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Abstract. Microwave radiometers are widely used for the retrieval of Liquid Water Path (LWP) and Integrated Water Vapor

(IWV) in the context of cloud and precipitation studies. This paper presents a new site-independent retrieval algorithm for

LWP and IWV, relying on a single-frequency 89-GHz ground-based radiometer. A statistical approach is used, based on a

neural network, which is trained and tested on a synthetic data set constructed from radiosonde profiles worldwide. In addition

to 89-GHz brightness temperature, the input features include surface measurements of temperature, pressure and humidity, as5

well as geographical information and, when available, estimates of IWV and LWP from reanalysis data. An analysis of the

algorithm is presented to assess its accuracy, the impact of the various input features, as well as its sensitivity to radiometer

calibration and its stability across geographical locations. The new method is then implemented on real data that were collected

during a field deployment in Switzerland and during the ICE-POP 2018 campaign in South Korea. The new algorithm is shown

to be quite robust, especially in mid-latitude environments with a moderately moist climate, although its accuracy is inevitably10

lower than that obtained with state-of-the-art multi-channel radiometers.

1 Introduction

Clouds play a key, though complex, role in the atmosphere’s radiative balance and global circulation (Hartmann and Short,

1980; Slingo, 1990; Hartmann et al., 1992; Wang and Rossow, 1998; Stephens, 2005; Mace et al., 2006; McFarlane et al., 2008),

and cloud studies have thus been propelled to the forefront of climate research. One of the core challenges is the monitoring,15

quantification and modelling of cloud liquid water, which has a significant contribution to radiative processes on a global

scale. In this perspective, highly accurate methods were developed to retrieve liquid water path (LWP) as well as integrated

water vapor (IWV) from microwave radiometer measurements, relying on the fact that water in its liquid and vapor phases is

the main atmospheric contributor to brightness temperatures in millimeter wavelengths, outside of the oxygen window. On a

different note, quantifying cloud liquid water content is also relevant to the field of snowfall studies. Identifying the presence of20

supercooled liquid water during a snowfall event is of paramount importance to the understanding of snowfall microphysics, for

it drives riming of snow particles, which in turn affect the efficiency and the spatial distribution of precipitation (Saleeby et al.,

2011), as well as wet deposition of aerosols (Poulida et al., 1998). Improving the monitoring of cloud liquid water processes is

thus valuable to climatological, meteorological and hydrological applications.
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The quantitative retrieval of LWP from ground-based or satellite measurements of brightness temperature (TB) at a single25

millimeter wavelength is an underdetermined problem. This brightness temperature results from the radiative contribution of

gases, aerosols and hydrometeors across the atmospheric column, and depends on the vertical profile of temperature. To lift

this underdetermination, state-of-the-art retrievals of LWP and IWV rely on multi-frequency radiometers, which provide TB

measurements in several microwave channels. This allows to separate the contributions of water vapor and liquid water (e.g.

Westwater et al. (2001)) and, to some extent, retrieve the full profile of liquid water content and humidity in the atmospheric30

column (Löhnert et al., 2004).

Such multi-frequency instruments are however not always available. It was shown (Küchler et al., 2017) that a radiometer

channel at 89 GHz could be added to a W-band cloud radar operating at 94 GHz, thus allowing to have collocated measurements

of radar variables and brightness temperature. This paves the way for an improved understanding of cloud and precipitation

physics. Küchler et al. (2017) proposed a method to derive LWP estimates from the single-frequency measurements of bright-35

ness temperature, and the present study builds on those findings.

Two approaches are commonly considered for the retrieval of LWP and IWV, as described in Turner et al. (2007) and

Cadeddu et al. (2013). The first method relies on the reconstruction of atmospheric profiles, with a physical model that is

iterated until modeled TBs match the measured ones. Although this method is formally the most accurate (Turner et al., 2007),

it is computationally heavy and cannot be implemented accurately when only one frequency is available. The other way to40

tackle the problem is to derive statistical relationships between TB and LWP and/or IWV based on synthetic datasets. This

approach has been widely used, both for ground-based and satellite applications, with varying degrees of complexity in the

algorithms (linear, quadratic, log fitting or using neural network architectures) (Karstens et al., 1994; Löhnert and Crewell,

2003; Mallet et al., 2002; Cadeddu et al., 2009). The retrieval coefficients that are computed with this method are usually

site-specific, since they incorporate during the learning or regression stage the climatological features at the location of the45

dataset. The geographical range within which a site-specific algorithm could be reliable is difficult to estimate, especially if the

orography of the region is complex, as highlighted by Massaro et al. (2015). In general, implementing a site-specific algorithm

in a location with a different climatology is likely to yield erroneous retrievals (Gaussiat et al., 2007). In order to implement

such an algorithm at another site, a new parameterization should be performed using a suitable dataset; but there might not

always be enough reliable data available for this purpose. In order to avoid this lengthy process, and in the case of instruments50

that are intended to be deployed in various locations, a site-independent algorithm is more adequate (Liljegren et al., 2001).

The purpose of this study is to present a new site-independent method for the retrieval of both LWP and IWV, that relies on

a single radiometer frequency. The regression is performed through a neural network, whose input consists of brightness tem-

perature at 89 GHz, as well as surface measurements and geographical information. Although it implies a loss of performance

in comparison with state-of-the-art multi-frequency retrievals, the advantage of this method is to be applicable in any location55

with a constrained uncertainty.

The following section describes the data used in the different steps of this study, from the design steps to the validation of

the new method. Section 3 outlines the forward model that is used to build the synthetic database on which the LWP and IWV

retrieval algorithms are trained. In Sect. 4, the design of the algorithms is detailed, and the results on the synthetic dataset
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are reviewed and analyzed in Sect. 5. An independent validation of the method is presented in Sect. 6 using two contrasted60

datasets that were collected during field deployments in Payerne (Switzerland) and in the Taebaek mountains (South Korea).

A summary and conclusions are provided in Section 7.

2 Data

The present work is based on two types of data: a multiyear collection of radiosonde observations across the world (for training

and testing of the retrieval algorithms) as well as sets of measurements from a 89-GHz radiometer deployed in various regions65

during field campaigns limited in time. Those two types of data are described below.

2.1 Radiosonde dataset

The design of a statistical algorithm requires a large dataset on which to perform statistical learning. Here, this database was

built using radiosonde profiles collected in over 180 stations throughout the world, available through the University of Wyoming

portal (Oolman, 2020). In total, ∼ 106 radiosonde profiles are used, from 20 years of data (2000-2019). It was ensured that the70

database included radiosonde stations from all climatic regions and covering a wide range of altitudes (0 to 4000 m). However,

lack of data in some areas inevitably results in an unbalanced dataset, where polar and tropical areas are under-represented

compared to mid-latitudes, especially Europe. The possible impact on the performance of the algorithm is further discussed in

Sect. 5.

The vertical profiles of pressure, temperature and relative humidity are extracted from the radiosonde data and then used as75

input to the forward model, as described in Sect. 3. The vertical resolution is relatively low (0.37 km on average).

2.2 Field deployments

In the validation steps of this work, the new method was implemented on real 89-GHz radiometer data, that were collected

during campaigns described below.

2.2.1 Instrument80

The main instrument that was used in this study for the implementation of the algorithm is the one described in Küchler

et al. (2017), which is here referred to as WProf. This radar-radiometer system, conceived and built by RPG, consists of a

94-GHz Frequency-Modulated Continuous Wave (FMCW) cloud radar with an 89-GHz radiometer channel, which allows for

joint active and passive retrievals of cloud and precipitation. In the data presented here, WProf was deployed together with a

weather station that provided surface measurements of temperature, pressure and relative humidity.85

2.2.2 Payerne 2017

The first data set on which the new algorithm was evaluated was collected during a field deployment in Payerne (Switzerland),

at 450 m of altitude, in late spring 2017 (May 15th – June 15th). As a means of comparison, data from the Swiss meteorological
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institute (MeteoSwiss) was used. MeteoSwiss’s facilities in Payerne comprise a multi-frequency radiometer with tipping-curve

calibration, HATPRO (Rose et al., 2005; Löhnert and Maier, 2012). This state-of-the-art instrument retrieves LWP and IWV90

with a nominal accuracy of respectively 20 g m−2 and 0.2 kg m−2 (RPG Radiometer Physics GmbH, 2014). During this de-

ployment, both WProf and HATPRO measured brightness temperatures with a high temporal resolution of the order of a few

seconds.

In addition, radiosondes are launched twice daily in Payerne, allowing for the direct computation of IWV values, which are95

used as a further source of validation for the IWV retrieval algorithm.

2.2.3 ICE-POP 2018

The second dataset on which the new algorithm was tested was gathered during the ICE-POP 2018 campaign, which took

place in South Korea during the 2017-2018 winter, in the context of the 2018 Olympic and Paralympic winter games in Pyeong

Chang (Gehring et al., 2020). WProf was deployed from November 2017 to April 2018 in Mayhills, 50 km south-east of100

Pyeong Chang, at 789 m of altitude. This allows for an implementation of the algorithm in a different context than Payerne:

i.e. in winter conditions and at a fully different geographical location, at a lower latitude and closer to the sea.

In this case, unlike in Payerne, no independent measurements of LWP are available; however, radiosondes were launched every

3 hours, thus providing a means of comparison for IWV retrievals.

3 Forward model105

In order to develop a statistical algorithm, a large amount of data is required to reliably perform the statistical learning phase. For

this purpose, a synthetic database was built, using as a starting point the radiosonde profiles worldwide described in the previous

section. A two-step forward model was implemented, first to identify clouds in each profile and derive the corresponding liquid

water content, then to compute the resulting 89-GHz brightness temperature. The different steps of this forward model are

illustrated in the flowchart in Fig. 1.110

3.1 Cloud liquid model

To derive profiles of liquid water content (LWC) from radiosonde profiles of atmospheric variables, the cloud model from

Salonen and Uppala (1991) was used. Cloud boundaries are identified using a threshold on relative humidity, this threshold

being pressure- and temperature-dependent. Corrections from Mattioli et al. (2009) are used for the coefficients of the Salonen

model. More sophisticated and accurate models can be defined on a local geographical scale (e.g. Pierdicca et al. (2006)), but115

given the stated objective of this study to design a non-site specific algorithm, it was considered preferable to assume a single

universal liquid cloud model, in spite of its potential limitations.
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3.2 Radiative transfer model

Ground-level brightness temperatures (TB) at 89 GHz are simulated for each profile using the Passive and Active Microwave

TRansfer Model (PAMTRA (Maahn, 2015; Mech et al., 2020)) available at https://github.com/igmk/pamtra (last access: May120

27th, 2020). As input to the radiative transfer calculations, vertical profiles of temperature, pressure, hydrometeor mixing ratio

and water vapor mixing ratio are used. The cloud droplet size distribution (DSD) is chosen as a gamma distribution following

Karstens et al. (1994), and scattering calculations are performed with Mie equations, assuming spherical particles. Let us note

here that the exact choice of the DSD has little impact on TB modeling as long as the droplets are in the Rayleigh regime for

the given frequency, since the emission cross-section in this regime is quasi-linearly related to the particle’s volume. When the125

droplet size deviates from this regime, for instance as droplets grow larger near the onset of precipitation, then the Rayleigh

assumption falls short and higher-order terms in the Mie equations become non-negligible, which alters the modeling of TB

(e.g., Zhang et al., 1999). This implies that the algorithm will output biased results when applied to raining cases, and should

not be trusted in those cases. This shall be considered as an intrinsic limitation to the algorithm.

While radiative emission from solid hydrometeors has a minor influence on brightness temperature when compared to emission130

from liquid droplets and water vapor, they do contribute to microwave brightness temperature through the backscattering of

surface radiation. Scattering from snowfall particles is difficult to model accurately, but Kneifel et al. (2010) suggest that this

effect could be notable during snowfall, in a way that is highly dependent on the microphysical properties of snowfall particles,

and that would increase with their size. The present study does not take into account this process and could therefore yield

biased results during intense snowfall events.135

4 Design of the IWV and LWP retrieval algorithms

4.1 Input features

When a single frequency is available for the measurement of TB, the problem’s underdetermination can be partially relieved

by including other available information in the retrieval’s measurement vector. In this study, several categories of variables

were included in the input features. The first category consists of TB and higher order polynomials (up to fourth degree) and is140

expected to have the greatest importance in the retrieval. Secondly, surface measurements are included (temperature, sea-level

pressure and relative humidity); in the case of the radar-radiometer set-up that is used here, a weather station is collocated,

meaning those measurements are available at the location of the instruments. The third category of input features comprises

geographical descriptors: latitude, longitude, altitude; the day of year is also included in this group of features, as a means to

account for seasonal variability in atmospheric and meteorological conditions. When available, a fourth category is added to145

the input features with reanalysis data (precipitable water and liquid water) from ERA5 (Copernicus Climate Change Service,

2020). The spatial and temporal resolution of this reanalysis data is too low for it to be held as ground truth, but it can serve as

a reasonable rough estimate in the statistical learning process. Those four groups of features are used both for the retrieval of
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IWV and that of LWP. In the case of LWP, an additional input feature can be added, which is the output of the IWV retrieval

algorithm. The impact of each of those feature groups on the retrieval will be discussed in Sect.5.150

4.2 Dataset preprocessing

Strong rain events should be excluded from the training set, since they are out of the scope of the algorithm’s range of validity,

as explained in Sect. 3. Profiles with LWP > 1000 g m−2 are therefore removed (i.e. in the range of heavy rain according to

Cadeddu et al., 2017). The resulting dataset contains ∼ 106 profiles and is used for the design of the IWV retrieval algorithm.

4.2.1 Further preprocessing for LWP dataset155

In the case of LWP retrieval, additional pre-processing is needed, since the forward model produced a large majority of clear-

sky cases. If left as such, the training phase will result in a strong bias of the retrieval toward low LWP values. In order to

avoid this, the dataset was subsampled so that clear-sky and cloudy cases (up to 600 g m−2) would be equally represented;

this threshold results from a trade-off between bias reduction and preservation of overall accuracy. The resulting histogram is

shown in Fig. 2, and the LWP dataset thus contains ∼ 105 profiles. In the case of IWV, the distribution is also not uniform, but160

it suffers from a much smaller bias than the initial LWP data set. After some trials, it was considered preferable to use the full

IWV data set rather than go through subsampling steps, which did not seem to bring significant improvements in this case. It

should also be noted here that the additional pre-processing that was necessary for the LWP retrieval algorithm led us to design

two separate algorithms, rather than a single one that would retrieve IWV and LWP at once. Indeed, while LWP retrieval is

mostly relevant in cloudy cases, IWV can show some significant variability in clear-sky cases, which should therefore not be165

excluded from the training stage.

4.3 Statistical retrieval using a neural network

Both LWP and IWV datasets were randomly split into training, validation and testing set (70 %-15 %-15 %), and normalized

using mean and standard deviation of each input feature in the training set. A densely-connected neural network architecture

was chosen over linear regression and decision-tree-based retrieval techniques for it was found to produce more reliable results,170

with higher accuracy than the former and less prone to overfitting than the latter. The algorithm was designed using the Keras

library in Python (Chollet et al., 2015). The neural networks’ hyperparameters were tuned on the validation set. As comes

across from the training curve of the LWP retrieval on Fig. 3, the training dataset is large enough to ensure that the algorithm is

not prone to overfitting. Figure 4 and Table 1 summarize the resulting architecture and relevant parameters. Different versions

of the algorithm were trained, using various sets of input features, to assess the importance of each category (discussed below).175
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5 Results on synthetic dataset

5.1 Error curves

Figure 5 illustrates the distribution of the error over the validation set. In panels c) and d), the target variable, respectively IWV

and LWP, is binned to intervals on which the root mean square error (RMSE) is calculated. This illustrates the behavior of the

algorithm across the entire range of values, rather than summarizing the performance with a single metric such as total RMSE,180

which can conceal specific behaviors related to the distribution of the target variable in the dataset. Along the same line, we

emphasize that comparing those total RMSE values to those from other studies should be done carefully because they strongly

depend on the dataset from which they are calculated.

Figure 6 shows how this total error, represented by RMSE (left panels) and by the square correlation coefficient (R2) (right

panels), is affected by the addition or removal of input features. For each set of input features, a full tuning of the algorithm185

was performed, and the results that are presented correspond to those from the tuned – i.e. best – version on the validation set.

5.1.1 IWV algorithm

The IWV retrieval algorithm yields a RMSE of 1.6 kg m−2 on the testing set, which corresponds to a relative error of 5.2 %,

and is reasonably well distributed across the dataset. There is however a bias for large IWV values (> 60 kg m−2), which are

underrepresented in the dataset, and which the algorithm thus tends to underestimate (see Fig. 5 a).190

From Fig. 6 a) it comes across that the IWV retrieval is significantly improved by the addition of secondary input features.

Including solely TB measurements in the input deteriorates the RMSE to nearly 6 kg m−2. It appears that the most important

secondary feature is ERA5 estimates, but that IWV is also significantly correlated to climatological features such as surface

atmospheric variables as well as geographical and temporal information.

Overall, the IWV retrieval is reliable and accurate, in particular when using all available secondary information.195

5.1.2 LWP algorithm

The LWP retrieval algorithm has a RMSE of 86 g m−2 at best on the testing set (see Fig. 6 c), i.e. 24.6 % in relative error on the

total testing set. If clear-sky cases are removed using 30 g m−2 as a threshold value, following Löhnert and Crewell (2003), the

relative error is 17.5 %. The RMSE is here again rather homogeneous across the range of LWP values, with however a bias for

low LWP values, which are slightly overestimated, and for large LWP (> 800 g m−2) which are underestimated (see Fig. 5 b200

and d). The latter point is due to the lack of data in this range, and is likely acceptable for it would correspond to raining events

(light to moderate); yet this highlights once again that those cases are out of the algorithm’s scope. As already mentioned, the

total RMSE values given here should be taken with care since they depend on the data set’s distribution. For comparison, when

the retrieval is implemented on the full dataset, i.e. without the subsampling described in Sect. 4, the total RMSE drops to 40

g m−2.205

Figure 6 c) shows that the LWP retrieval is less affected than IWV by secondary input features: most categories other than
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brightness-temperature-derived features have a relatively small impact on the error. This is reasonable since liquid water typi-

cally has a greater contribution to TB than water vapor (Löhnert and Crewell, 2003). Furthermore, LWP at a given location can

have a high temporal variability due to cloud dynamics in the atmospheric column, which might not always be captured in the

time series of surface atmospheric variables. Similar reasons can help explain why the addition of reanalysis data significantly210

improves the IWV retrieval, but only in a minor way does it increase the LWP retrieval’s accuracy. Liquid water content can

vary on a shorter spatial and temporal scale than that captured by ERA5 models.

Still, the accuracy of the algorithm drops severely when no other features are considered than brightness temperature (RMSE

of 140 g m−2). This means that, albeit second-order when taken individually, the secondary input features are efficient in

incorporating statistical trends and climatological information to the retrieval during the training phase.215

Adding IWV prediction as an input feature to the LWP retrieval has a very minor impact. This is not surprising, since it

is itself the output of an algorithm that relies on essentially the same input features. However, the slight improvement that is

seen can be understood by recalling that the IWV retrieval algorithm was trained on a much larger dataset, which includes in

particular a larger number of clear-sky cases (cf. Sect. 3).

5.2 Sensitivity to instrument calibration220

In order to assess the stability of the algorithm with respect to potential miscalibration or calibration drift of the radiometer, TB

offsets were virtually added to the testing dataset before implementing the retrieval. Figure 7 a) shows that a 5 K offset in TB

results in a 30 % increase in RMSE for the IWV estimations, which is non-negligible. Ensuring proper radiometer calibration

thus seems crucial in constraining the error of this retrieval. For comparison, the 89-GHz radiometer presented in Küchler et al.

(2017) has a nominal accuracy of 0.5 K, after calibration.225

In terms of relative impact, the LWP algorithm is less affected (Fig. 7 b) ) with an increase of the RMSE of less than 10

% for an offset of 5 K in TB, which makes it reasonably stable to inaccuracy of TB measurements. It also appears that the

different versions are affected in a similar way by offset TB values. When examined closely, the general trend follows the

intuition that the retrieval is slightly more stable when more input features are included, which counterbalances the effect of

the miscalibration.230

5.3 Geographical distribution of the error

One of the motivations of this study was to design an algorithm that could be used across the globe with a constrained un-

certainty. Figure 8 illustrates the geographical distribution of the error for both LWP and IWV retrievals, using the synthetic

radiosonde-based dataset. Two approaches were used to assess this error: first, RMSE values were calculated on the entire set

of data available for each location, excluding LWP greater than 1000 g m−2. Second, the RMSE was normalized by the mean235

value of LWP (resp. IWV) for each site, excluding low values (LWP less than 20 g m−2, i.e. using a conservative threshold to

exclude clear-sky cases). Note that this normalized error is not equal to the relative error; rather, it gives an idea of how large

the RMSE of the retrieval is, compared to the mean values that are observed at a given location.
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From the non-normalized error (left panels of Fig. 8), it can be seen that most high- and mid-latitude locations have a con-240

strained RMSE around 20-60 g m−2, while tropical sites are not as well captured, with RMSE exceeding 120 g m−2 in some

locations. The temperature and humidity conditions, as well as the strong precipitation events that typically occur in those

regions, are probably responsible for this discrepancy.

The normalized error (right panels of Fig. 8) shows that the error is overall of the same order of magnitude across the globe.

However, a few regions stand out from this analysis, which typically feature arid climates: the stations of Dalanzadgad (Mon-245

golia), Salalah (Oman), Minfeng (China, north of Tibet), Jeddah (Saudi Arabia) all have a normalized error on LWP higher

than 0.7, and are in the desert. In a similar way, it appears that the IWV retrieval algorithm performs poorly – in terms of

normalized error – in cold environments where absolute humidity is low, as in Sermersooq (Greenland). In such regions, the

new algorithm is not sensitive enough to capture accurately the fine variations of atmospheric vapor and liquid water content:

if detailed studies of those areas were to be conducted, more than one radiometer frequency would likely be necessary, along250

with specific training sets on which to perform the statistical learning, as was done in the Arctic by Cadeddu et al. (2009).

6 Evaluation in two contrasted datasets

As a further step in the validation process, the algorithm was applied to data from two campaigns involving WProf, first in

Payerne, Switzerland, then near Pyeong-Chang, South Korea (see Sect. 2 for the full description of the datasets). In both cases,

the output of the retrieval is compared with values retrieved through other methods, either a multi-channel radiometer or – in255

the case of IWV – radiosonde data.

6.1 Payerne 2017

6.1.1 IWV retrieval

The results of the new IWV retrieval algorithm are compared to those from MeteoSwiss’ operational radiometer HATPRO, and

to the radiosonde-derived values. From Fig. 9 a) and c) it appears that the IWV retrieval has relatively limited spread but has260

a constant bias, which is visible both in the comparison against HATPRO (a) and radiosonde-derived measurements (c). This

might be due to a bias in ERA5 data, which is visible in ERA5 records during the entire campaign (not shown here) and for

which there is no clear explanation at this stage. In spite of this, Fig. 10 and 11 shows that overall, the implementation of the

different versions of the algorithm on the Payerne dataset matches the conclusions from the testing set results: the best retrieval

is obtained with the full set of input features, and the greatest improvements result from the addition of ERA5 products, with265

surface measurements as the next most important category of input features.

However, the bias that is seen here points to the limitations of the IWV retrieval algorithm, which is sensitive not only to

radiometer miscalibration but also to possible biases in other input variables, which can be difficult to monitor and assess – as

in the case of ERA5 values in Payerne.
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6.1.2 LWP retrieval270

Figure 9 b) shows that LWP values retrieved with the new algorithm are in general agreement with those obtained thanks to

HATPRO, although a larger spread is observed than in the IWV retrieval. A saturation effect can be seen near precipitation

onset, when LWP values from HATPRO reach 600 g m−2.

For comparison, the method described in Küchler et al. (2017) was implemented (further on referred to as K17), by perform-

ing a quadratic regression on a dataset consisting solely of radiosonde profiles collected in Payerne. As proposed by the authors,275

a first version (K17A) relies on a measurement vector consisting of TB, T2
B, as well as the IWV estimate from reanalysis data

IWVERA5 and IWV2
ERA5. Another version (K17B) includes only TB and T2

B. Theoretical RMSEs derived for those quadratic

regressions on the synthetic dataset (19 720 profiles) are 21 g m−2 and 43 g m−2, respectively, which is similar to the values

obtained by the authors on radiosonde data from De Bilt (the Netherlands), i.e. 15 g m−2 and 44 g m−2.

K17A and K17B were applied to Payerne campaign dataset, and their results are compared to those from the new algorithm280

in Fig. 10. The error metrics are calculated using HATPRO’s values as a reference. The algorithms perform in a similar way,

with slightly better results for the new algorithm when at least one of the secondary input features is included. We remind that

K17A and K17B were specifically tuned on Payerne data, while the new algorithm was tuned globally, on a dataset that did

not include radiosonde profiles from Payerne.

6.2 ICE-POP 2018285

As detailed in Sect. 2, the South Korean deployment of WProf in 2017-2018 also offers an opportunity to compare results from

the IWV retrieval to IWV from radiosonde measurements.

The analysis of the TB timeseries showed that a miscalibration of the radiometer led to unrealistic – negative – values for which

a correction had to be implemented, through the addition of a constant offset to TB measurements. The value of this offset (18

K) was determined by computing theoretical brightness temperatures from clear-sky radiosonde profiles and comparing them290

to measured TBs, following the approach of Ebell et al. (2017). This is however only a first-order correction whose output

should be taken with care, especially after the analysis of Sect. 5.2 which underlined the importance of TB accuracy for IWV

retrieval.

After this correction, the IWV retrieval gives coherent results (see Fig. 12), with a total RMSE that is slightly lower than

that obtained on the testing data set (1.2 kg m−2 at best). Here again, the best results are found when several input features are295

included and drop severely when no secondary input features are used. From Fig. 12 it also comes through that the algorithm

is consistently outperformed by ERA5 products, which have both a lower RMSE and a higher R2, which makes the algorithm

less relevant for the study of this specific campaign. Let us highlight that this was not the case in Payerne nor in the radiosonde

database, where the algorithm has a greater accuracy than ERA5 values. Possibly, the dry and cold weather that was observed

during the ICE-POP campaign (Gehring et al., 2020) featured little short-term variability and were associated with stable at-300

mospheric conditions that were particularly well captured in ERA5 reanalyses.
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Bringing the analysis of the ICE-POP data set a step further, it appears that the IWV retrieval is most reliable in non-

precipitating or cold conditions, i.e. when little liquid water is expected in the column. Periods with no precipitation are

identified using WProf’s radar measurements as time steps with low radar equivalent reflectivity (Ze < -10 dB) in the lower305

gates (first kilometer above the radar), and temperature time series are provided by the weather station coupled to WProf. It

appears that the algorithm yields a larger bias in rain, as was expected in the design steps of the algorithm (Sect. 3), but also

during snow events with relatively warm temperatures, close to or slightly above 0 ◦C (Fig. 13). Changes in the dielectric

properties of snowflakes during the melting process can explain this increased error; additionally, the process described by

Kneifel et al. (2010) and which was recalled in Sect. 3 suggests that snowfall events with large snow particles could have a310

non-negligible contribution to brightness temperature, which might explain the enhanced error in those cases.

7 Summary and conclusions

A new site-independent method was designed for the retrieval of LWP and IWV from a single-channel ground-based ra-

diometer. In addition to 89-GHz brightness temperature, additional input features were used for the retrieval, such as surface

atmospheric variables (temperature, pressure and humidity) and information on the geographical location and season. A neural315

network architecture was chosen for the statistical learning.

Training and testing were performed on a synthetic data base that was built using radiosonde profiles worldwide. The ge-

ographical distribution of the error shows that the algorithm performs better in mid-latitudes and regions with a moderate

climate than in areas with a extreme climates – either arid or very moist – which include both tropical and polar regions, that

are not well represented in the training dataset due to lack of available data. Also, the forward model that was used should most320

likely be revised in order to capture finely the atmospheric conditions in such specific environments. In addition, the training

dataset lacks data from locations with complex orography, and more in-depth investigations should be conducted regarding the

reliability of the retrieval in such terrain (Massaro et al., 2015).

The algorithm was then applied to two contrasted data sets, one reflecting summertime weather conditions in Switzerland,325

and the other in winter conditions in South Korea. For this application, measurements from RPG’s cloud radar-radiometer

system were used.

In Payerne, the new LWP retrieval was found to perform slightly better than the algorithm proposed by Küchler et al. (2017)

for the same instrument, which was specifically trained using radiosonde data from Payerne. When compared to radiosonde

measurements of IWV, the IWV retrieval was found to be less accurate than that of a state-of-the-art multi-channel radiometer330

(HATPRO), although both instruments yield errors within the same order of magnitude. In the South-Korean winter dataset, the

IWV retrieval proved in general quite robust, but a slight bias was present during some snowfall events, that could be related

to the scattering properties of snow particles, which were not taken into account in the forward model.

Further steps in the improvement of the current algorithm would include coupling information from the radar and the

radiometer channel (Ebell et al., 2010; Cadeddu et al., 2020). The detection of clear-sky cases with radar data (Mätzler and335
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Morland, 2009) could help monitor the calibration of the radiometer, and introduce TB offsets for correction when necessary

(Ebell et al., 2017). Radar moments could be used to distinguish cloudy from drizzling or rainy cases, similar to the approach

conducted by Cadeddu et al. (2020), and to use appropriate DSDs for each case to account for non-Rayleigh scattering by

precipitating droplets. However, forward modeling of radar data requires further assumptions on microphysical properties and

atmospheric conditions, for which generalization to a global geographical scale is a real challenge.340

Overall, the LWP and IWV retrieval methods that were designed within this study were shown to perform reasonably well,

both when applied to synthetic and to real datasets, although their performance is inevitably lower than that of multi-channel

radiometers specifically designed for LWP and IWV retrieval. The new algorithms should be seen as a valuable tool for

atmospheric liquid water and vapor monitoring in the context of radar-radiometer studies. They are non-site specific, and thus

do not require further tuning before use on a new site, which makes them easy to implement, while their accuracy is well345

characterized.
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Figure 1. Illustration of the different steps of the forward model.
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Figure 2. Distribution of the target variables (IWV and LWP, resp. in panels (a) and (b)) in the synthetic dataset, after preprocessing.
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Figure 3. Learning curves for the LWP retrieval, showing the RMSE on training and validation set with varying training set size. Shaded

areas correspond to the interquartile range calculated over 50 realizations of random splitting of the dataset into training and validation sets,

bold lines are the median.
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Figure 4. Structure of the retrieval algorithms. Some versions of the LWP retrieval include, among the input features, the output of the IWV

retrieval. Note that the IWV and LWP algorithms are trained on different datasets.
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Figure 5. Results of the retrieval algorithms on the synthetic testing dataset. Panels (a) and (b) show the distribution of predicted vs. target

values of resp. IWV and LWP. Panels (c) and (d) illustrate the distribution of the RMSE across the range of IWV and LWP values, binned

into intervals of resp. 4 kg m−2 and 50 g m−2.
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Figure 6. Global error metrics (RMSE on the left panels and correlation coefficient R2 on the right) computed on testing (grey) and training

(orange) sets for different versions of the (a,b) IWV and (c,d) LWP retrievals. Each bar shows the result of a version whose input features

are specified in the label. For example, "ERA-IWVpred-Geo-Surf" corresponds to the version of the LWP retrieval algorithm that uses

the following categories of input features: ERA5 variables, IWV obtained from the IWV retrieval, geographical information and surface

measurements. The bars are sorted with increasing RMSE. For the IWV retrieval, the accuracy of the algorithm is compared to that of

reanalysis data alone (dashed lines).
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Figure 7. RMSE on testing set of the different versions of the (a) IWV and (b) LWP retrieval, after addition of a constant TB offset in the

input. Dashed lines include the prediction of IWV in the input features.
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Figure 8. Geographical distribution of the error on the synthetic dataset. Left panels (a) and (c) illustrate the total RMSE on resp. IWV and

LWP. In panels (b) and (d) is shown the normalized error, i.e. the RMSE normalized by the mean value of IWV (resp. LWP) at each location.

For the evaluation of LWP, clear-sky as well as strong rainy cases are removed (resp. LWP < 20 g m−2 and LWP > 1000 g m−2). The size

of the disks represents the mean value of IWV or LWP at each site, while the color codes for the error of the retrieval.
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Figure 9. Comparison of (a) IWV and (b) LWP retrieved over Payerne with the new algorithm, using the full set of input features, against

the retrieval from MeteoSwiss’ radiometer HATPRO. Panel (c) shows IWV retrieved from the new algorithm and from HATPRO against the

from radiosonde measurements; a 30 minute time averaging is used for radiometer measurements.
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Figure 10. Error of the new retrieval algorithms over Payerne. In panels (a, c) the RMSE of resp. IWV and LWP is calculated in comparison

with HATPRO retrievals. Similarly, R2 is shown in panels (b, d). In panels (a, b), the black dashed line shows the error of IWV from ERA5

reanalysis data. In (c, d), the dashed lines present the results from K17A and K17B, as defined in the body text.
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Figure 11. Results of the IWV retrieval in Payerne (a: RMSE and b: R2) compared to radiosonde measurements. The radiometer measure-

ments are averaged over 30 minutes. For comparison, the dashed lines illustrate the error of HATPRO (green) and ERA5 (black).
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Figure 12. Error of the IWV retrieval during the ICE-POP campaign with different versions of the algorithm. The RMSE is computed against

IWV from radiosonde profiles, after 30 minutes of temporal averaging in the radiometer data. The dashed line shows the error of IWV from

ERA5 reanalysis data.
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Figure 13. Scatter plot of retrieved IWV vs. IWV computed from radiosonde profiles. The color indicates the surface temperature (in degrees

Celsius). Dry conditions are identified with the equivalent radar reflectivity in the first kilometer above the radar (with a -10 dB threshold),

and are coded as black triangles; precipitating conditions are denoted with circles.

28

https://doi.org/10.5194/amt-2020-311
Preprint. Discussion started: 17 August 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 1. Main parameters of the neural networks and training process.

Target Neurons Layers Cost function Optimizer Activation Epochs Batch size

IWV 120 7 Mean square error RMS propagation ReLU 70 512

LWP 150 6 Mean square error RMS propagation ReLU 90 512
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