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Abstract. Ground-based microwave radiometer (MWR) observations of downwelling brightness temperature (TB) are 

commonly used to estimate the atmospheric attenuation at relative transparent channels for radiopropagation and 15 

telecommunication purposes. The atmospheric attenuation is derived from TB by inverting the radiative transfer equation with 

a priori knowledge of the mean radiating temperature (TMR). TMR is usually estimated by either time-variant site climatology 

(e.g., monthly average computed from atmospheric thermodynamical profiles) or condition-variant estimation from surface 

meteorological sensors. However, information on TMR may also be extracted directly from MWR measurements at other 

channels than those used to estimate atmospheric attenuation. This paper proposes a novel approach to estimate TMR in clear 20 

and cloudy sky from independent MWR profiler measurements. A linear regression algorithm is trained with a simulated 

dataset obtained by processing one year of radiosonde observations of atmospheric thermodynamic profiles. The algorithm is 

trained to estimate TMR at K-, and V/W-band frequencies (22-31 and 72-82 GHz, respectively) from independent MWR 

observations at V-band (54-58 GHz). The retrieval coefficients are then applied to a one-year dataset of real V-band 

observations, and the estimated TMR at K- and V/W-band are compared with estimates from nearly collocated and simultaneous 25 

radiosondes. The proposed method provides TMR estimates in better agreement with radiosondes than a traditional method, 

with 32-38% improvement depending on frequency. This maps into an expected improvement in atmospheric attenuation of 

10-20% for K-band and ~30% for V/W-band channels. 
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1 Introduction 

There is a continuous trend to use higher frequencies in the development of Satellite Communication (SatCom), as lower 30 

frequency bands become saturated (e.g., Biscarini et al., 2017). Europe’s current Earth observation programs with the Sentinel 

satellite constellation generate a daily data volume of terabytes, requiring new broadband links to access the data. In future 

interplanetary explorer missions, the need for high throughput communications will also become more pressing due to a wider 

range of observed parameters and teleoperated landers or rovers, avoiding data loss due to limited on-board memory or data 

compression (Jebril et al., 2007; Acosta et al., 2012). In remote areas on Earth, like Antarctica, it is of concern to forward 35 

scientific data via satellite to the research facilities (Bonifazi et al., 2002). All mentioned scientific applications have in common 

that the increase in data volume requires higher transmission capacities than those available nowadays. Current high-

throughput SatCom systems operate at X (8–12 GHz), Ku (12-18 GHz), K (18-26) and Ka (26-40 GHz) band and presumably 

their next implementation will use Q (40-50 GHz) and V (50-75 GHz) bands, whereas W band (75-110 GHz) appears to be 

the next natural evolution (Riva et al., 2014). Moving beyond the X and Ku bands to less congested higher frequencies increases 40 

the available bandwidth, allowing smaller equipment that consequently reduce the size of the satellite and launch vehicle 

(Cianca et al., 2011; Acosta et al., 2012; Emrick et al., 2014).  

Ground-based microwave radiometer (MWR) observations of downwelling brightness temperature (TB) are commonly used 

to estimate the atmospheric attenuation at relatively transparent microwave channels for radiopropagation and 

telecommunication purposes (e.g., Marzano et al., 2006; Marzano, 2007; Biscarini et al., 2019). However, higher frequencies 45 

are characterized by larger dynamics of atmospheric propagation effects, mainly because of higher atmospheric losses (rain, 

clouds and atmospheric gases). Planning of V and W band SatCom systems require experimental data to characterize these 

unexplored atmospheric radio channels (Mattioli et al., 2013; Riva et al., 2014; Biscarini and Marzano, 2020). Radiowave 

propagation models can provide a reliable estimate of the atmospheric path attenuation, but have been typically validated only 

for frequencies up to 50 GHz (Riva et al., 2014). These models, recommended by the International Telecommunication Union 50 

(ITU), are based on past experimental campaigns at K/Ka and Q bands, whereas designing the Earth-satellite link budget at V 

and W bands would require satellite beacon data which are currently not available. It is then essential to investigate the 

behaviour of electromagnetic waves in the V and W bands to improve existing models and validate them by independent 

measurements (Lucente et al., 2008; Biscarini et al., 2019).  

In response to this need, a measurement campaign has been recently planned to characterize the V- and W-band satellite 55 

atmospheric radio channel through ground-based microwave radiometric observations. The core observatory is located at 

Politecnico di Milano (Milan, Italy), where a four-channel MWR, including two V and W band channels at 72.5 and 82.5 GHz, 

respectively, are operated. An independent MWR, a 14-channel temperature and humidity profiler, is also operated in Spino 

d’Adda, 25 km from Milan (Italy). Atmospheric path attenuation is derived from MWR TB observations inverting the radiative 

transfer equation with a prior knowledge of the mean radiating temperature (TMR). A priori TMR is usually obtained either by 60 

monthly average values computed from radiosondes (e.g., Martellucci, 2007) or inferred from surface meteorological sensors 
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(e.g., Luini et al., 2018) or derived from radiopropagation models (e.g., Mattioli et al., 2013; Biscarini and Marzano, 2020). 

The uncertainty in TMR estimates contributes to the path attenuation uncertainty. To the aim of reducing this uncertainty, in this 

work we propose an original approach increasing the accuracy of TMR estimates by exploiting independent MWR profiler 

measurements. This is a follow up of the work presented at the 11th International Symposium on Tropospheric Profiling 65 

(Cimini et al., 2019). The paper is structured as follows: Section 2 describes the methodology, whereas Section 3 presents the 

available dataset; Section 4 presents the results and the obtained performance, and Section 4 summarises the results, providing 

hints for future work. 

 

2 Methodology 70 

The atmospheric brightness temperature TB (K), measured by a MWR at frequency 𝑓! and elevation angle 𝜃, can be used to 

estimate the atmospheric total path attenuation 𝐴"#$(𝑓! , 𝜃) (in dB) using the following expression (e.g., Marzano, 2007; Ulaby 

et al., 2014): 

 

𝐴"#$(𝑓! , 𝜃) = 10𝑙𝑜𝑔%& -
𝑇"$(𝑓! , 𝜃) − 𝑇'

𝑇"$(𝑓! , 𝜃) − 𝑇((𝑓! , 𝜃)
0																						(1)	75 

 

where 𝑇' is the cosmic background temperature (usually set to 2.73 K in the microwave and millimeter-wave range) and 

𝑇"$(𝑓! , 𝜃) is the mean radiating temperature (in K), which is given by (e.g., Han and Westwater, 2000):  

	

𝑇"$ =
∫ 𝑇(𝑠)𝛼(𝑠)𝑒)*(&,-)𝑑𝑠/
&

∫ 𝛼(𝑠)𝑒)*(&,-)/
& 𝑑𝑠

																	(2)	80 

 

where T(s) and 𝛼(𝑠) are the atmospheric physical temperature and absorption coefficient along the path s and 𝜏(0,∞) =

∫ 𝛼(𝑠)𝑑𝑠/
&  is the total atmospheric opacity (Np) from surface to the top of the atmosphere. As Eq.(2) suggests, the mean 

radiating temperature represents the mean temperature along the optical path weighted by the atmospheric transmission 

𝑇0 = 𝑒)*, i.e. the inverse of the atmospheric loss 𝐿0 = 𝑒*. Note that Eq.(1) and (2) are derived from the radiative transfer 85 

equation for a non-scattering atmosphere (Swarztchild’s equation) and adopting the Rayleigh-Jeans approximation (Janssen, 

1993), commonly used in the microwave range to simplify the Planck’s law with a linear relationship with temperature T, 

𝐵1(𝑇) ≈ 2𝑘 1!

2!
𝑇, where k and c are the Boltzmann and speed of light constants, respectively. In these conditions, the 

atmospheric opacity can be written as:  

 90 
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𝜏 = 𝑙𝑛( 3"#(1$,4))3%
3"#(1$,4))3&(1$,4)

)																			(3)	

	
and thus the atmospheric total path attenuation, which is simply the atmospheric loss in dB units, can be rewritten in terms of 

𝜏 as:   

 95 
𝐴"#$ = 10𝑙𝑜𝑔%&(𝑒*) =

%&
56%&

𝑙𝑛(𝑒*) = %&
56%&

𝜏	 = 4.343	𝜏																			(4) 
 

Note that, as discussed in Han and Westwater (2000) and Janssen (1993), Eq.(3) is just an approximation of the exact 

formulation. In the frequency range used here, this approximation is valid within 2% from the exact formulation, and thus it is 

adopted here for the sake of simplicity. Moreover, atmospheric scenarios with rainfall and snowfall are excluded since multiple 100 

scattering is not included in Eq.(1) and thus in this work (see Marzano et al., 2006; Biscarini and Marzano, 2019).𝑇"$ can be 

easily calculated from the atmospheric profiles of physical temperature and absorption coefficient through Eq.(2). In clear-sky 

conditions, radiosonde profiles of temperature and humidity are sufficient to compute 𝑇"$, while in presence of clouds 

assumptions must be made on the vertical distribution of condensed water (e.g., Salonen and Uppala, 1991).      

Thus, the mean radiating temperature plays a role in mapping the brightness temperature to the atmospheric opacity and then 105 

total path attenuation, and the operational estimate of atmospheric attenuation from radiometric TB observations requires some 

a priori knowledge on TMR. Traditionally, TMR was treated as a constant determined climatologically from a dataset of 

atmospheric profiles, usually radiosondes. This assumption propagates uncertainty in the attenuation estimates through Eq.(1). 

However, as long as TB is relatively low, e.g., for zenith and low frequency observations, the TMR uncertainty contribution to 

attenuation is rather small, and thus a precise knowledge of TMR is not crucial.  110 

On the other hand, with increasing TB values, e.g. in case of observations at lower elevation angles and/or at relatively more 

opaque higher frequencies, accurate TMR estimates gain more importance. One consequence is that TMR uncertainties cause 

significant calibration errors when large air masses (i.e. pointing at low elevation angle) are used. For example, it has been 

demonstrated that using a TMR climatological mean (with 9 K standard deviation, based on a 13-year dataset) introduces up to 

1.4 K uncertainty in tipping curve calibration at K-band channels, exploiting elevation angles down to ~15° (Han and 115 

Westwater, 2000).    

Thus, methods are usually exploited to reduce TMR uncertainties, especially when low angle and/or high frequency observations 

are involved. One simple method is to divide the TMR climatology into seasons, efficiently reducing the standard deviation of 

the climatological mean. A slightly more sophisticated method exploits time interpolation of the TMR monthly mean 

(Martellucci, 2007). However, these methods do not consider the actual meteorological conditions, which may significantly 120 

differ from the seasonal or monthly mean. In order to consider the actual meteorological conditions, another method is the 

predicting of TMR from the surface air temperature, using regression analysis. Surface-based temperature measurements along 

with TMR calculated from radiosonde measurements provide the means to derive linear regression coefficients relating surface 

temperature to TMR. It has been shown that this method reduces the calibration uncertainty in K-band channels by a factor of 
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~3 (Han and Westwater, 2000). Other surface measurements, such as pressure and humidity may also be considered among 125 

the predictors in addition to temperature. This last method, relating TMR to surface pressure, temperature, and humidity (PTU) 

measurements, likely represents the current best practices (Luini et al., 2018). Note that hereafter relative humidity is used as 

the humidity variable.   

However, the PTU method may be inaccurate in particular cases, i.e. when surface conditions are not well correlated with 

upper air. One obvious case is the occurrence of strong temperature inversions. To circumvent this problem, another method 130 

was suggested by Han and Westwater, (2000): TMR prediction could be improved by using boundary temperature profiles from 

a MWR profiler or a radio acoustic sounding system, which accurately recovers boundary layer surface temperature inversions 

(Martner et al., 1993). To our knowledge, this suggestion has not been demonstrated yet.  

Thus, this analysis builds on this suggestion and presents a method to derive TMR from combined surface measurements and 

MWR profiler observations, demonstrating the reduced uncertainty with respect to the other methods introduced above.  135 

 

3 Dataset and implementation 

The proposed method is demonstrated estimating TMR at four channels in K- and V/W-bands from surface measurements and 

independent MWR profiler observations. The data set considered here consists of experimental data collected in 2015-2016 at 

two sites involved within the ESA WRad campaign. The MWR operated in Spino d’Adda is a Humidity and Temperature 140 

profiler (HATPRO) manufactured by Radiometer Physics GmbH (RPG), measuring TB at 14 channels from K- to V-band 

(22.24, 23.04, 23.84, 25.44, 26.24, 27.84, 31.4, 51.26, 52.28, 53.86, 54.94, 56.66, 57.3, 58.0 GHz). The MWR operated at 

Politecnico di Milano is a LWP-U72-82 manufactured by RPG, measuring TB at 4 channels, two K-band (23.84 and 31.4 GHz), 

and two between V- and W-bands (72.5 and 82.5 GHz). During the considered period, both MWR pointed constantly at ~35° 

elevation towards the geostationary satellite Alphasat, collecting one sample per second. Standard meteorological sensors are 145 

located near the two MWR to provide the environmental PTU measurements.  

In addition, the dataset includes the atmospheric thermodynamical profiles measured by radiosondes launched operationally 

twice a day from the Linate airport in Milan (~5 km from Politecnico di Milano). The two radiosondes per day are launched 

at 11.30 and 23.30 UTC. Radiosonde profiles in the period from January 2015 to December 2016 have been collected for this 

analysis. Atmospheric thermodynamical profiles from each radiosonde have been processed to compute the simulated TMR in 150 

clear and cloudy conditions, using the Wave Propagation Laboratory (WPL) radiative transfer code. This code was originally 

developed at the U.S. National Oceanic and Atmospheric Administration (NOAA, Schroeder J. A. and E. R. Westwater, 1991), 

implementing the millimeter-wave propagation model (MPM, Liebe, 1989), and has since been updated with refined 

spectroscopic parameters (Rosenkranz, 2017), as described in Cimini et al. (2018) and references therein. The cloud water 

content is modeled using the TKK method (Salonen and Uppala, 1991; Luini et al., 2018). 155 

The experimental implementation is pictured in Figure 1. TB, TMR, and PTU simulated from the two-year dataset of radiosonde 

profiles are used in the training and test phases. Synthetic noise, with zero mean and standard deviation equal to the expected 
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instrument accuracy, has been added to simulate the instrument uncertainty. In the training phase, a half data set (2016) is used 

to train two versions of a multivariate linear regression to estimate TMR from either PTU only or PTU and TB. From the set of 

fourteen HATPRO channels available, we selected the five higher frequency V-band channels (51.26, 52.28, 53.86, 54.94, 160 

56.66, 57.3, 58.0 GHz). These channels are mostly sensitive to atmospheric temperature and are less affected by hydrometeors 

than lower frequency K-band channels, which makes them more suited for the operational whole-sky estimate of TMR. In the 

test phase, the two versions of regression coefficients are used to estimate TMR from either PTU only or PTU and TB from the 

remaining dataset (2015). The resulting TMR are then compared with “true” values computed from simultaneous radiosondes. 

Finally, in the validation phase, the two versions of regression coefficients are fed with real measurements, either from PTU 165 

sensor only or with PTU sensor and HATPRO five V-band channels. The resulting TMR values are again compared with “true” 

radiosonde values, and also applied to real LWP-U72-82 observations to estimate atmospheric attenuation through Eq(1). 

 

 
Figure 1: Flow chart of the implemented data analysis. 170 

 

4 Results 

In the validation phase, the multivariate regression trained with the simulated dataset from 2016 is applied to real observations 

in 2015 and validated against TMR computed from radiosonde profiles. For the considered pointing angle (35° elevation), the 

cloud liquid water path estimated from radiosondes reaches 2.8 mm for the training set, while the liquid water path estimated 175 
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from MWR observations within the validation set reaches 4.6 mm. The results from the two versions of regression coefficients, 

one applicable to surface PTU measurements only and the other applicable to PTU measurements and five V-band channels 

TB, are compared here. The implemented equation and coefficients for the multivariate regression are given in Appendix A. 

The output dataset consists of TMR and A at four frequencies (23.84, 31.4, 72.5, and 82.5 GHz) retrieved at 1-minute temporal 

resolution. One example of 24 h time series is shown in Figure 2. For all the 4 considered frequencies, it is evident that TMR 180 

from PTU and TMR from PTU&TB follow a similar diurnal cycle, decreasing up to 5 am, then rapidly increasing until noon, 

then remaining stable for a few hours, and finally decreasing again after 5 pm. However, there seems to be a factor of ~2 in 

the peak-to-peak variation, e.g., at 23.84 GHz, TMR peak-to-peak variation is ~9 K for TMR(PTU) while ~4 K for TMR(PTU&TB). 

TMR computed from the two daily radiosondes, representing our reference “truth”, seems to confirm that TMR(PTU&TB) is 

correct in estimating a smaller variation. The statistical comparison from the validation phase is reported in Figures 2 and 3, 185 

considering a set of 638 radiosondes in 2015. From this dataset, the TMR climatological variations in Milan in clear and cloudy 

sky is estimated to be ~7.6-8.2 K, depending upon K- and V/W-band channels. Time colocation with radiometric observations 

is achieved averaging the estimated TMR within 15 minutes from the radiosonde release time. All the considered statistical 

scores show that TMR(PTU&TB) agrees better than TMR(PTU) with the reference radiosondes, for all the four considered 

frequency channels (two K- and two V/W-band). In particular, the average difference (AVG), the root-mean-square difference 190 

(RMS), and the correlation coefficient (COR) with respect to TMR from radiosondes are reported in Table 1. Four methods to 

estimate TMR are reported in Table 1: seasonal climatology (monthly mean), time-interpolated monthly mean, regression from 

PTU, and finally regression from PTU & TB. As one would expect, Table 1 indicates that condition-dependent methods (e.g., 

the two regression types) outperform methods simply based on climatology. The only score being better for climatology 

methods is AVG, i.e. the average difference over one year. This is somewhat expected, as the climatology methods minimize 195 

the annual mean difference by definition. Nonetheless, the regression methods show modestly higher AVG values. Conversely, 

the regression methods show substantially better RMS and COR scores with respect to climatological methods, which confirms 

that regression methods are preferable when accurate estimates of TMR and atmospheric attenuation are desired. Table 1 also 

clearly indicates that the regression based on PTU & TB outperforms the one based on PTU only. For the considered K- and 

V/W-band frequencies, the improvement ranges between ~0.2-0.8 K in average difference, ~1.0-1.4 K in RMS, and ~4-7% in 200 

correlation. This demonstrates quantitatively that the consideration of V-band channels within the regression brings in 

significant information on TMR, as originally foreseen by Han and Westwater (2000). 
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 205 
Figure 2: 24 h time series (19 July 2015) of TMR as estimated from surface PTU measurements (green line) and with the additional 
TB at five V-band channels (blue line). TMR from twice-daily radiosonde measurements are also reported (red dots). Clockwise 

from top-left: 23.84, 31.40, 72.50, 82.50 GHz. 
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 210 
Figure 3: Estimated vs reference TMR at K-band. Left: 23.84 GHz. Right: 31.4 GHz. Red dots indicate estimated TMR based on (PTU, 
TB), while blue dots indicate TMR based on (PTU) only. Each panel reports the number of elements (N(EL)), the average difference 
(AVG), the standard deviation (STD), the slope (SLP) and intercept (INT) of a linear fit, the standard error (SDE), the root-mean-
square (RMS), and correlation coefficient (COR). 95% confidence intervals are given for AVG, SLP, and INT. Units for AVG, STD, 
SDE, RMS are kelvin. 215 
 

 
Figure 4: As in Fig. 3 but for V- and W-bands channels. Left: 72.5 GHz. Right: 82.5 GHz. 
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Table 1: Average difference (AVG), root-mean-square difference (RMS), and correlation coefficient (COR) with respect to reference 220 
TMR (computed from radiosondes) for TMR estimated from four methods: Monthly mean, time-interpolated monthly mean, regression 

from PTU, and regression from PTU&TB. The best scores are in bold.  

Channel  Monthly mean Time-interpolated 
monthly mean 

Regression from 
PTU 

Regression from 
PTU & TB 

23.84 GHz AVG (K) 0.57 0.59 -1.01 -0.15 

RMS (K) 4.02 3.93 3.46 2.04 

COR (-) 0.82 0.83 0.89 0.96 

31.40 GHz AVG (K) 0.54 0.58 -0.86 -0.51 

RMS (K) 4.06 3.95 3.29 2.22 

COR (-) 0.83 0.85 0.91 0.96 

72.50 GHz AVG (K) 0.40 0.44 -0.78 -0.55 

RMS (K) 3.75 3.61 3.05 1.96 

COR (-) 0.85 0.86 0.92 0.97 

82.50 GHz AVG (K) 0.51 0.55 -0.89 -0.58 

RMS (K) 4.20 4.08 3.30 2.21 

COR (-) 0.83 0.85 0.92 0.96 

 

Given the radio propagation purposes, the question is whether the improvements in TMR estimation given in Table 1 bring 

significant improvements in atmospheric attenuation estimates. In order to investigate this, we propagate TMR and TB 225 

uncertainty through Eq(1) to obtain the uncertainty of atmospheric attenuation. From Eq.(3-4), the uncertainty in atmospheric 

attenuation is simply related to the uncertainty in atmospheric opacity as: 

 
𝜎0 = 4.343	𝜎*													(5) 

 230 
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where 

𝜎* = DE 3%)3&
(3"#)3%)(3"#)3&)

F
7
𝜎3"$7 + E

%
(3"#)3&)

F
7
𝜎3(7H

%/7
										(6) 

 

is the uncertainty in atmospheric opacity due to the uncertainty in TMR and TB, respectively 𝜎3"$ and𝜎3(. Thus, we compute 

the uncertainty of atmospheric attenuation 𝜎0in case TMR is estimated from PTU&TB and from PTU only, by replacing in Eq(6) 235 

𝜎3"$with	the TMR uncertainty in Table 1 and 𝜎3(	with	a typical value for MWR TB uncertainty, i.e. 0.5 K (e.g., Cimini et al., 

2003). The percentual improvement brought by the TMR estimated with the proposed method (#2, based on PTU&TB) over the 

conventional method (#1, based on PTU only) is quantified by 

 

𝐼 =
𝜎(#1) − 𝜎(#2)

𝜎(#1) ∗ 100															(7)	240 

 

both for TMR and A. Table 2 summarizes the percentual improvements for the four considered frequencies in the K- and W-

band. Thus, with respect to conventional PTU method, the proposed method in average improves the TMR estimates by more 

than 32% and it is expected to improve the A estimates by 10-20% at K-band channels and ~30% at V/W bands channels. In 

terms of radio propagation measurements, the achieved improvement level is rather modest (fraction of a dB) in clear-sky 245 

conditions, when TB and the atmospheric attenuation are low, but becomes more and more important as TB and the attenuation 

increase (e.g., heavy clouds and precipitation), due to the (𝑇"$ − 𝑇()	factor at the denominator of Eq.(1) and (6).   

 

Table 2: Percentage improvements brought by the proposed method (based on PTU & TB) over the conventional method (based on 
PTU only). Note that while the improvements for TMR are validated against radiosondes (i.e. the STD in Figures 3-4), the 250 
improvements for A are estimated through Eq(5-6), and thus represent an estimate of the expected improvements.  

Channel frequency (GHz) 23.84 31.40 72.50 82.50 

𝜎3"$(K) for PTU method 3.31 3.18 2.95 3.18 

𝜎3"$(K) for PTU&TB method 2.04 2.17 1.88 2.14 

TMR uncertainty improvement (%) 38 32 36 33 

A uncertainty improvement (%) 24 14 32 28 
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 255 
Figure 5: 24 h time series (31 Dec 2018) of TMR as estimated from surface PTU measurements (green line) and with the additional 
TB at five V-band channels (blue line). TMR from twice-daily radiosonde measurements (red dots) and from ECMWF analysis 

(black crosses) are also reported. Clockwise from top-left: 23.84, 31.40, 72.50, 82.50 GHz. 
 

To show an example of application, we select one day (31 December 2018) for which data from the 14-channel MWR in Spino 260 

d’Adda and the four-channel MWR at Politecnico di Milano are both available, together with the PTU readings. PTU and TB 

at the five higher frequency V-band channels (51.26, 52.28, 53.86, 54.94, 56.66, 57.3, 58.0 GHz) of the 14-channel MWR are 

used to compute TMR at the frequencies of the four-channel MWR (23.84, 31.40, 72.50, 82.50 GHz). TMR and the observed TB 

at the four channels are used to compute the attenuation. Results for both PTU and PTU&TB methods are shown in Figure 5 

(TMR) and Figure 6 (attenuation). Figures 5 and 6 also show TMR and attenuation computed from the radiosonde profiles (twice 265 

daily) and the model profiles (every six hours) from the nearest grid point of global analysis produced by the European Centre 
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for Medium-range Weather Forecast (ECMWF). The difference between PTU and PTU&TB methods is evident between 

midnight and 8 am. As indicated by the radiosonde profile (not shown), that night was characterised by a temperature inversion 

near the surface, about 8 K strong and 160 m deep. This causes the surface temperature (used in the PTU method) to decouple 

from that of upper air. Conversely, the PTU&TB method brings in information on lower atmospheric temperature. TMR 270 

difference between the two methods is 4-6 K at 8 am, rapidly decreasing as the Sun warms up the surface, and fading to 

negligible values around noon.  

 

 
Figure 6: 24 h time series (31 Dec 2018) of A from PTU (green line) and PTU&TB (blue line) methods. A computed from twice-275 

daily radiosonde measurements (red dots) and ECMWF analysis (black crosses) are also reported. Clockwise from top-left: 23.84, 
31.40, 72.50, 82.50 GHz. 
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A similar behaviour is found in attenuation (Figure 6), although the difference is less striking. Attenuation from radiosondes 

and ECMWF profiles are mostly closer to that from PTU&TB method. However, a proper validation would require a data set 280 

with larger dynamical range, and an independent reference valid in both clear and cloudy conditions. In fact, neither radiosonde 

nor ECMWF profiles can be assumed as reference in cloudy conditions for the lack of accurate cloud water content, which for 

radiosondes is modelled statistically (TKK method), while for ECMWF it represents a larger scale than the local one. The 

collection of a reference dataset is indeed the main objective of the WRad campaign, through the application of Sun-tracking 

microwave radiometry (Biscarini et al., 2019 and references therein). 285 

 

5 Conclusions 

In this paper we propose an approach to estimate TMR from radiometric observations at V-band (sensitive to atmospheric 

temperature) in addition to surface measurements of PTU, which represents the current best practice. The approach was 

suggested in Han and Westwater (2000) but never attempted to our knowledge. Here, we implement the suggested approach 290 

by applying multivariate linear regression to radiometric and radiosonde observations collected in the Milan area (Italy). Two 

independent microwave radiometers are considered, one atmospheric profiler operating at 14 channels in the K- and V-bands, 

and one 4-channel radiometer operating at two K- and two between V- and W-bands channels. The implemented approach 

exploits five V-band channels of the microwave profiler (namely at 53.86, 54.94, 56.66, 57.3, and 58.0 GHz) together with 

surface PTU measurements to estimate TMR at the K- and V/W-band frequencies of the four-channel radiometer. The 295 

conventional method is also implemented, estimating TMR at the frequencies of the four-channel radiometer from PTU 

measurements only. Results from the proposed and conventional methods are validated against TMR from simultaneous 

radiosondes, showing improvement in all channels and statistical scores (~0.2-0.8 K in average difference, ~1.0-1.4 K in RMS, 

and ~4-7% in correlation, depending upon frequency). This corresponds to a decrease in TMR estimation uncertainty by 32 to 

38%, depending upon frequency. The improvement in TMR estimation is then mapped into the improvement in attenuation 300 

estimates for radio propagation purposes by propagating typical TMR and TB uncertainties into the atmospheric attenuation 

equation. This results in expected improvements in atmospheric attenuation estimates of the order of 10-20% at K-band 

channels and ~30% at V/W-band channels. Although this level of improvement leads to modest change in absolute attenuation 

in clear sky (fraction of a dB), it becomes more and more important (few dBs) with the increasing attenuation typical of cloudy 

and rainy conditions. In summary, this paper demonstrates the validity of Han and Westwater (2000)’s idea, and it provides 305 

quantitative assessment of the improvements brought by the proposed method over the conventional PTU method for 

estimating TMR and atmospheric attenuation, at the cost of higher observation complexity (two radiometers in a relatively small 

area). This limitation may be overcome by the increasing availability of MWR profilers, currently deployed at several ground 

stations serving satellite telecommunication (e.g. ESA Tracking Network in Cebreros, Malargue, and New Norcia) as well as 

observatories devoted to atmospheric research and operational weather forecast (Cimini et al., 2020). Concerning the radio 310 
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propagation purposes, future work will include the application of the proposed method to the dataset collected within the ESA 

WRad campaign (Aug. 2019 - Aug. 2021) to further validate the improvements in the atmospheric attenuation estimates in 

whole sky conditions, eventually contributing to the future assessment of V/W-band link budget for Earth-satellite 

telecommunication. 

 315 
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Appendix A - Coefficients for multivariate multiple linear regression  

Multivariate multiple linear regression (Bevington and Robinson, 2003) is used here to estimate TMR at four frequencies (23.8, 

31.4, 72.5, 82.5 GHz). To clarify, note that the term multivariate refers to statistical models that have more than one dependent 

or outcome variable (predictands), while multiple (or multivariable) refers to statistical models that have more than one 320 

independent or input variable (predictors) (e.g., Hidalgo & Goodman, 2013). Following Cimini et al. (2006), and references 

therein, a general equation for the multivariate multiple linear regression between 𝐱T (vector of predictands) and y (vector of 

predictors) is:  

𝐱T = 𝐱𝟎 +𝐃(𝐲 − 𝐲𝟎)  (A1) 

𝐃 = 𝐂𝐱𝐲𝐂𝐲𝐲)𝟏  (A2) 325 

where D is the matrix of linear regression coefficients, and 𝐱𝟎, 𝐲𝟎, 𝐂𝐱𝐲 and 𝐂𝐲𝐲 are estimated from the training set (a priori 

knowledge) respectively as the mean values for 𝐱 and 𝐲, the covariance matrix of simultaneous x and y, and the autocovariance 

matrix of y. In this work, the predictands 𝐱T are TMR at four frequencies. Thus, for any measured k-dimension vector of predictors 

𝐲𝒊, the estimated TMR for each channel j is: 

𝑇X"$$(𝑗) = 𝑥&(𝑗) +	∑ 𝐷5,> 	(𝑦!(𝑙) − 𝑦&(𝑙))?
5@%   (A3)  330 

In this study, two versions are implemented with different sets of predictors. The first version considers three variables as 

predictors (k=3): air pressure, temperature, and relative humidity (PTU) measured by standard meteorological sensors. The 

second version considers eight variables as predictors (k=8): the three PTU readings and in addition TB at five V-band channels 

(53.86, 54.94, 56.66, 57.3, 58.0 GHz). From the training set, we obtain the following values for 𝐱𝟎, indicating the mean TMR 

(K) at 4 frequencies:  335 

𝐱𝟎 = [275.67		272.01		271.66		274.60] (K) 

While 𝐱𝟎 is the same for the two versions of multivariate multiple linear regression, both 𝐲𝟎 and D depend on the number of 

predictors. For the first version 𝐲 contains the mean PTU measurements, a vector of 3 components, and D is as in Table A.1: 

𝐲𝟎 = [1003		288.82		0.71]  (mb, K, %/100). 

For the second version, 𝐲 contains the PTU measurements and TB at five V-band channels, i.e. a vector of 8 components, and 340 

D is as in Table A.2: 

𝐲𝟎 = [276.85		284.71	287.07	287.13		287.02	1003		288.82		0.71]  (K, K, K, K, K, mb, K, %/100). 
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Table A1: D for multivariate multiple linear regression Eq.(A1-A2) to estimate TMR from PTU only. First row and column indicate 
respectively the corresponding frequency channel and predictor.  345 

Frequency 
(GHz) 

23.8 31.4 72.5 82.5 Predictor (Units) 

 0.145  0.140  0.098  0.128 P (mb) 

 0.946  0.986  1.018  1.050 T (K) 

12.021 14.862 17.656 16.786 RH (%/100) 

 

Table A2: D for multivariate multiple linear regression Eq.(A1-A2) to estimate TMR from PTU & TB at five V-band channels. First 
row and column indicate respectively the corresponding frequency channel and predictor. 

Frequency 
(GHz) 

23.8  31.4  72.5  82.5  Predictor (Units) 

 0.403  0.690  1.173  0.810 TB 53GHz (K) 

 0.555  0.258 -0.273  0.083 TB 54GHz (K) 

 0.195 -0.082 -0.280 -0.111 TB 56GHz (K) 

-0.140 -0.146 -0.037 -0.134 TB 57GHz (K) 

-0.268 -0.150  0.002 -0.095 TB 58GHz (K) 

 0.066  0.052 -0.013  0.036 P (mb) 

 0.286  0.491  0.508  0.569 T (K) 

 4.412  6.899  7.863  8.584 RH (%/100) 
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