in equation (A5) to use the water vapor concentration CH2O instead of the chemical potential,

yet, it was chosen to use the water vapor partial pressure e in accordance with Rogers (1988). Fundamental theory often

suggests the diffusion to be driven by the difference in chemical potential (Sutherland, 1905; Einstein, 1905). Diffusion based535

on partial pressure or concentration results in different supersaturations than diffusion based on chemical potential. This has

has a profound impact on the operating conditions in CFDCs, since the partial pressure is a function of the concentration as well

as of the temperature, as seen in the rearranged ideal gas law, (A6), and changes the supersaturation in a non-linear fashion:

e=
CH2ORT

MH2O
(A6)

To calculate S the equilibrium saturation vapor pressure of water and ice according to Murphy and Koop (2005) is used. For the540

2D diffusion model, both heat, and diffusion equations are solved numerically using the forward Euler method. The velocity

is prescribed using equation (A2). The 2D fluid domain is modeled using a mesh with a grid spacing of 1 mm (7500 nodes in

total). The steady state simulation converged after ≤ 100 iterations. Buoyancy has been neglected because it showed to have

minor effect on the supersaturation field within horizontal CFDC. The model output has been compared versus a validated

CFD simulation as visualized in Figure A4.545

Theoretical equilibrium
Analytical Sol. (Rogers, 1988)
2D Diffusion model
3D CFD simulation

Midlamina supersaturation, T = 243 K, Sw = 1.04, xinj = 15.7 cm
Residence time until chamber outlet (s)

Chamber length (m)

Figure A4. Comparison of the midlamina water supersaturation at T = 243 K, as calculated using the analytical formula (Rogers, 1988),

simulated using the 2D diffusion model and the 3D-CFD simulation. Injector position xinj = 15.7 cm.
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Diffusional growth is calculated according to Rogers and Yau (1989) with the latent heat of sublimation of ice, and latent

heat of vaporization of supercooled water according to Murphy and Koop (2005). T and S are variable and feed in from the

2D diffusion model corresponding to the particle’s current horizontal and vertical position within the chamber. The diffusional

growth of the hydrometeors assumes activation when saturation with respect to ice or water is exceeded.

A4 Ammonium nitrate experiments550

≥ 0.3µm
≥ 1 µm
≥ 2 µm
≥ 3 µm
≥ 5 µm
≥ 8 µm

NH4NO3, 200 nm

Figure A5. Relative humidity ramps showing the increase in AF during deliquescence and cloud droplet formation of 200 nm ammonium

nitrate particles at various temperatures. Grey shading refers to chamber uncertainty (see Section 3.1 for details).
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A5 Ammonium sulfate experiments

(NH4)2SO4, 200 nm

≥ 0.3µm
≥ 0.4µm
≥ 0.6µm
≥ 1.0µm
≥ 2.0µm
≥ 3.0µm
Deliquescence

Figure A6. Relative humidity ramps showing the increase in AF during deliquescence and cloud droplet formation of 200 nm ammonium

sulfate particles at various temperatures. Light blue shading highlights range of observed deliquescence, grey shading refers to chamber

uncertainty (see Section 3.1 for details).

29



A6 Sodium chloride experiments

≥ 0.3µm
≥ 0.4µm
≥ 0.6µm
≥ 1.0µm
≥ 2.0µm
≥ 3.0µm
Deliquescence

Figure A7. Relative humidity ramps showing the increase in AF during deliquescence and cloud droplet formation of 200 nm sodium

chloride particles at various temperatures. Light blue shading highlights range of observed deliquescence, grey shading refers to chamber

uncertainty (see Section 3.1 for details).
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A7 Guided user interface

Figure A8. Main window of the guided user interface used to control HINC-Auto. Top row buttons: Ramp Page leads to the window to run

Sw- or T-ramps (see Figure A9), INP measurement leads to the window to run INP measurements (see Figure A10) and Settings Page leads

to the window to change additional settings (see Figure A11). OPC MFC shows the current flow rate of the OPC mass flow controller (MFC),

as reported by the MFC, Sheath MFC analogously shows the flow rate of the sheath flow MFC, Sample reports the difference between both

MFC, which corresponds to the current sample flow rate. BGRamp shows the target state of the chamber, in this case "measuring the

background after or before a RH- or T-ramp, BG shows the state in which the chamber currently is, rewetting at indicates the time of the

next planned rewetting procedure (UTC), Sheath indicates the RH and pressure p of the sheath air as it enters the chamber (measured at

mid-height within the chamber upstream of the mesh, thus at the same temperature as the chamber is set to) and Sample indicates the RH

and pressure p of the sample air (just downstream of the sample diffusion dryer. Center row buttons: Set Twarm sets the target temperature

of the warm wall, Set Tcold sets the target temperature of the cold wall, Set kp and Set ki set the proportional gain (kp) and integral gain

(ki) of the PI-controller to control the warm wall temperature, Set valve loop time (s) defines the duration of a loop to actuate the warm

wall solenoid valve. Bottom row buttons: open valve manually opens and closes the warm wall solenoid valve, Set display period (min)

defines the amount of historic data to be shown in the four graphs below, turn drainage on manually actuates the pump to drain the chamber

during rewetting, Rewet chamber executes the rewetting procedure, Rewet chamber and cool executes the rewetting procedure and cools

the chamber back down to the set temperature of the chamber before the button was activated, Measuring changes the chamber’s state and

valves to sampling or background measurement. The top left graph shows the warm wall temperature (all three thermocouples, the computed

mean wall temperature and the set temperature). The top right graph shows the cold wall temperature (all three thermocouples, the computed

mean wall temperature and the set temperature). The bottom left graph shows the counts reported by the OPC for each of the six size-bins/

channels (here CH 1 set to ≥ 0.3 µm, CH 2 set to ≥ 1 µm, CH 3 set to ≥ 3 µm, CH 4 set to ≥ 4 µm, CH 5 set to ≥ 5 µm, CH 6 set to ≥ 6

µm). The bottom right graph shows Sw and T for the center lamina (calculated).
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Figure A9. Window of the guided user interface used to control RH- or T-ramps with HINC-Auto.

Figure A10. Window of the guided user interface used to control INP measurements with HINC-Auto.
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Figure A11. Window of the guided user interface used to adjust additional settings with HINC-Auto.

Author contributions. CB conducted experiments with input from ZAK. CB designed the HINC-Auto chamber with input from ZAK. CB

designed and conducted PIV and CFD experiments. CB developed the 2D diffusion model. CB analysed the data and prepared the figures555

with input from ZAK. CB and ZAK interpreted the data. CB wrote the manuscript with input from ZAK. ZAK conceived the idea, supervised

the project and obtained funding.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research was funded by the Global Atmospheric Watch, Switzerland (MeteoSwiss GAW-CH+ 2018–2021). We

thank Prof. Dr. Ulrike Lohmann for her support and enthusiasm. We acknowledge Jörg Wieder, Zane Dedekind, Dr. Fabian Mahrt, and Dr.560

Carolin Rösch for useful discussions. For technical support and fabrication we would like to thank Dr. Michael Rösch and Marco Vecellio,

whose expertise greatly helped to improve the instrument. We thank the editor Mingjin Tang and two anonymous referees for their valuable

contribution to the manuscript.

33



References

Al-Naimi, R. and Saunders, C. P. R.: Measurements of natural deposition and condensation-freezing ice nuclei with a continuous flow565

chamber, Atmospheric Environment (1967), 19, 1871–1882, https://doi.org/10.1016/0004-6981(85)90012-5, 1985.

Amelin, A.: Theory of Fog Condensation. Translated from the second Russian edition (Moscow, 1966, B. V. Deryagin, Ed.) by Z. Lerman.

Israel Program for Scientific Translations, https://doi.org/https://doi.org/10.1126/science.160.3823.61-a, 1967.

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O’Sullivan, D., and Malkin,

T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/570

nature12278, 2013.

Beall, C. M., Lucero, D., Hill, T. C., Demott, P. J., Stokes, M. D., and Prather, K. A.: Best practices for precipitation sample storage for

offline studies of ice nucleation 1, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-183, in review, 2020.

Bi, K., McMeeking, G. R., Ding, D. P., Levin, E. J., DeMott, P. J., Zhao, D. L., Wang, F., Liu, Q., Tian, P., Ma, X. C., Chen, Y. B., Huang,

M. Y., Zhang, H. L., Gordon, T. D., and Chen, P.: Measurements of Ice Nucleating Particles in Beijing, China, Journal of Geophysical575

Research: Atmospheres, 124, 8065–8075, https://doi.org/https://doi.org/10.1029/2019JD030609, 2019.

Boose, Y., Sierau, B., Isabel García, M., Rodríguez, S., Alastuey, A., Linke, C., Schnaiter, M., Kupiszewski, P., Kanji, Z. A., and Lohmann,

U.: Ice nucleating particles in the Saharan Air Layer, Atmospheric Chemistry and Physics, 16, 9067–9087, https://doi.org/10.5194/

acp-16-9067-2016, 2016.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P.,580

Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, book section 7, pp. 571–658, Cambridge University

Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013.

Braban, C. F., Abbatt, J. P., and Cziczo, D. J.: Deliquescence of ammonium sulfate particles at sub-eutectic temperatures, Geophysical

Research Letters, 28, 3879–3882, https://doi.org/10.1029/2001GL013175, 2001.

Brauer, G.: Handbook of Preparative Inorganic Chemistry V2, v. 2, Elsevier Science, https://doi.org/10.1016/B978-0-12-395591-3.X5001-8,585

1965.

Brubaker, T., Polen, M., Cheng, P., Ekambaram, V., Somers, J., Anna, S. L., and Sullivan, R. C.: Development and characterization of a

“store and create” microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles, Aerosol Science and

Technology, 54, 79–93, https://doi.org/10.1080/02786826.2019.1679349, 2020.

Chou, C., Stetzer, O., Weingartner, E., Jurányi, Z., Kanji, Z. A., and Lohmann, U.: Ice nuclei properties within a Saharan dust event at the590

Jungfraujoch in the Swiss Alps, Atmospheric Chemistry and Physics, 11, 4725–4738, https://doi.org/10.5194/acp-11-4725-2011, 2011.

Conen, F., Rodríguez, S., Hüglin, C., Henne, S., Herrmann, E., Bukowiecki, N., and Alewell, C.: Atmospheric ice nuclei at the high-altitude

observatory Jungfraujoch, Switzerland, Tellus, Series B: Chemical and Physical Meteorology, 67, 25 014, https://doi.org/10.3402/tellusb.

v67.25014, 2015.

Cziczo, D. J., Ladino, L. A., Boose, Y., Kanji, Z. A., Kupiszewski, P., Lance, S., Mertes, S., and Wex, H.: Measurements of Ice Nucleat-595

ing Particles and Ice Residuals, Meteorological Monographs, 58, 8.1–8.13, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1,

2017.

Demott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., Borys, R., and Rogers, D. C.: Measurements of

the concentration and composition of nuclei for cirrus formation, Proceedings of the National Academy of Sciences, 100, 14 655–14 660,

https://doi.org/10.1073/pnas.2532677100, 2003.600

34

https://doi.org/10.1016/0004-6981(85)90012-5
https://doi.org/https://doi.org/10.1126/science.160.3823.61-a
https://doi.org/10.1038/nature12278
https://doi.org/10.1038/nature12278
https://doi.org/10.1038/nature12278
https://doi.org/10.5194/amt-2020-183
https://doi.org/https://doi.org/10.1029/2019JD030609
https://doi.org/10.5194/acp-16-9067-2016
https://doi.org/10.5194/acp-16-9067-2016
https://doi.org/10.5194/acp-16-9067-2016
https://doi.org/10.1017/CBO9781107415324.016
https://doi.org/10.1029/2001GL013175
https://doi.org/10.1016/B978-0-12-395591-3.X5001-8
https://doi.org/10.1080/02786826.2019.1679349
https://doi.org/10.5194/acp-11-4725-2011
https://doi.org/10.3402/tellusb.v67.25014
https://doi.org/10.3402/tellusb.v67.25014
https://doi.org/10.3402/tellusb.v67.25014
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1
https://doi.org/10.1073/pnas.2532677100


DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni, A. J., and Kreidenweis, S. M.: African dust

aerosols as atmospheric ice nuclei, Geophysical Research Letters, 30, 1732, https://doi.org/10.1029/2003GL017410, 2003.

Demott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:

Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proceedings of the National Academy of Sciences,

107, 11 217–11 222, https://doi.org/10.1073/pnas.0910818107, 2010.605

Demott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., Leisner, T., Bundke, U., Klein, H., Kanji, Z. A.,

Cotton, R., Jones, H., Benz, S., Brinkmann, M., Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B., Bingemer, H., Abbatt, J. P.,

Ardon, K., Ganor, E., Georgakopoulos, D. G., and Saunders, C.: Resurgence in ice nuclei measurement research, Bulletin of the American

Meteorological Society, 92, 1623–1635, https://doi.org/10.1175/2011BAMS3119.1, 2011.

Dufour, L.: Ueber das Gefrieren des Wassers und über die Bildung des Hagels, Annalen der Physik, 190, 530–554, https://doi.org/10.1002/610

andp.18621901203, 1862.

Einstein, A.: Ueber die von der molekularkinetischen Theorie der Waerme geforderte Bewegung von in ruhenden Fluessigkeiten sus-

pendierten Teilchen, Annalen der Physik, 322, 549–560, https://doi.org/10.1002/andp.19053220806, 1905.

Fick, A.: Ueber Diffusion, Annalen der Physik, 170, 59–86, https://doi.org/10.1002/andp.18551700105, 1855.

Garimella, S., Kristensen, T. B., Ignatius, K., Welti, A., Voigtländer, J., Kulkarni, G. R., Sagan, F., Kok, G. L., Dorsey, J., Nichman, L.,615

Rothenberg, D. A., Rösch, M., Kirchgäßner, A. C. R., Ladkin, R., Wex, H., Wilson, T. W., Ladino, L. A., Abbatt, J. P., Stetzer, O.,

Lohmann, U., Stratmann, F., and Cziczo, D. J.: The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation,

Atmospheric Measurement Techniques, 9, 2781–2795, https://doi.org/10.5194/amt-9-2781-2016, 2016.

Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J., Danielczok, A., Diehl, K., Dreischmeier, K., Ebert, M., Frank,

F., Hoffmann, N., Kandler, K., Kiselev, A., Koop, T., Leisner, T., Möhler, O., Nillius, B., Peckhaus, A., Rose, D., Weinbruch, S., Wex,620

H., Boose, Y., Demott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G. R., Levin, E. J. T., McCluskey, C. S., Murakami, M.,

Murray, B. J., Niedermeier, D., Petters, M. D., Saito, A., Schill, G. P., Tajiri, T., Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P.,

and Yamashita, K.: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17

ice nucleation measurement techniques, Atmospheric Chemistry and Physics, 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015,

2015.625

Hussain, K. and Saunders, C. P. R.: Ice nucleus measurement with a continuous flow chamber, Quarterly Journal of the Royal Meteorological

Society, 110, 75–84, https://doi.org/10.1002/qj.49711046307, 1984.

Kanji, Z. A. and Abbatt, J. P.: The university of toronto continuous flow diffusion chamber (UT-CFDC): A simple design for ice nucleation

studies, Aerosol Science and Technology, 43, 730–738, https://doi.org/10.1080/02786820902889861, 2009.

Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice Nucleating Particles,630

Meteorological Monographs, 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.

Koop, T., Kapilashrami, A., Molina, L. T., and Molina, M. J.: Phase transitions of sea-salt/water mixtures at low temperatures: Implications

for ozone chemistry in the polar marine boundary layer, Journal of Geophysical Research: Atmospheres, 105, 26 393–26 402, https:

//doi.org/10.1029/2000JD900413, 2000a.

Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature,635

406, 611–614, https://doi.org/10.1038/35020537, 2000b.

Kumar, P., Broekhuizen, K., and Abbatt, J. P.: Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble

species, Atmospheric Chemistry and Physics, 3, 509–520, https://doi.org/10.5194/acp-3-509-2003, 2003.

35

https://doi.org/10.1029/2003GL017410
https://doi.org/10.1073/pnas.0910818107
https://doi.org/10.1175/2011BAMS3119.1
https://doi.org/10.1002/andp.18621901203
https://doi.org/10.1002/andp.18621901203
https://doi.org/10.1002/andp.18621901203
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.5194/amt-9-2781-2016
https://doi.org/10.5194/acp-15-2489-2015
https://doi.org/10.1002/qj.49711046307
https://doi.org/10.1080/02786820902889861
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
https://doi.org/10.1029/2000JD900413
https://doi.org/10.1029/2000JD900413
https://doi.org/10.1029/2000JD900413
https://doi.org/10.1038/35020537
https://doi.org/10.5194/acp-3-509-2003


Lacher, L., Lohmann, U., Boose, Y., Zipori, A., Herrmann, E., Bukowiecki, N., Steinbacher, M., and Kanji, Z. A.: The Horizontal Ice

Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station640

Jungfraujoch, Atmospheric Chemistry and Physics, 17, 15 199–15 224, https://doi.org/10.5194/acp-17-15199-2017, 2017.

Lacher, L., DeMott, P. J., Levin, E. J. T., Suski, K. J., Boose, Y., Zipori, A., Herrmann, E., Bukowiecki, N., Steinbacher, M., Gute, E., Abbatt,

J. P., Lohmann, U., and Kanji, Z. A.: Background free-tropospheric ice nucleating particle concentrations at mixed-phase cloud conditions,

Journal of Geophysical Research: Atmospheres, 123, 10,506–10,525, https://doi.org/10.1029/2018JD028338, 2018.

Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmospheric Chemistry and Physics, 5, 715–737, https://doi.org/10.645

5194/acp-5-715-2005, 2005.

Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the

immersion mode, Journal of Geophysical Research, 115, D14 201, https://doi.org/10.1029/2009JD012959, 2010.

Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B.: Efficiency of immersion mode ice nucleation on surrogates of mineral dust, Atmospheric

Chemistry and Physics, 7, 5081–5091, https://doi.org/10.5194/acp-7-5081-2007, 2007.650

Marcolli, C., Nagare, B., Welti, A., and Lohmann, U.: Ice nucleation efficiency of AgI: Review and new insights, Atmospheric Chemistry

and Physics, 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, 2016.

Mignani, C., Creamean, J. M., Zimmermann, L., Alewell, C., and Conen, F.: New type of evidence for secondary ice formation at around -15

°c in mixed-phase clouds, Atmospheric Chemistry and Physics, 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, 2019.

Möhler, O., Adams, M., Lacher, L., Vogel, F., Nadolny, J., Ullrich, R., Boffo, C., Pfeuffer, T., Hobl, A., Weiß, M., Vepuri, H., Hi-655

ranuma, N., and Murray, B.: The portable ice nucleation experiment PINE: a new online instrument for laboratory studies and

automated long-term field observations of ice-nucleating particles, Atmospheric Measurement Techniques Discussions, pp. 1–43,

https://doi.org/https://doi.org/10.5194/amt-2020-307, in review, 2020.

Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds

derived from A-Train satellite retrievals, Geophysical Research Letters, 42, 6502–6509, https://doi.org/10.1002/2015GL064604, 2015.660

Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Quarterly Journal

of the Royal Meteorological Society, 131, 1539–1565, https://doi.org/https://doi.org/10.1256/qj.04.94, 2005.

Murray, B. J., O’Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles immersed in supercooled cloud droplets, Chemical

Society Reviews, 41, 6519–6554, https://doi.org/10.1039/C2CS35200A, 2012.

Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., Demott, P. J., Skrotzki, J., and Leisner, T.:665

A particle-surface-area-based parameterization of immersion freezing on desert dust particles, Journal of the Atmospheric Sciences, 69,

3077–3092, https://doi.org/10.1175/JAS-D-11-0249.1, 2012.

Petters, M. D. and Wright, T. P.: Revisiting ice nucleation from precipitation samples, Geophysical Research Letters, 42, 8758–8766, https:

//doi.org/10.1002/2015GL065733, 2015.

Phillips, V. T., Demott, P. J., Andronache, C., Pratt, K. A., Prather, K. A., Subramanian, R., and Twohy, C.: Improvements to an empirical670

parameterization of heterogeneous ice nucleation and its comparison with observations, Journal of the Atmospheric Sciences, 70, 378–409,

https://doi.org/10.1175/JAS-D-12-080.1, 2013.

Richardson, M. S., DeMott, P. J., Kreidenweis, S. M., Cziczo, D. J., Dunlea, E. J., Jimenez, J. L., Thomson, D. S., Ashbaugh, L. L., Borys,

R. D., Westphal, D. L., Casuccio, G. S., and Lersch, T. L.: Measurements of heterogeneous ice nuclei in the western United States in

springtime and their relation to aerosol characteristics, Journal of Geophysical Research Atmospheres, 112, 1–16, https://doi.org/10.1029/675

2006JD007500, 2007.

36

https://doi.org/10.5194/acp-17-15199-2017
https://doi.org/10.1029/2018JD028338
https://doi.org/10.5194/acp-5-715-2005
https://doi.org/10.5194/acp-5-715-2005
https://doi.org/10.5194/acp-5-715-2005
https://doi.org/10.1029/2009JD012959
https://doi.org/10.5194/acp-7-5081-2007
https://doi.org/10.5194/acp-16-8915-2016
https://doi.org/10.5194/acp-19-877-2019
https://doi.org/https://doi.org/10.5194/amt-2020-307
https://doi.org/10.1002/2015GL064604
https://doi.org/https://doi.org/10.1256/qj.04.94
https://doi.org/10.1039/C2CS35200A
https://doi.org/10.1175/JAS-D-11-0249.1
https://doi.org/10.1002/2015GL065733
https://doi.org/10.1002/2015GL065733
https://doi.org/10.1002/2015GL065733
https://doi.org/10.1175/JAS-D-12-080.1
https://doi.org/10.1029/2006JD007500
https://doi.org/10.1029/2006JD007500
https://doi.org/10.1029/2006JD007500


Rogers, D. C.: Development of a Continuous Flow Thermal Gradient Diffusion Chamber for Ice Nucleation Studies, Atmospheric Research,

22, 149–181, https://doi.org/10.1016/0169-8095(88)90005-1, 1988.

Rogers, R. R. and Vali, G.: Recent developments in meteorological physics, Physics Reports, 48, 65–177, https://doi.org/10.1016/

0370-1573(78)90078-9, 1978.680

Rogers, R. R. and Yau, M. K.: A short course in cloud physics / R. R. Rogers and M. K. Yau, Oxford, Pergamon Press. Rosenfeld, 3,

illustrated, reprint edn., 1989.

Saxena, V. K., Burford, J. N., Kassner, J. L., Saxena, V. K., Burford, J. N., and Jr., J. L. K.: Operation of a Thermal Diffusion Chamber for

Measurements on Cloud Condensation Nuclei, Journal of the Atmospheric Sciences, 27, 73–80, https://doi.org/10.1175/1520-0469(1970)

027<0073:OOATDC>2.0.CO;2, 1970.685

Stetzer, O., Baschek, B., Lüönd, F., and Lohmann, U.: The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmo-

spheric Ice Formation, Aerosol Science and Technology, 42, 64–74, https://doi.org/10.1080/02786820701787944, 2008.

Sun, Z. and Shine, K. P.: Studies of the radiative properties of ice and mixed-phase clouds, Quarterly Journal of the Royal Meteorological

Society, 120, 111–137, http://doi.wiley.com/10.1002/qj.49712051508, 1994.

Sutherland, W.: LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin, The London, Edinburgh,690

and Dublin Philosophical Magazine and Journal of Science, 9, 781–785, https://doi.org/10.1080/14786440509463331, 1905.

Thielicke, W. and Stamhuis, E. J.: PIVlabTowards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB,

Journal of Open Research Software, 2, http://doi.org/10.5334/jors.bl, 2014.

Tomlinson, E. M. and Fukuta, N.: A new horizontal gradient, continuous flow, ice thermal diffusion chamber., Journal of Atmospheric and

Oceanic Technology, 2, 448–467, https://doi.org/10.1175/1520-0426(1985)002<0448:ANHGCF>2.0.CO;2, 1985.695

Vali, G.: Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing Nucleation of Supercooled Liquids, Journal of the

Atmospheric Sciences, 28, 402–409, https://doi.org/10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2, 1971.

Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmospheric Chemistry and

Physics, 15, 10 263–10 270, https://doi.org/10.5194/acp-15-10263-2015, 2015.

Wex, H., Huang, L., Zhang, W., Hung, H., Traversi, R., Becagli, S., Sheesley, R. J., Moffett, C. E., Barrett, T. E., Bossi, R., Skov, H., Hüner-700

bein, A., Lubitz, J., Löffler, M., Linke, O., Hartmann, M., Herenz, P., and Stratmann, F.: Annual variability of ice-nucleating particle con-

centrations at different Arctic locations, Atmospheric Chemistry and Physics, 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019,

2019.

Zuberi, B., Bertram, A. K., Cassa, C. A., Molina, L. T., and Molina, M. J.: Heterogeneous nucleation of ice in (NH 4 ) 2 SO 4 -H 2 O particles

with mineral dust immersions, Geophysical Research Letters, 29, 142–1–142–4, https://doi.org/10.1029/2001GL014289, 2002.705

37

https://doi.org/10.1016/0169-8095(88)90005-1
https://doi.org/10.1016/0370-1573(78)90078-9
https://doi.org/10.1016/0370-1573(78)90078-9
https://doi.org/10.1016/0370-1573(78)90078-9
https://doi.org/10.1175/1520-0469(1970)027<0073:OOATDC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0073:OOATDC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0073:OOATDC>2.0.CO;2
https://doi.org/10.1080/02786820701787944
http://doi.wiley.com/10.1002/qj.49712051508
https://doi.org/10.1080/14786440509463331
http://doi.org/10.5334/jors.bl
https://doi.org/10.1175/1520-0426(1985)002<0448:ANHGCF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2
https://doi.org/10.5194/acp-15-10263-2015
https://doi.org/10.5194/acp-19-5293-2019
https://doi.org/10.1029/2001GL014289

