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Abstract. 10 

Laser optics have long been used in pollen counting systems. To clarify the limitations and potential new 11 
applications of laser optics for automatic pollen counting and discrimination, we determined the light scattering 12 
patterns of various pollen types, tracked temporal changes in these distributions, and introduced a new theory for 13 
automatic pollen discrimination. Our experimental results indicate that different pollen types often have different 14 
light scattering characteristics, as previous research has suggested. Our results also show that light scattering 15 
distributions did not undergo significant temporal changes. Further, we show that the concentration of two 16 
different types of pollen could be estimated separately from the total number of pollen grains by fitting the light 17 
scattering data to a probability density curve. These findings should help realize a fast and simple automatic pollen 18 
monitoring system. 19 

 20 
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1 Introduction 22 

Pollen counting is a time-consuming and labor-intensive task that requires professional skills. However, recent 23 
technological developments have made automatic pollen sampling and identification possible (Buters et al. 2018), 24 
for example, with recognition systems using microscopic images of pollen grains (Boucher et al. 2002; Ranzato 25 
et al. 2007; Oteros et al. 2015), pollen color patterns from pollen images (Landsmeer et al. 2009), fluorescence 26 
emission signals, (Swanson and Huffman 2018; Mitsumoto et al. 2009; Mitsumoto et al. 2010; Richardson et al. 27 
2019), light scattering (Crouzy et al. 2016; Šaulienė et al. 2019, holographic images (Sauvageat et al. 2019), size 28 
and morphological characteristics (O’Connor et al. 2013), real-time PCR (Longhi et al. 2009), texture and infrared 29 
patterns of microscopic images of pollen (Marcos et al. 2015; Gottardini et al. 2007; Chen et al. 2006), or a 30 
combination of several of these. Many studies applied machine learning algorithms to the problem (Punyasena et 31 
al. 2012; Tcheng et al. 2016; Crouzy et al. 2016; Gonçalves et al. 2016; Gallardo-Caballero et al. 2019; Šaulienė 32 
et al. 2019). These automated pollen identification methods have been applied not only to aerobiological research 33 
but also to palynological studies for the identification of fossilized pollen (France et al. 2000; Kaya et al. 2014; Li 34 
et al. 2004; Zhang et al. 2004; Rodríguez-Daminán et al. 2006). 35 

Analysis using light scattering patterns has a particular focus, with several methods being developed for 36 
establishing an automatic aerosol or bioaerosol counting system (Huffman et al. 2016). For example, polarization 37 
signals can be used to discriminate Cryptomeria japonica from polystyrene spherical particles (Iwai 2013). 38 
Studies applying machine learning algorithms have shown that light scattering patterns can be used for automatic 39 
classification and counting of multiple pollen taxa simultaneously (Crouzy et al., 2016;  Sauliene et al., 2019). 40 
Other studies have  applied statistical techniques to compare the light scattering data and number of multiple taxa 41 
pollen grains (Kawashima et al. 2007, 2017; Matsuda and Kawashima 2018). Surbek et al. (2011) also studied the 42 
discrimination method for Hazel, Birch, Willow, Ragweed, and Pine pollen showing that they have distinct 43 
characteristics in the backward and sideward light scattering patterns.  44 

In the present study, light scattering patterns from various pollen taxa are investigated with a KH-3000 to verify 45 
whether they have different light scattering patterns. A novel method is also proposed to discriminate between 46 
two taxa with similar scattering patterns. 47 

 48 

2 Materials and methods 49 

A protection cylinder (radius = 5 cm, height = 30 cm) was attached to the sampling tube of a KH-3000-01 laser-50 
optics-based automatic pollen counter (Yamatronics, Japan). The KH-3000-01 is a widely used automatic pollen 51 
counting system (e.g. Wang et al. 2014; Takahashi et al. 2001; Miki et al. 2017, 2019; Kawashima et al. 2007, 52 
2017; Matsuda and Kawashima 2018). A laser irradiates particles that pass through the sampling system and the 53 
forward and side scattering signals from each particle are recorded. In this study pollen grains from known taxa 54 
were injected through an injection tube in the wall of the protection cylinder and sampled in the KH-3000-01. The 55 
side and front scattering intensities were evaluated by converting the light intensity into a voltage. 56 

2.1 Temporal changes in light scattering patterns 57 

Alnus pollen grains were directly sampled from catkins on a tree growing at the Swiss Federal Office of 58 
Meteorology and Climatology on a sunny morning on February 28 2019. Light scattering measurements were 59 
taken using the fresh pollen grains soon after they were collected. The remaining pollen grains were stored in 60 
tubes and scattering patterns were reevaluated after storing them for 1 h, 2 h, 6 h, and 10 days. Multiple 61 
comparisons using the Bonferroni method were performed on the side and front scattering data to assess whether 62 
the light scattering distributions showed changes after storage. Bonferroni method is a multiple comparison 63 
method used for non-parametric data sets. In order to carry out the multiple comparison, 316 scattering data of 64 
each taxa were picked up because the Bonferroni method requires the same amount of data of each taxa and 316 65 
scatteing data was the smallest amount of data amongst each time step (10 day). 66 

2.2 Light scattering patterns of different pollen taxa 67 

Dried pollen grains from Alnus, Ambrosia, Artemisia, Betula, Castanea, Cedrus, Corylus, Fagus, Fraxinus, 68 
Helianthus, Olea, Phleum, Quercus, Taxus, and Zea were sampled in a similar way. These taxa are representative 69 
of the pollen types commonly observed in Europe. After collecting the light scattering distributions of each pollen 70 
type, multiple comparisons using the Bonferroni method were performed to evaluate whether these distributions 71 
differ significantly from each other. In order to carry out the multiple comparison, 210 scattering data of each taxa 72 
were picked up based on the smallest amount of data amongst the taxon (Helianthus). 73 

2.3 Automatic discrimination theory 74 
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To carry out simple and fast automatic pollen discrimination, the number of pollen grains of each type from the 75 
total number of pollen grains was calculated as follows. 76 

For two different types of pollen (A and B) in the side scattering intensity range 𝑎 – 𝑏  and in the front scattering 77 
intensity range 𝑐 – 𝑑, the following equation holds: 78 

where 𝑃  is the representative probability density function of the scattering intensity. 𝑝  is the representative 79 
probability of the scattering intensity of each pollen grain lying in the integration intervals. 80 

Next, the scattering intensity distribution that gives the number of pollen grains at each scattering intensity was 81 
fitted to a distribution function. In this experiment, the normal distribution was fitted to the number of pollen 82 
grains in every 100 mV steps. The gaussian function is written as: 83 

where 𝛼 and 𝑐 are coefficients, 𝜇 is the mean, 𝜎 is the standard deviation. 84 

Fitting the data to the normal distribution function enables one to calculate the probability of a pollen grain 85 
showing a certain light scattering intensity. The probability density of the normal distribution function (𝑃) is 86 
written as: 87 

Fitting was performed by nonlinear optimization. The normal distribution was chosen so that we can handle the 88 
light scattering plots using a known function.  89 

Equation (1) gives 90 

Here, 𝑁 is the number of sampled pollen grains of each pollen type, which are the values to be calculated. 𝑁𝑡𝑜𝑡𝑎𝑙 91 
is the total number of sampled pollen grains and 𝑛 is the total number of sampled pollen grains in the integration 92 
interval, which are known numbers. 𝐶 is the correction factor defined by the following equation: 93 

𝐶 is needed for renormalization of the probability distribution because the device KH-3000-01 is able to detect 94 
the scattering intensity only in the range of 0–4500mV. 95 

By solving two equations in Eq. (5), 𝑁𝐴 and 𝑁𝐵 will be theoretically estimated.  96 

∫ 𝑃𝐴𝑠𝑖𝑑𝑒(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝑝𝐴𝑠𝑖𝑑𝑒
 

∫ 𝑃𝐵𝑠𝑖𝑑𝑒(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝑝𝐵𝑠𝑖𝑑𝑒
 

∫ 𝑃𝐴𝑓𝑟𝑜𝑛𝑡(𝑥)

𝑑

𝑐
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(1) 

𝑓(𝑥) =
𝛼

√2𝜋
exp {−

(𝑥 − 𝜇)2

2𝜎2
} + 𝑐 (2) 

𝑃(𝑥) =
1

√2𝜋𝜎2
exp {−

(𝑥 − 𝜇)2

2𝜎2
} (3) 

𝐶1𝑝𝐴𝑠𝑖𝑑𝑒
𝑁𝐴 + 𝐶2𝑝𝐵𝑠𝑖𝑑𝑒

𝑁𝐵 = 𝑛𝑠𝑖𝑑𝑒 𝑎−𝑏 

𝐶3𝑝𝐴𝑓𝑟𝑜𝑛𝑡
𝑁𝐴 + 𝐶4𝑝𝐵𝑓𝑟𝑜𝑛𝑡
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(5) 
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+∞
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1
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0
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In this paper, Alnus and Artemisia were chosen as examples to evaluate the usability of the theory above. Because 97 
fitting worked well in the range of 600–800mV for the side scattering and 300–500mV for the front scattering, 98 
𝑎 = 600,  𝑏 = 800, 𝑐 = 300 and 𝑑 = 500 were substituted in Eq. (5) . The evaluation tests were carried out five 99 
times using the light scattering data for both Alnus and Artemisia (Fig. 1).  100 

The magnitude of the estimation error is calculated as follows. 101 

 102 

 103 

3 Results 104 

3.1 Temporal changes in light scattering pattern 105 

The scattering distribution of Alnus pollen (Fig. 2) showed no significant temporal changes in scattering 106 
distributions in 10 day (Table 1).  107 

3.2 Light scattering distributions of different pollen taxa 108 

Pollen grains with smaller sizes tend to show smaller voltage values (Fig. 3).. The results of the multiple 109 
comparisons (Table 2) indicated that there is always a significant different between side and front scattering 110 
between two different pollen types except between:  111 

Side scattering: Alnus-Ambrosia, Alnus-Corylus, Alnus-Olea, Ambrosia-Fraxinus, Betula-Phleum, Betula-112 
Quercus, Corylus-Olea, Fagus-Zea, Artemisia-Fraxinus, Helianthus-Zea, Phleum-Quercus 113 

Front scattering: Alnus-Corylus, Alnus-Quercus, Ambrosia-Artemisia, Ambrosia-Fraxinus, Artemisia-Fraxinus, 114 
Betula-Phleum, Betula-Quercus, Castanea-Olea, Cedrus-Helianthus, Corylus-Quercus, Fagus-Helianthus, 115 
Fagus-Zea, Phleum-Quercus    116 

3.3 Automatic counting 117 

Counting the number of pollen grains of each type can be carried out by solving the two equations from Eq. (5), 118 
side (𝑛𝑠𝑖𝑑𝑒 𝑎−𝑏) and front (𝑛𝑓𝑟𝑜𝑛𝑡 𝑐−𝑑), side (𝑛𝑠𝑖𝑑𝑒 𝑎−𝑏) and total (𝑁𝑡𝑜𝑡𝑎𝑙) , front (𝑛𝑓𝑟𝑜𝑛𝑡 𝑐−𝑑) and total (𝑁𝑡𝑜𝑡𝑎𝑙). The 119 
parameters of the probability density curve of the side and the front (Fig. 4) light scattering distributions of Alnus 120 
and Artemisia were estimated as follows:  121 

𝑃𝐴𝑙𝑛𝑢𝑠𝑠𝑖𝑑𝑒
: (𝛼, 𝜇, 𝜎, 𝑐) = (433.58, 555.13, 223.85, 14.74) 122 

𝑃𝐴𝑙𝑛𝑢𝑠𝑓𝑟𝑜𝑛𝑡
: (𝛼, 𝜇, 𝜎, 𝑐) = (588.98, 419.45, 192.67, 10.31) 123 

𝑃𝐴𝑙𝑛𝑢𝑠𝑓𝑟𝑜𝑛𝑡
: (𝛼, 𝜇, 𝜎, 𝑐) = (600.25, 348.67, 159.96, 16.25) 124 

𝑃𝐴𝑟𝑡𝑒𝑚𝑖𝑠𝑖𝑎𝑓𝑟𝑜𝑛𝑡
: (𝛼, 𝜇, 𝜎, 𝑐) = (1028.57, 202.64, 107.32, 13.00) 125 

The results (Fig. 5) show that the estimated number of pollen grains had average errors of 46.80%, 33.9%, 39,12% 126 
for Alnus and 30.81%, 18.77%, 20.57% for Artemisia (Table 3). 127 

 128 

4 Discussion 129 

Temporal changes in the shapes of pollen grains are expected to affect the changes in light scattering patterns. 130 
However, our experimental data indicate that light scattering patterns show little to no changes over time (up to 131 
at least 10 days). Thus, there should be no problem using pollen grains that are either fresh or have been stored 132 
for several days for studies with the KH-3000. Further investigation is required to understand whether this is true 133 
for species other than Alnus and for longer periods of time. Understanding the morphological stability of each 134 
pollen type would be helpful to understand the temporal stability of light scattering patterns. 135 

Light scattering data from various pollen taxa indicate that it is not possible to discriminate between the side 136 
scattering patterns of Alnus vs Ambrosia, Alnus vs Corylus, Alnus vs Olea, Ambrosia vs Fraxinus, Betula vs 137 

𝑒𝑟𝑟𝑜𝑟 (%) =
|𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛|

𝑎𝑐𝑡𝑢𝑎𝑙
× 100 (7) 
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Phleum, Betula vs Quercus, Corylus vs Olea, Fagus vs Zea, Artemisia vs Fraxinus, Helianthus vs Zea, Phleum 138 
vs Quecus and the front scattering patterns between Alnus vs Corylus, Alnus vs Quercus, Ambrosia vs Artemisia, 139 
Ambrosia vs Fraxinus, Artemisia vs Fraxinus, Betula vs Phleum, Betula vs Quercus, Castanea vs Olea, Cedrus 140 
vs Helianthus, Corylus vs Quercus,  Fagus vs Helianthus, Fagus vs Zea, , and Phleum vs Quercus, all of which 141 
show similar scattering intensities. Although it is not clear if the classification theory introduced above is 142 
applicable to these groups, the theory should be applicable to other pairs as long as they have different scattering 143 
intensity distributions.  144 

The estimation of the pollen counts of Alnus and Artemisia had average errors of approximately 40% and 23%, 145 
respectively. Test 4 had the largest error, with approximately 134% for Alnus and approximately 44% for 146 
Artemisia, which increased the average error. It is difficult to identify an obvious reason for these large values, 147 
but it is possible that the pollen samples were contaminated by dusts or pollen grains picked up for this experiment 148 
were biased in size or shape.. Additionally, other estimations derived from the fitted curve of the front and the 149 
side scattering distributions showed that even when the pollen counts are estimated only from scattering intensity 150 
data without using total number of pollen grains, which is a known number, the pollen counts are able to be 151 
calculated accurately. The KH-3000-01 has been widely used to estimate airborne concentrations of Cryptomeria 152 
japonica. In this study, we found average errors of 20-40% for Alnus and Artemisia, values which are also likely 153 
applicable to other taxa such as Cryptomeria japonica. Other taxa should, however, be investigated in future. 154 

Pollen counts can be estimated by solving Eq. (5), which contains three equations, meaning that it is possible to 155 
make estimates for three different pollen taxa simultaneously. If more integration intervals were picked up from 156 
the probability density curve of the scattering intensity and added to the equation, in theory it would be possible 157 
to count more pollen taxa. It is possible, however, that the accuracy of the estimated values might decline due to 158 
the accuracy of the fitted curve. Therefore, narrowing down a target to two or three pollen types considering the 159 
season should be helpful to make accurate automatic counts of several pollen taxa simultaneously. 160 

In this study, the normal distribution function was chosen for fitting because of its universal property. However, 161 
further consideration is required to determine the best function for fitting actual light scattering characteristics.  162 

 163 

5 Conclusion 164 

By applying the statistical analysis method, the Bonferroni method to the scattering patterns of Alnus at each time 165 
step, our experiment showed that there seems to be no significant temporal changes in the light scattering patterns. 166 
We also confirmed that different pollen types do not always have different light scattering patterns. However, 167 
when two different pollen types have different light scattering patterns, it was possible to calculate the number of 168 
pollen grains of each taxa using these light scattering patterns by solving the probability density function of the 169 
pattern.  170 

 171 
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Figure 1 Light scattering distribution data from Alnus and Artemisia used for estimation test. 279 

Figure 2 Light scattering plots for Alnus pollen – fresh and after 1h, 2h, 6h, and 10 days storage. 280 

Figure 3 Light scattering distribution of various pollen taxa.  281 

Figure 4 Fitted curve for side scattering (top row) and probability density curve (second row) for Alnus (left) 282 
and Artemisia (right) andfitted curve for front scattering (third row) and probability density curve (bottom row) 283 
for Alnus (left) and Artemisia (right).  284 

Figure 5 Results of automatic counting of Alnus and Artemisia. Red and black dots represent actual and 285 
estimated numbers of pollen grains, respectively. The pair of red and black dots with the same shape are in the 286 
same test set. 287 

 288 

Table 1 Multiple comparison between Alnus data stored for various periods.  289 

Table 2 Multiple comparison between each pollen taxon 290 

Table 3 Results of estimation of number of pollen grains of Alnus and Artemisia and errors of each estimation.  291 
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Fig.2                                                                                                                                          Miki et al. 308 
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Fig.3                                                                                                                                          Miki et al. 318 
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Fig.4                                                                                                                                          Miki et al. 322 
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Fig.5                                                                                                                                     Miki et al. 329 
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 332 

 333 

 334 

Table 1  Multiple comparisons between each time step (Alnus) 335 

 336 

 337 

 338 

 339 

Miki et al. 340 

 341 

 342 

 343 

  344 

Side

1hour 2hour 6hour 10day

fresh 1.00 0.38 1.00 1.00

1hour — 1.00 1.00 1.00

2hour — — 0.71 1.00

6hour — — — 1.00

Front

1hour 2hour 6hour 10day

fresh 1.00 1.00 1.00 1.00

1hour — 1.00 0.84 1.00

2hour — — 1.00 1.00

6hour — — — 0.31
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 345 

Table 2 Multiple comparisons between each pollen taxon 346 

 347 

 348 

 349 

 350 

 351 

 Miki et al. 352 

 353 

 354 

 355 

 356 

Front

Ambrosia Artemisia Betula Castanea Cedrus Corylus Fagus Fraxinus Helianthus Olea Phleum Quercus Zea

Alnus * * * * * 1.00 * * * * * 1.00 *

Ambrosia — 0.95 * * * * * 1.00 * * * * *

Artemisia — — * * * * * 1.00 * * * * *

Betula — — — * * * * * * * 1.00 1.00 *

Castanea — — — — * * * * * 1.00 * * *

Cedrus — — — — — * * * 1.00 * * * *

Corylus — — — — — — * * * * * 1.00 *

Fagus — — — — — — — * 0.14 * * * 1.00

Fraxinus — — — — — — — — * * * * *

Helianthus — — — — — — — — — * * * *

Olea — — — — — — — — — — * * *

Phleum — — — — — — — — — — — 0.10 *

Quercus — — — — — — — — — — — — *

* p < 0.05

Side

Ambrosia Artemisia Betula Castanea Cedrus Corylus Fagus Fraxinus Helianthus Olea Phleum Quercus Zea

Alnus 0.34 * * * * 1.00 * * * 1.00 * * *

Ambrosia — * * * * * * 0.08 * * * * *

Artemisia — — * * * * * 0.06 * * * * *

Betula — — — * * * * * * * 0.06 1.00 *

Castanea — — — — * * * * * * * * *

Cedrus — — — — — * * * * * * * *

Corylus — — — — — — * * * 0.49 * * *

Fagus — — — — — — — * * * * * 0.59

Fraxinus — — — — — — — — * * * * *

Helianthus — — — — — — — — — * * * 1.00

Olea — — — — — — — — — — * * *

Phleum — — — — — — — — — — — 1.00 *

Quercus — — — — — — — — — — — — *

* p < 0.05
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Table 3 Results of estimation of number of pollen grains of Alnus and Artemisia and errors of each estimation. 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

Miki et al. 367 

Alnus (error) Artemisia (error) Alnus (error) Artemisia (error) Alnus (error) Artemisia (error)

1183 (17.36%) 881 (6.77%) 2367 (0.17%) 612 (3.20%) 1855 (1.76%) 1552 (5.43%)

1310 (29.96%) 642 (32.06%) 2386 (0.63%) 577 (2.70%) 1984 (8.83%) 1310 (11.01%)

1259 (24.90%) 694 (26.56%) 2378 (0.30%) 585 (1.35%) 1932(5.98%) 1362 (7.47%)

1008 945 2371 593 1823 1472

Test 1 Test 2 Test 3

Estimation

Side and Front

Total and Side

Total and Front

Actual

Alnus Artemisia Alnus Artemisia

1753 (157.42%) 968 (57.86%) 3469 (57.32%) 489 (80.76%)

1458 (114.10%) 1520 (33.83%) 2567 (16.42%) 2179 (14.28%)

1577 (131.57%) 1402 (38.96%) 2929 (32.83%) 1817 (28.52%)

681 2297 2205 2542Actual

Test 4 Test 5

Estimation

Side and Front

Total and Side

Total and Front
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