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Abstract. Microwave radiometers are widely used for the retrieval of Liquid Water Path (LWP) and Integrated Water Vapor

(IWV) in the context of cloud and precipitation studies. This paper presents a new site-independent retrieval algorithm for LWP

and IWV, relying on a single-frequency 89-GHz ground-based radiometer. A statistical approach is used, based on a neural

network, which is trained and tested on a synthetic data set constructed from radiosonde profiles worldwide. In addition to 89-

GHz brightness temperature, the input features include surface measurements of temperature, pressure and humidity, as well as5

geographical information and, when available, estimates of IWV and LWP from reanalysis data. An analysis of the algorithm is

presented to assess its accuracy, the impact of the various input features, as well as its sensitivity to radiometer calibration and

its stability across geographical locations. While 89-GHz brightness temperature is crucial to LWP retrieval, only moderately

does it contribute to IWV estimation, which is more constrained by the additional input features. The algorithm is shown to be

quite robust although its accuracy is inevitably lower than that obtained with state-of-the-art multi-channel radiometers, with a10

relative error of 18 % for LWP (on cloudy cases with LWP > 30 g m−2) and 6.5 % on IWV. The highest accuracy is obtained

in mid-latitude environments with a moderately moist climate, which are more represented in the training dataset. The new

method is then implemented and evaluated on real data that were collected during a field deployment in Switzerland and during

the ICE-POP 2018 campaign in South Korea.

1 Introduction15

Clouds play a key, though complex, role in the atmosphere’s radiative balance and global circulation (Hartmann and Short,

1980; Slingo, 1990; Hartmann et al., 1992; Wang and Rossow, 1998; Stephens, 2005; Mace et al., 2006; McFarlane et al., 2008),

and cloud studies have thus been propelled to the forefront of climate research. One of the core challenges is the monitoring,

quantification and modeling of cloud liquid water, which has a significant contribution to radiative processes on a global

scale. In this perspective, highly accurate methods were developed to retrieve liquid water path (LWP) as well as integrated20

water vapor (IWV) from microwave radiometer measurements, relying on the fact that water in its liquid and vapor phases is

the main atmospheric contributor to brightness temperatures in millimeter wavelengths, outside of the oxygen window. On a

different note, quantifying cloud liquid water content is also relevant to the field of snowfall studies. Identifying the presence

of supercooled liquid water during a snowfall event is of paramount importance to the understanding of snowfall microphysics,

for it drives riming of snow particles, which in turn affects the efficiency and the spatial distribution of precipitation (Saleeby25
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et al., 2011), as well as wet deposition of aerosols (Poulida et al., 1998). Improving the monitoring of cloud liquid water

processes is thus valuable to climatological, meteorological and hydrological applications.

The quantitative retrieval of LWP from ground-based or satellite measurements of brightness temperature (TB) at a single

millimeter wavelength is an underdetermined problem. This brightness temperature results from the radiative contribution of

gases and hydrometeors across the atmospheric column, and depends on the vertical profile of temperature. To lift this underde-30

termination, state-of-the-art retrievals of LWP and IWV rely on multi-frequency radiometers, which provide TB measurements

in several microwave channels. This allows to separate the contributions of water vapor and liquid water (e.g. Westwater et al.

(2001)) and, to some extent, retrieve the full profile of liquid water content and humidity in the atmospheric column (Löhnert

et al., 2004). It should be noted that IWV retrievals with similar accuracy are obtained using GPS sensors, as first proposed by

(Bevis et al., 1994), but this widely used technique does however not allow for joint retrieval of LWP.35

Multi-frequency instruments are however not always available. It was shown (Küchler et al., 2017) that a radiometer channel

at 89 GHz could be added to a W-band cloud radar operating at 94 GHz, thus allowing to have collocated measurements of radar

variables and brightness temperature, and paving the way for an improved understanding of cloud and precipitation physics.

Küchler et al. (2017) proposed a method to derive LWP estimates from the single-frequency measurements of brightness

temperature, and the present study builds on those findings.40

Two approaches are commonly considered for the retrieval of LWP and IWV from microwave radiometer measurements,

as described in Turner et al. (2007) and Cadeddu et al. (2013). The first method relies on the reconstruction of atmospheric

profiles, with a physical model that is iterated until modeled TBs match the measured ones. Although this method is formally

the most accurate (Turner et al., 2007), it requires more than one radiometer frequency to lift the problem’s fundamental

underdetermination, and is thus not applicable for this study. The other way to tackle the problem is to derive statistical45

relationships between TBs and LWP and/or IWV based on synthetic datasets. This approach has been widely used, both for

ground-based and satellite applications, with varying degrees of complexity in the algorithms (linear, quadratic, log fitting or

using neural network architectures) (Karstens et al., 1994; Löhnert and Crewell, 2003; Mallet et al., 2002; Cadeddu et al.,

2009). The retrieval coefficients that are computed with this method are usually site-specific, since they incorporate during the

learning or regression stage the climatological features at the location of the dataset. The geographical range within which a site-50

specific algorithm could be reliable is difficult to estimate, especially if the orography of the region is complex, as highlighted

by Massaro et al. (2015). In general, implementing a site-specific algorithm in a location with a different climatology is

likely to yield erroneous retrievals (Gaussiat et al., 2007). In order to implement such an algorithm at another site, a new

parameterization should be performed using a suitable dataset; but there might not always be enough reliable data available for

this purpose. In order to avoid this lengthy process, and in the case of instruments that are intended to be deployed in various55

locations, a site-independent algorithm is more adequate (Liljegren et al., 2001).

The purpose of this study is to present a new site-independent method for the retrieval of both LWP and IWV, that relies

on a single radiometer frequency. The regression is performed through a neural network, whose input consists of brightness

temperature at 89 GHz, as well as surface measurements and geographical information. Those additional input features are
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shown to be especially key to the retrieval of IWV. Although this new method comes with a loss of precision in comparison60

with state-of-the-art multi-frequency retrievals, its advantage is to be applicable in any location with a constrained uncertainty.

The following section describes the data used in the different steps of this study, from the design steps to the validation of

the new method. Section 3 outlines the forward model that is used to build the synthetic dataset on which the LWP and IWV

retrieval algorithms are trained. In Sect. 4, the design of the algorithms is detailed, and the results on the synthetic dataset

are reviewed and analyzed in Sect. 5. An independent validation of the method is presented in Sect. 6 using two contrasted65

datasets that were collected during field deployments in Payerne (Switzerland) and in the Taebaek mountains (South Korea).

A summary and conclusions are provided in Section 7.

2 Data

The present work is based on two types of data: a multiyear collection of radiosonde observations across the world (for training

and testing of the retrieval algorithms) as well as sets of measurements from an 89-GHz radiometer deployed in various regions70

during field campaigns limited in time. Those two types of data are described below.

2.1 Radiosonde dataset

The design of a statistical algorithm requires a large dataset on which to perform statistical learning. Here, this dataset was built

using radiosonde profiles collected in over 180 stations throughout the world, available through the University of Wyoming

portal (Oolman, 2020). In total, ∼ 106 radiosonde profiles are used, from 20 years of data (2000-2019). It was ensured that the75

data included radiosonde stations from all climatic regions and covering a wide range of altitudes (0 to 4000 m). However, lack

of available data in some areas inevitably results in an unbalanced dataset, where polar and tropical areas are under-represented

compared to mid-latitudes, especially Europe. The possible impact on the performance of the algorithm is further discussed in

Sect. 5.

A quality check was performed on each of the relevant variables (pressure, temperature, relative humidity), through the follow-80

ing steps: first, the minimum and maximum P (resp. T, RH) in a given range of altitudes were extracted from each radiosonde.

When examining the distributions that are obtained, outliers were visible, which were then removed with a 10−4 quantile

(upper and lower quantile). The atmospheric column was split into 9 ranges of altitudes, and this routine was performed for

each. In total, 6395 profiles were flagged out and removed. It was ensured that this did not result in the systematic removal of

some geographical locations. Following this step, the vertical profiles of pressure, temperature and relative humidity are used85

as input to the forward model, described in Sect. 3. The vertical extent of the atmospheric profiles ranges from 1 to 50 km,

with a 0.25 quantile of 11km, meaning the profiles largely cover the lower troposphere. The vertical resolution is relatively low

(0.37 km on average).
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2.2 Field deployments

In the validation stage of this work, the new method was implemented using real 89-GHz radiometer data, that were collected90

during campaigns described below.

2.2.1 Instrument

The main instrument that was used for the implementation of the algorithm is the one described in Küchler et al. (2017), which

is here referred to as WProf. This radar-radiometer system, conceived and built by RPG, consists of a 94-GHz Frequency-

Modulated Continuous Wave (FMCW) cloud radar with an 89-GHz radiometer channel, which allows for joint active and95

passive retrievals of cloud and precipitation. In the data presented here, WProf was deployed together with a weather station

that provided surface measurements of temperature, pressure and relative humidity.

2.2.2 Payerne 2017

The first data set on which the new algorithm was evaluated was collected during a field deployment in Payerne (Switzerland),

at 450 m of altitude, in late spring 2017 (May 15th – June 15th). As a means of comparison, data from the Swiss meteorological100

institute (MeteoSwiss) was used. MeteoSwiss’s facilities in Payerne comprise a multi-frequency radiometer with tipping-curve

calibration, HATPRO (Rose et al., 2005; Löhnert and Maier, 2012). This state-of-the-art instrument retrieves LWP and IWV

with a nominal accuracy of respectively 20 g m−2 and 0.2 kg m−2 (RPG Radiometer Physics GmbH, 2014). During this

deployment, both WProf and HATPRO measured brightness temperatures with a high temporal resolution of the order of a few

seconds. The instruments were located approximately 65 m apart; this distance is small enough that it should in general not105

affect the comparison of the retrieved values from the two instruments. However, in some rare cases, it is possible that a cloud

would overpass one of the radiometers, but not the other, leading to a discrepancy in the measured brightness temperatures.

In addition, radiosondes are launched twice daily in Payerne by MeteoSwiss, allowing for the direct computation of IWV

values, which are used as a further source of validation for the IWV retrieval algorithm.

2.2.3 ICE-POP 2018110

The second dataset on which the new algorithm was tested was gathered during the ICE-POP 2018 campaign, which took

place in South Korea during the 2017-2018 winter, in the context of the 2018 Olympic and Paralympic winter games in Pyeong

Chang. A description of the data is presented in Gehring et al. (2020). During this campaign, the weather was generally cold

and dry; nine precipitation events were recorded, and occasional fog was present (about 25 occurrences during the campaign

timeframe). WProf was deployed from November 2017 to April 2018 in Mayhills, 50 km south-east of Pyeong Chang, at 789115

m of altitude. This allows for an implementation of the algorithm in a different context than Payerne: i.e. in winter conditions

and in a fully different geographical setting, located at a lower latitude and closer to the sea.

In this case, unlike in Payerne, no independent measurements of LWP are available; however, radiosondes were launched every

3 hours, thus providing a means of comparison for IWV retrievals, although only with a lower temporal resolution.
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3 Forward model120

In order to develop a statistical algorithm, a large amount of data is required to reliably perform the statistical learning phase.

For this purpose, a synthetic data set was built, using as a starting point the radiosonde profiles described in the previous section.

A two-step forward model was implemented, first to identify clouds in each profile and derive the corresponding liquid water

content, then to compute the resulting 89-GHz brightness temperature. The different steps of this forward model are illustrated

in the flowchart in Fig. 1.125

3.1 Cloud liquid model

To derive profiles of liquid water content (LWC) from radiosonde profiles of atmospheric variables, the cloud model from

Salonen and Uppala (1991) was used. Cloud boundaries are identified using a threshold Uc on relative humidity, this threshold

being pressure- and temperature-dependent, according to Eq. 1.

Uc = 1−ασ(1−σ)[1+β(σ− 0.5)] (1)130

Here, σ = P
P0

with P and P0 denoting respectively atmospheric pressure at the current level and at the ground. Corrections

from Mattioli et al. (2009) are used for the coefficients α and β of the Salonen model. Within the cloud layers, the liquid water

profile is then calculated as a function of temperature and height above cloud base, following Eq. 2.

LWC = w0(
h−hb
hr

)af(T ) (2)

where f(T ) = 1+ cT for T ≥ 0 and f(T ) = exp(cT ) for T < 0, with T in ◦C, a= 1.4, c= 0.04◦C−1, w0 = 0.17 g m−3,135

hr = 1.5 km, h and hb denoting height and height of cloud base. There are some limitations to assuming a single universal

cloud model, since it may fail to capture specific cloud properties in certain environments: more sophisticated and accurate

models could be defined on a local geographical scale to counter this (e.g. Pierdicca et al. (2006)). However, given the stated

objective of this study to design a non-site specific algorithm, it was considered preferable to assume a single universal liquid

cloud model, in spite of its potential drawbacks.140

A further limitation of the cloud model is related to the relatively low resolution of the atmospheric profiles extracted from the

radiosonde data (c.f. Sect. 2.1) that are used as an input. This might result in a misrepresentation of the cloud layers in their

detection and their size. In order to ensure that this forward model generated the least possible bias, its results were compared

against LWP values from ERA5 reanalysis data (Copernicus Climate Change Service, 2020). Even though the model might

fail, on a given occurrence, to reproduce the actual liquid water profile in the atmospheric column, it should not produce a145

significant bias on average. This condition guarantees that the synthetic dataset that is used for training contains realistic – if

not real – profiles, and this should therefore not degrade the quality of the retrieval algorithm. This cloud model was chosen

over other commonly used ones (Decker model, Salonen model without correction, c.f. Mattioli et al. (2009)) for it was found

to produce the least bias when compared to ERA5 LWP values (mean bias of 14 g m−2 vs. 26 g m−2 (resp. -24 g m−2) for the

unadjusted Salonen model (resp. the Decker model with 95 % threshold). Inevitably, when using this criterion for the choice150
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of the cloud liquid model, it is assumed that reanalysis values of LWP are themselves bias-free, which could be questioned,

especially in extreme environments (e.g. Lenaerts et al., 2017).

3.2 Radiative transfer model

Ground-level brightness temperatures (TB) at 89 GHz are simulated for each profile using the Passive and Active Microwave

TRansfer Model (PAMTRA (Maahn, 2015; Mech et al., 2020)) available at https://github.com/igmk/pamtra (last access: Nov155

18th, 2020). As input to the radiative transfer calculations, vertical profiles of temperature, pressure, hydrometeor mixing ratio

and water vapor mixing ratio are used. Gaseous absorption is calculated using the default parameters in PAMTRA, i.e. with the

model proposed by Rosenkranz (1998) and modifications from Liljegren et al. (2005) and Turner et al. (2009). Liquid water

absorption is modeled according to Ellison (2007). It should be kept in mind that some irreducible uncertainty remains tied to

the choice of these parameters in the radiative transfer model.160

The cloud droplet size distribution (DSD) is chosen as a monodisperse distribution with radius rc = 20 µm following Cadeddu

et al. (2017), and scattering calculations are performed with Mie equations, assuming spherical particles. Let us note here that

the exact choice of the DSD has little impact on TB modeling as long as the droplets are in the Rayleigh regime for the given

frequency, since the emission cross-section in this regime is quasi-linearly related to the particle’s volume. When the droplet

size deviates from this regime, for instance as droplets grow larger near the onset of precipitation, then the Rayleigh assumption165

falls short and higher-order terms in the Mie equations become non-negligible, which alters the modeling of TB (e.g., Zhang

et al., 1999). This implies that the algorithm will output biased results when applied to raining cases, and should not be trusted

in those circumstances. This shall be considered as an intrinsic limitation to the algorithm.

There is no clear-cut relation between LWP values and the occurrence of precipitation, although the general trend is that higher

LWP is related to more likely rain: as such, deviation from the Rayleigh regime is likely in high-LWP cases. In order to have a170

more rigorous grasp on when and how this drawback might affect the retrieval, criteria from Karstens et al. (1994) were used.

In their study, the authors distinguished three types of liquid water clouds based on the value of LWC at a given altitude; for

each category of cloud, a different characteristic radius is chosen for the DSD. Mie effects can start to become an issue in

the second category of clouds (cumulus congestus), identified for LWC > 0.2 g m−2; in our dataset, the atmospheric profiles

where this LWC theshold is exceeded in at least one range gate have, on average, a total LWP ≥ 830 g m−2, and around 2%175

of the entire dataset fall into this category. Taking the third category (cumulonimbus) with LWC > 0.4 g m−2, this applies to

1% of the entire dataset and the average LWP threshold increases to 1400 g m−2. Those values can serve as a benchmark

to identify LWP values where Mie effects can typically contaminate the retrieval. However, edge cases can also exist where

the total LWP is quite low, but a small layer of nearly-precipitating or drizzling cloud still contaminates the retrieval, without

featuring extremely high total LWP.180

Finally, the forward model that is presented here does not include the contribution of ice clouds and snowfall. While radiative

emission from ice and snow particles has a minor influence on brightness temperature when compared to emission from liquid

droplets and water vapor, and is in general negligible, solid hydrometeors do contribute to microwave brightness temperature

through the backscattering of surface radiation. Scattering from snowfall particles is difficult to model accurately, but Kneifel
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et al. (2010) suggest that this effect could be notable during snowfall, in a way that is highly dependent on the microphysical185

properties of snowfall particles, and that would increase with their size. The present study does not take into account this

process and could therefore yield biased results during intense snowfall events.

4 Design of the IWV and LWP retrieval algorithms

4.1 Input features

When a single frequency is available for the measurement of TB, the problem’s underdetermination can be partially relieved by190

including other available information in the retrieval’s measurement vector. Adding further information allows to disentangle

IWV and LWP, which could not be achieved from the sole measurement of 89-GHz TB. In this study, several categories of

variables were included in the input features. The first category consists of TB and higher order polynomials (up to fourth

degree) and is expected to have the greatest importance in the retrieval of LWP, while the other categories would likely be

more correlated to IWV. The effect of higher order polynomial terms will be discussed further on. In order to simulate realistic195

measurements, a random Gaussian noise was added to the modeled brightness temperatures, with a mean and standard deviation

of resp. 0 K and 0.5 K ; those values were identified by Küchler et al. (2017) as the characteristics of the measurement noise of

the 89-GHz radiometer. Secondly, surface measurements are included (temperature, sea-level pressure and relative humidity);

in the case of the radar-radiometer set-up that is used here, a weather station is collocated, meaning those measurements are

available at the location of the instruments. The third class of input features comprises geographical descriptors: latitude,200

longitude, altitude; the day of year is also included in this group of features, as a means to account for seasonal variability in

atmospheric and meteorological conditions. When available, a fourth category is added to the input features with reanalysis

data (precipitable water and liquid water) from ERA5 (Copernicus Climate Change Service, 2020). The spatial and temporal

resolution of this reanalysis data is too low for it to be held as ground truth, but it can serve as a reasonable rough estimate

and thus bring some improvements to the statistical learning process – although it could not be included as such in a physical205

model. Those four groups of features are used both for the retrieval of IWV and that of LWP. In the case of LWP, an additional

input feature can be added, which is the output of the IWV retrieval algorithm. The impact of each of those feature groups on

the retrieval will be discussed in Sect.5.

4.2 Dataset preprocessing

Rain events should be excluded from the training set, since they are out the algorithm’s range of validity, as explained in Sect.210

3. Profiles with LWP > 1000 g m−2 are therefore removed (i.e. in the range of heavy rain according to Cadeddu et al., 2017,

and in view of the discussion conducted in Sect. 3.2). The resulting dataset contains ∼ 106 profiles and is used for the design

of the IWV retrieval algorithm.
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4.2.1 Further preprocessing for LWP dataset

In the case of LWP retrieval, additional pre-processing is needed, since the forward model produced a large majority of clear-215

sky cases. If left as such, the training phase would result in a strong bias of the retrieval toward low LWP values (a bias

of ∼ 100 g m−2 for LWP > 400 g m−2 was noted in the development stages of the algorithm): this is a common artefact in

statistical learning algorithms, as an effect of unbalanced training set. In order to avoid this, the dataset was subsampled so that

clear-sky and cloudy cases (up to 600 g m−2) would be equally represented; the value chosen for this threshold results from a

trade-off between bias reduction and preservation of overall accuracy. The resulting histogram is shown in Fig. 2, and the LWP220

dataset thus contains ∼ 105 profiles. In the case of IWV, the distribution is also not uniform, but it suffers from a much smaller

assymetry than the initial LWP data set. After some trials, it was considered preferable to use the full IWV data set rather than

go through subsampling steps, which did not seem to bring significant improvements in this case. It should also be noted here

that the additional pre-processing that was necessary for the LWP retrieval algorithm led us to design two separate algorithms,

rather than a single one that would retrieve IWV and LWP at once. Indeed, while LWP retrieval is mostly relevant in cloudy225

cases, IWV can show some significant variability in clear-sky cases, which should therefore not be excluded from the training

stage.

4.3 Statistical retrieval using a neural network

After preprocessing, LWP and IWV datasets were randomly split into training, validation and testing set (70 %-15 %-15 %),

and normalized using mean and standard deviation of each input feature in the training set. The validation set is used for tuning230

the hyperparameters of the neural network, while the final evaluation metrics are computed on the testing set. A densely-

connected neural network architecture was chosen over linear regression and decision-tree-based retrieval techniques for it was

found to produce more reliable results, with higher accuracy than the former and less prone to overfitting than the latter. The

algorithm was designed using the Keras library in Python (Chollet et al., 2015). The neural network was trained through mini-

batch gradient descent, using RMSprop optimizer which allows for learning rate adaptation and is often used for statistical235

regression problems (Chollet, 2017). As comes across from the training curve of the LWP retrieval on Fig. 3, the training

dataset is large enough to ensure that the algorithm is not prone to overfitting: indeed, the error on the validation set quickly

drops when the size of the training set, then plateaus with a slight decrease. In other words, the accuracy of the algorithm is

not limited by the amount of data used in the training stage. Figure 4 and Table 1 summarize the resulting architecture and

relevant parameters of the algorithm. These include the description of the neural network’s structure (number of neurons and240

hidden layers) as well as training parameters such as the batch size and number of epochs, i.e. the number of iterations through

the entire dataset in the learning phase. Different versions of the algorithm were trained, using various sets of input features, to

assess the importance of each category (discussed below).
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5 Results on synthetic dataset

In this section, the algorithm is evaluated on the synthetic dataset (testing set), through different criteria. Overall, results are245

encouraging and the retrieval appears to be robust. Some limitations can be identified, which will be discussed here. Addition-

ally, an analysis on the impact of the various input features on the retrieval of IWV and LWP is conducted.

5.1 Error curves

Fig. 5 presents the distribution of the error on the testing set, for the best version of the algorithm, which is the one that uses the250

full set of input features. In panels c) and d), the target variable, respectively IWV and LWP, is binned to intervals on which the

root mean square error (RMSE) is calculated. This illustrates the behavior of the algorithm across the entire range of values,

rather than summarizing the performance with a single metric such as total RMSE, which can conceal specific behaviors related

to the distribution of the target variable in the dataset. Along the same line, we emphasize that comparing those total RMSE

values to those from other studies should be done carefully because they strongly depend on the dataset from which they are255

calculated. In a similar way, panel e) (resp. f) illustrates the distribution of the mean bias across the range of IWV (resp. LWP)

values. For reference, the definitions of the error metrics that are used in this section and further on are recalled in Appendix A1.

Figure 6 shows how this total error, represented by RMSE (left panels) and by the correlation coefficient (R) (right panels),

is affected by the addition or removal of input features. For each set of input features, a full tuning of the algorithm was260

performed, and the results that are presented correspond to those from the tuned – i.e. best – version on the testing set.

5.1.1 IWV algorithm

Overall, the IWV retrieval algorithm yields a RMSE of 1.6 kg m−2 on the testing set, which corresponds to a relative error

of 6.5 %. For comparison, the ERA5 data alone has a higher RMSE (3.4 kg m−2) on the same data set. Looking at Fig. 5 a),

c) and e), it comes across that the retrieval performs quite well over the full range of IWV values, and the error distribution265

is relatively homogenenous. For high IWV values, however, a significant negative bias is present (as large as -6 kg m−2).

Because such high values are underrepresented in the dataset, they are not well captured during the statistical learning stage,

which leads to a systematic underestimation. However, these are by definition “border” cases, for which a decrease in accuracy

is to be expected.

From Fig. 6 a) and b) it comes across that the IWV retrieval is significantly improved by the addition of multiple input features.270

The highest accuracy is obtained with the full set of input t features, and corresponds to a RMSE of 1.53 kg m−2. On the other

hand, including solely TB measurements in the input deteriorates the RMSE to nearly 6 kg m−2. If only one input feature were

available, all the versions would predict worse results than those given by reanalysis data. Including TB in the retrieval does not

lead to the same leap in accuracy than for LWP (discussed in the following subsection); however, excluding TB from the input

features degrades the RMSE to 2.56 kg m−2, i.e. + 67 % error, which clearly shows that brightness temperature incorporates275
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additional relevant information into the retrieval.

An analysis was conducted to identify the importance of higher order polynomials in the algorithm, a summary of which can

be found in Appendix A1. It was found that the most accurate retrieval is obtained by including TB and T2
B. If higher order

terms are added, this slightly reduces the accuracy of the retrieval, and also degrades its robustness to TB miscalibration. On

the other hand, including only TB, while it makes the algorithm slightly more stable, does not appear as the best solution for it280

has lower accuracy. Hence, the results which are presented here and in the following sections are those obtained using TB and

T2
B.

5.1.2 LWP algorithm

The LWP retrieval algorithm has a RMSE of 86 g m−2 at best on the testing set (training set: 84 g m−2 and validation set:

86 g m−2). This corresponds to a relative error of 29 % on the testing set. Let us underline that the subsampling which is285

performed on the dataset for the retrieval of LWP is applied to training, validation and testing sets: the results that are presented

here are therefore computed on the testing set with a truncated distribution – i.e. after subsampling. Additionally, if clear-sky

cases are removed using 30 g m−2 as a threshold value, following Löhnert and Crewell (2003), the relative error is 18 %. As

already mentioned, the total RMSE values given here should be taken with care since they depend on the data set’s distribution.

For comparison, when the retrieval is implemented on the full dataset, i.e. without the subsampling step, the total RMSE drops290

to 40 g m−2. The RMSE is here again rather homogeneous across the range of LWP values (Fig. 5.d), with however a small

bias of around 20 g m−2 for low LWP values (visible in Fig. 5 f), which are slightly overestimated, and while there is an

underestimation of large LWP (LWP > 800 g m−2), with a negative bias down to -100 g m−2. Both biases result from an effect

of regression towards the mean, which is a intrinsic artefact of statistical algorithms. The significant negative bias for large

LWP values is enhanced by the lack of data in this range. It is likely acceptable, for it would correspond mostly to raining cases295

(light to moderate) which the retrieval does not aim to capture; yet this highlights once again that those cases are out of the

algorithm’s scope and that retrievals with high LWP should be taken with care.

The analysis of higher order terms’ importance in the case of LWP retrieval shows that the best results are obtained by using

TB polynomials up to the fourth order (see Appendix A2), while this does not affect significantly the stability of the retrieval

to errors in TB. Let us highlight that in the case of a linear regression, one would expect the error to diverge when high-order300

polynomials are included. This is not the case here, because of the saturating behavior of the neural network. Therefore, in the

results which are shown here and further, “TB” implies that TB polynomials up to the fourth order are used.

Figures 6 c) and d) show that for LWP retrieval, input features other than TB only bring second-order improvements, while

they were shown to be crucial in the IWV retrieval. For instance, the addition of reanalysis data significantly improves the305

IWV retrieval, but only in a relatively minor way does it increase the accuracy of LWP retrieval. On the contrary, excluding

TB from the input features leads to RMSE near 200 g m−2 and R< 0.7, i.e. to values with make the retrieval not relevant.

This highlights that while environmental descriptors are well correlated to IWV, they are not sufficient to provide a reasonable

estimate of LWP, for which microwave radiometer measurements are critical. An additional reason for this high dependence
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on TB is that LWP at a given location can have a large temporal variability due to cloud dynamics in the atmospheric column,310

which might not always be captured in the time series of surface atmospheric variables, nor by ERA5 models which have a

comparatively low spatial and temporal resolution.

Still, the accuracy of the algorithm drops severely when no other features are considered than brightness temperature (RMSE of

140 g m−2). This means that, albeit second-order when taken individually, and somehow redundant when all used together, the

secondary input features are efficient in incorporating statistical trends and climatological information to the retrieval during315

the training phase.

Adding IWV prediction as an input feature to the LWP retrieval has a very minor impact. For clarity, it was only included in

Fig. 6 c) in the best-case scenario and not for every other combination of input features. This is not surprising, since it is itself

the output of an algorithm that relies on essentially the same input features. However, the slight improvement that is seen can

be understood by recalling that the IWV retrieval algorithm was trained on a much larger dataset, which includes in particular320

a larger number of clear-sky cases (cf. Sect. 3).

5.2 Sensitivity to instrument calibration

In order to assess the stability of the algorithm with respect to potential miscalibration or calibration drift of the radiometer,

TB offsets were virtually added to the testing dataset before implementing the retrieval. Figure 7 illustrates the behavior of

the algorithm when such a miscalibration, with a constant offset is present (varying from 0 to 5K). Panel a) shows that a 5 K325

offset in TB results in a 30 % increase in RMSE for the IWV estimations, which is non-negligible. Ensuring proper radiometer

calibration thus seems crucial in constraining the error of this retrieval. For comparison, the 89-GHz radiometer presented in

Küchler et al. (2017) has a nominal accuracy of 0.5 K, after calibration. If the calibration cannot be ensured, and if there is no

means to correct for miscalibration (of > 3K), it is preferable for IWV retrieval to use the algorithm that does not rely on TB,

shown with the black dashed line.330

In terms of relative impact, the LWP algorithm is less affected (Fig. 7 b) ) with an increase of the RMSE of less than 10

% for an offset of 5 K in TB, which makes it reasonably stable to inaccuracy of TB measurements. It also appears that the

different versions are affected in a similar way by offset TB values. However, the algorithm which includes the prediction of

IWV in the input features diverges faster than the others. This is understandable, for the error on TB propagates through the335

IWVpred input feature, in addition to the TB features themselves. Therefore, in the case of uncertain calibration, more robust

results would be obtained without including this feature.

It is noteworthy that for TB-only retrievals, the addition of a TB offset does not result in a large increase of the error: for

IWV, the addition of a 5K offset increases the RMSE from 5.6 to 6.2 kg m−2; for LWP, the same offset leads to an increase340

from 139 to 142 g m−2. This behavior is also observed when looking at how the bias, instead of the RMSE, increases with the

addition of a TB offset (not shown). In both cases, the error increases more drastically when multiple features are included,

than when only TB is used as input. One possible explanation for this effect is the following: when incorporating numerous
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input features, the algorithm is able to narrow down the range of possible IWV and LWP values in a given environmental

context; in this constrained configuration, the correlation and sensitivity of the retrieval to TB are then enhanced, leading to a345

stronger influence of a TB offset.

5.3 Geographical distribution of the error

One of the motivations of this study was to design an algorithm that could be used across the globe with a constrained un-

certainty. Figure 8 illustrates the geographical distribution of the error for both LWP and IWV retrievals, using the synthetic

radiosonde-based dataset. Two approaches were used to assess this error: first, RMSE values were calculated on the entire set350

of data available for each location, excluding LWP greater than 1000 g m−2. Second, the RMSE was normalized by the mean

value of LWP (resp. IWV) for each site, excluding low values (LWP less than 20 g m−2, i.e. using a conservative threshold to

exclude clear-sky cases). Note that this normalized error is not equal to the relative error; rather, it gives an idea of how large

the RMSE of the retrieval is, compared to the mean values that are observed at a given location.

355

From the non-normalized error (left panels of Fig. 8), it can be seen that most high- and mid-latitude locations have a con-

strained RMSE around 20-60 g m−2, while tropical sites are not as well captured, with RMSE exceeding 120 g m−2 in some

locations. The temperature and humidity conditions, as well as the strong precipitation events that typically occur in those

regions, are probably responsible for this discrepancy. Cases with high LWP are more common under such climatic conditions,

and it was observed in Sect. 5.1.2 that the accuracy of the algorithm decreases in that range. Tropical climates are underrepre-360

sented in the dataset, for little data is available from this region in comparison with mid-latitude areas: their specificity might

therefore not be fully captured during the learning stage of the algorithm. This accounts at least partly for the enhanced error

over the Indian peninsula and South-Eastern Asian islands.

The normalized error (right panels of Fig. 8) shows that the error is overall of the same order of magnitude across the365

globe. However, a few regions stand out from this analysis, which typically feature arid climates: the stations of Dalanzadgad

(Mongolia), Salalah (Oman), Minfeng (China, north of Tibet), Jeddah (Saudi Arabia) all have a normalized error on LWP

higher than 0.7, and are in the desert. In a similar way, it appears that the IWV retrieval algorithm performs poorly – in terms

of normalized error – in cold environments where absolute humidity is low, as in Sermersooq (Greenland). In such regions, the

new algorithm is not sensitive enough to capture accurately the fine variations of atmospheric vapor and liquid water content:370

if detailed studies of those areas were to be conducted, more than one radiometer frequency would likely be necessary, along

with specific training sets on which to perform the statistical learning, as was done in the Arctic by Cadeddu et al. (2009).

6 Evaluation in two contrasted datasets

As a further step in the validation process, the algorithm was applied to data from two campaigns involving WProf, first in

Payerne, Switzerland, then near Pyeong-Chang, South Korea (see Sect. 2 for the full description of the datasets). In both cases,375

12



the output of the retrieval is compared with values retrieved through other methods, either a multi-channel radiometer or – in

the case of IWV – radiosonde data.

6.1 Payerne 2017

6.1.1 IWV retrieval

The results of the new IWV retrieval algorithm are compared to those from MeteoSwiss’ operational radiometer HATPRO,380

and to the radiosonde-derived values. From Fig. 9 a) and c) it appears that the IWV retrieval has relatively limited spread

but has a constant bias (-1.8 kg m−2), which is visible both in the comparison against HATPRO (a) and radiosonde-derived

measurements (c). This might be due to a bias in ERA5 data during this timeframe over the region (with a value of -4.1

kg m−2), which is visible in ERA5 records during the entire campaign (not shown here) and for which there is no clear

explanation at this stage. This bias points to one of the limitations of the IWV retrieval algorithm, which is sensitive not only385

to radiometer miscalibration but also to possible biases in other input variables, which can be difficult to monitor and assess

– as in the case of ERA5 values in Payerne. In spite of this, the top panels of Fig. 10 (which illustrate the error vs. HATPRO

measurements) and Fig. 11 (error vs. value derived from radiosounding) show that overall, the implementation of the different

versions of the algorithm on the Payerne dataset matches the conclusions from the testing set results: more features lead to an

enhanced precision of the retrieval. The accuracy drops when only one or two groups of input features are included, but no390

single group of features seem to increase the accuracy alone. There is however a difference between Fig. 10 b) and Fig. 11 b):

in the latter, higher R (and similar RMSE) is actually obtained from the algorithm that does not use TB in input, than with the

full set of input features. This is at first surprising, but it was explained by taking a closer look at the results: the algorithm

without TB leads to IWV values which are more smooth and less sensitive to short-time variations. These are not reflected in

the comparison against radiosonde data, for which a 30-min averaging was implemented.395

When variations over a small timeframe are considered, the inclusion of TB improves the retrieval, as comes across from the

comparison against HATPRO’s measurements in Fig. 10.

6.1.2 LWP retrieval

Figure 9 b) shows that LWP values retrieved with the new algorithm are in general agreement with those obtained thanks to

HATPRO, although a larger spread is observed than in the IWV retrieval. A saturation effect can be seen near precipitation400

onset, when LWP values from HATPRO reach 600 g m−2. Additionally, outliers are visible as vertical and horizontal bars

close to the axes, for which two hypotheses are considered. One is that the distance between the two instruments was big

enough, that in some cases a liquid water cloud would overpass one of the two instruments but not the other. Hence, HATPRO

would measure a non-zero LWP while WProf would indicate a clear sky, or vice-versa. Besides, measurement artefacts cannot

be excluded, e.g. due the persistence of a liquid water film on the radome of either radiometer, after precipitation or due to405

condensation.
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For comparison, the method described in Küchler et al. (2017) was implemented (further on referred to as K17), by perform-

ing a quadratic regression on a dataset consisting solely of radiosonde profiles collected in Payerne. As proposed by the authors,

a first version (K17A) relies on a measurement vector consisting of TB, T2
B, as well as the IWV estimate from reanalysis data

IWVERA5 and IWV2
ERA5. Another version (K17B) includes only TB and T2

B. Theoretical RMSEs derived for those quadratic410

regressions on the synthetic dataset (19 720 profiles) are 21 g m−2 and 43 g m−2, respectively, which is similar to the values

obtained by the authors on radiosonde data from De Bilt (the Netherlands), i.e. 15 g m−2 and 44 g m−2.

K17A and K17B were applied to Payerne campaign dataset, and their results are compared to those from the new algorithm

in Fig. 10. The error metrics are calculated using HATPRO’s values as a reference. The algorithms perform in a similar way,

with slightly better results for the new algorithm when at least one of the secondary input features is included. We remind that415

K17A and K17B were specifically tuned on Payerne data, while the new algorithm was tuned globally, on a dataset that did

not comprise radiosonde profiles from Payerne.

6.2 ICE-POP 2018

As detailed in Sect. 2, the South Korean deployment of WProf in 2017-2018 also offers an opportunity to compare results from

the IWV retrieval to IWV from radiosonde measurements.420

The analysis of the TB timeseries showed that a miscalibration of the radiometer led to unrealistic – negative – values for which

a correction had to be implemented, through the addition of a constant offset to TB measurements. The value of this offset (20

K) was determined by computing theoretical brightness temperatures from clear-sky radiosonde profiles and comparing them

to measured TBs, following the approach of Ebell et al. (2017). This is however only a first-order correction whose output

should be taken with care, especially after the analysis of Sect. 5.2 which underlined the importance of TB accuracy for IWV425

retrieval.

After this correction, the IWV retrieval gives coherent results (see Fig. 12), with a total RMSE that is slightly lower than that

obtained on the testing data set (1.25 kg m−2). The best results are found when several input features are included and drop

severely when no secondary input features are used, which corresponds to the results on the synthetic data set presented in

Sect. 5. The algorithm largely relies on non-radiometric features, and this is even more the case in cold and dry environments430

like that of ICE-POP, where IWV is low. In fact, slightly better results are obtained with all input features except brightness

temperature. The miscalibration of the radiometer, which may not have been perfectly corrected by the addition of a constant

offset, might emphasize this error. This also corresponds to what was noted in Payerne: when the results are averaged over

30 minutes, brightness temperature brings little, if any, improvement to the results. TB is relevant when a higher temporal

resolution is considered (cf. Sect. 6.1.1) – for which no comparison was available during ICE-POP – or when ERA5 data is435

significantly off. In this case however, it comes across from Fig. 12 that the algorithm is consistently outperformed by ERA5

products: they have both a lower RMSE and a higher R, which makes the algorithm less relevant for the study of this specific

campaign. The high accuracy of ERA5 data during ICE-POP also explains the high correlation coefficient of the retrieval that

uses ERA5 and Geographical input features: since the geographical parameters are constant, the temporal variability is that of

the reanalysis data and therefore the correlation coefficient of the retrieval is close to that of ERA5 data alone. Let us highlight440
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that although reanalysis data outperforms the retrieval for ICE-POP, this was not the case in Payerne nor in the full radiosonde

data set, where the algorithm has a higher accuracy than ERA5 values. Possibly, the dry and cold weather that was observed

during the ICE-POP campaign featured little short-term variability and was associated with stable atmospheric conditions that

were particularly well captured in ERA5 reanalyses. Snowfall events during the campaign, as well as occasional fog, can also

bias the retrieval by enhancing brightness temperature.445

The analysis of the ICE-POP data was taken a step further to explore the latter point. It appears that the IWV retrieval is

most reliable in non-precipitating or cold conditions, i.e. when little liquid water is expected in the column. To visualize this,

periods with no precipitation or fog are identified using WProf’s radar measurements as time steps with low radar equivalent

reflectivity (Ze < -10 dBZ) in the lower gates (first kilometer above the radar), and temperature time series are provided by the450

weather station coupled to WProf. Fig. 13 shows the scatter plot of the error – for the algorithm that includes all input features

– color-coded in a way to differentiate dry from precipitating or fog conditions: black triangles correspond to dry timesteps,

and circles to timesteps with Ze > -10 dBZ, with their color indicating surface temperature. The algorithm yields a larger bias

in rain – as was expected in the design steps of the algorithm (Sect. 3) – but also during snow events with relatively warm

temperatures, close to or slightly above 0 ◦C (Fig. 13). Changes in the dielectric properties of snowflakes during the melting455

process can explain this increased error; additionally, the process described by Kneifel et al. (2010) and which was recalled in

Sect. 3 suggests that snowfall events with large snow particles (typically present with relatively mild temperatures) could have

a non-negligible contribution to brightness temperature, which might explain the enhanced error in those cases.

7 Summary and conclusions

A new site-independent method was designed for the retrieval of LWP and IWV from a single-channel ground-based ra-460

diometer. In addition to 89-GHz brightness temperature, additional input features were used for the retrieval, such as surface

atmospheric variables (temperature, pressure and humidity) and information on the geographical location and season. A neural

network architecture was chosen for the statistical learning.

Training and testing were performed on a synthetic data set that was built using radiosonde profiles worldwide. The geograph-

ical distribution of the error shows that the algorithm performs better in mid-latitudes and regions with a moderate climate465

than in areas with a extreme climates – either arid or very moist – which include both tropical and polar regions, that are

not well represented in the training dataset due to lack of available data. Also, the forward model that was used should most

likely be revised in order to capture finely the atmospheric conditions in such specific environments. In addition, the training

dataset lacks data from locations with complex orography, and more in-depth investigations should be conducted regarding the

reliability of the retrieval in such terrain (Massaro et al., 2015).470
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The algorithm was then applied to two contrasted data sets, one reflecting summertime weather conditions in Switzerland,

and the other in winter conditions in South Korea. For this application, measurements from RPG’s cloud radar-radiometer

system were used.

In Payerne, the new LWP retrieval was found to perform slightly better than the method proposed by Küchler et al. (2017) for475

the same instrument, albeit the latter algorithm was specifically trained using radiosonde data from Payerne. When compared to

radiosonde measurements of IWV, the IWV retrieval was found to be less accurate than that of a state-of-the-art multi-channel

radiometer (HATPRO), although both instruments yield errors within the same order of magnitude. In the South-Korean winter

dataset, the IWV retrieval proved relatively robust, in spite of a slight bias during some snowfall events, that could be related

to the scattering properties of snow particles, which were not taken into account in the forward model. In the case of ICE-480

POP, reanalysis data was actually more accurate than the IWV retrieval when compared with radiosonde measurements, but

its temporal resolution remains low, which makes the use of the algorithm still relevant for retrievals where a high temporal

resolution is required.

Further steps in the improvement of the current algorithm would include coupling information from the radar and the

radiometer channel (Ebell et al., 2010; Cadeddu et al., 2020). The detection of clear-sky cases with radar data (Mätzler and485

Morland, 2009) could help monitor the calibration of the radiometer, and introduce TB offsets for correction when necessary

(Ebell et al., 2017). If available through a separate sensor such as a GPS receiver, independent IWV measurements could

be included in the algorithm, possibly leading to an enhanced precision of the LWP retrieval. Radar moments could be used

to distinguish cloudy from drizzling or rainy cases, similar to the approach conducted by Cadeddu et al. (2020), and to use

appropriate DSDs for each case to account for non-Rayleigh scattering by precipitating droplets. However, forward modeling490

of radar data requires further assumptions on microphysical properties and atmospheric conditions, for which generalization

to a global geographical scale is a real challenge. Additionally, the retrieval that is presented here uses reanalysis data as an

optional feature, which was shown to be valuable. In the case where near real-time retrievals were necessary, the user could

choose to use a version of the algorithm that does not rely on ERA5, but this would be detrimental, especially for the IWV

retrieval. Another option would be to implement the algorithm with the output of forecast models (IWV and LWP) instead of495

reanalysis data. This approach was however not tested as this stage.

Overall, the LWP and IWV retrieval methods that were designed within this study were shown to be robust, both when

applied to synthetic and to real datasets, although their performance is inevitably lower than that of multi-channel radiometers

specifically designed for LWP and IWV retrieval. While retrieving IWV based on TB at 89 GHz alone does not lead to accurate

results – this would require the use of other microwave frequencies, more suited to the emission spectrum of water vapor – this500

study showed that reliable retrievals could be achieved by including surface and geographical information, as well as reanalysis

data if available, among the input features. The new algorithms should be seen as a valuable tool for atmospheric liquid water

and vapor monitoring in the context of radar-radiometer studies. They are non-site specific, and thus do not require further

tuning before use on a new site, which makes them easy to implement, while their accuracy is well characterized.
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Figure 1. Illustration of the different steps of the forward model.
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Figure 2. Distribution of the target variables (IWV and LWP, resp. in panels (a) and (b)) in the synthetic dataset, after preprocessing.
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Figure 3. Learning curves for the LWP retrieval, showing the RMSE on training and validation set with varying training set size. Shaded

areas correspond to the interquartile range calculated over 50 realizations of random splitting of the dataset into training and validation sets,

bold lines are the median.
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Figure 4. Structure of the retrieval algorithms. Some versions of the LWP retrieval include, among the input features, the output of the IWV

retrieval. Note that the IWV and LWP algorithms are trained on different datasets.
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Figure 5. Results of the retrieval algorithms on the synthetic testing dataset. The best versions of the algorithms are presented, i.e. the ones

which use the full set of input features. Panels (a) and (b) show the distribution of predicted vs. target values of resp. IWV and LWP. The

size of the testing set is indicated (N) as well as relevant error metrics (RMSE, bias, R). Panels (c) and (d) illustrate the distribution of the

RMSE across the range of IWV and LWP values, binned into intervals of resp. 4 kg m−2 and 50 g m−2. Similarly, panels (e) and (f) show

the distribution of mean bias across the range of IWV and LWP values.
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Figure 6. Global error metrics (RMSE on the left panels and correlation coefficient R on the right) computed on the testing set for different

versions of the (a,b) IWV and (c,d) LWP retrievals. Each bar shows the result of a version whose input features are specified in the label. For

example, “ERA-IWVpred-Geo-Surf” corresponds to the version of the LWP retrieval algorithm that uses the following categories of input

features: ERA5 variables, IWV obtained from the IWV retrieval, geographical information and surface measurements. The bars are sorted

with increasing RMSE. For the IWV retrieval, the accuracy of the algorithm is compared to that of reanalysis data alone (dashed lines).
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Figure 7. RMSE on testing set of the different versions of the (a) IWV and (b) LWP retrieval, after addition of a constant TB offset in the

input. Dashed lines show the retrievals without TB in the input features.
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Figure 8. Geographical distribution of the error on the synthetic dataset. Left panels (a) and (c) illustrate the total RMSE on resp. IWV and

LWP. In panels (b) and (d) is shown the normalized error, i.e. the RMSE normalized by the mean value of IWV (resp. LWP) at each location.

For the evaluation of LWP, clear-sky as well as strong rainy cases are removed (resp. LWP < 20 g m−2 and LWP > 1000 g m−2). The size

of the disks represents the mean value of IWV or LWP at each site, while the color codes for the error of the retrieval.
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Figure 9. Comparison of (a) IWV and (b) LWP retrieved over Payerne with the new algorithm, using the full set of input features, against

the retrieval from MeteoSwiss’ radiometer HATPRO. Panel (c) shows IWV retrieved from the new algorithm and from HATPRO against the

from radiosonde measurements; a 30 minute time averaging is used for radiometer measurements. The size of the data set is indicated (N) as

well as relevant error metrics (RMSE, mean bias, R).
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Figure 10. Error of the new retrieval algorithms over Payerne compared to HATPRO retrievals. In panels (a, c) the RMSE of resp. IWV and

LWP is calculated for different versions of the algorithm. Similarly, R is shown in panels (b, d). Each bar shows the result of a version whose

input features are specified in the label. In panels (a, b), the black dashed line shows the error of IWV from ERA5 reanalysis data. In (c, d),

the dashed lines present the results from K17A and K17B, as defined in the body text.
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Figure 11. Results of the IWV retrieval in Payerne compared to radiosonde measurements (a: RMSE and b: R). The radiometer measurements

are averaged over 30 minutes. For comparison, the dashed lines illustrate the error of HATPRO (green) and ERA5 (black) vs. radiosonde-

derived IWV.
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Figure 12. Error of the IWV retrieval during the ICE-POP campaign with different versions of the algorithm. The RMSE is computed against

IWV from radiosonde profiles, after 30 minutes of temporal averaging in the radiometer data. The dashed line shows the error of IWV from

ERA5 reanalysis data.
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Figure 13. Scatter plot of retrieved IWV vs. IWV computed from radiosonde profiles. The algorithm used for the retrieval is the one with the

full set of input features. The color indicates the surface temperature (in degrees Celsius). Dry conditions are identified with the equivalent

radar reflectivity in the first kilometer above the radar (with a -10 dB threshold), and are coded as black triangles; precipitating conditions

are denoted with circles. The size of the data set is indicated (N) as well as relevant error metrics (RMSE, mean bias, R).
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Figure A1. Effect of higher-order TB polynomials on IWV retrieval. Panels a) and b) show the RMSE and R on the testing set. It comes

across that the best results are obtained with TB and T2
B. Adding T3

B and T4
B leads to similar results, with slightly higher RMSE. Panel c)

illustrates how the RMSE changes when a constant TB offset is added to the testing input, simulating a miscalibration of the radiometer.

In terms of relative increase, the retrieval with TB only is slightly less affected, but it does not bring a large enough improvement to be

considered preferable in comparison with the retrieval with TB and T2
B.
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Figure A2. Effect of higher-order TB polynomials on LWP retrieval. Panels a) and b) show the RMSE and R on the testing set. It comes

across that the best results are obtained with the full set of TB polynomials up to the fourth order. Using only TB and T2
B leads to similar

results, with slightly higher RMSE. Panel c) illustrates how the RMSE changes when a constant TB offset is added to the testing input,

simulating a miscalibration of the radiometer. In terms of relative increase, the retrieval with TB only is slightly less affected, but the RMSE

remains higher than that of the other retrievals.
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Table 1. Main parameters of the neural networks and training process.

Target Neurons Layers Cost function Optimizer Activation Epochs Batch size

IWV 120 7 Mean square error RMS prop ReLU 70 512

LWP 150 6 Mean square error RMS prop ReLU 90 512

Table A1. Error metrics. X refers to LWP or IWV, and N is the length of the considered dataset.

Root-mean-square error Relative error Bias Correlation coeff. (R)

[ 1
N

∑N
k=1(Xretrieved,k −Xtarget,k)

2]
1
2 1

N

∑N
k=1

|Xretrieved,k−Xtarget,k|
Xtarget,k

1
N

∑N
k=1(Xretrieved,k −Xtarget,k) Pearson

Xretrieved and Xtarget are length-N real positive vectors with the values of predicted (i.e. algorithm-retrieved) and target values, respectively. For the calculation of Relative

error, Xtarget,k = 0 g/m2 are excluded from the dataset.
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