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Abstract. In this paper we present an analytical model for estimating the uncertainty of the horizontal wind speed based on

dual-Doppler lidar measurements. The model follows the propagation of uncertainties method and takes into account the un-

certainty of radial velocity estimation, azimuth and elevation pointing angles, and ranging. The model is achieved by coupling

ranging and elevation angle to uncertainty of the probed wind speed through a simple power-law shear model. The model has

been implemented in Python and made freely available through as the Python package YADDUM.5

1 Introduction

1.1 From meteorological masts to multi-lidars

In the wind energy domain, due to the economical consequences when developing and operating wind farms, all wind measure-

ments must have a well-defined uncertainty. As an example, for a large offshore wind farm project, considering conservative10

calculations Hasager et al. (2013), decreasing the uncertainty on the predicted wind resources at wind turbine hub height by

0.1 m/s leads to an estimated saving worth around 10 M£ per year for the 25 year lifetime of the farm. Estimates of wind

speed uncertainty are an essential element of planning and obtaining finance for wind energy projects. There are also clear

motivations and needs to focus our efforts on understanding what drives the uncertainty in wind measurements and how it can

be reduced.15

Traditionally, wind measurements have been acquired by met mast based sensors such as cup anemometers Kristensen

(1999). These instruments, which have been around for well over 100 years, were a backbone for the rapid development of

the wind industry. The uncertainty of a cup anemometer has been thoroughly studied and reduced in the past several decades,

driven by the dependency of the wind industry on them.

However, the rapid development of the wind industry brought more powerful and thus taller wind turbines, imposing a need20

for wind speed measurements at greater and greater heights. Due to the high costs of tall met masts, the traditional wind speed

measurements from the heights where modern wind turbines operate became economically unfeasible. In a search for cost-
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attractive yet accurate wind speed measurements, over the past two decades the wind energy community started to embrace

wind lidars (also known as coherent Doppler lidars or heterodyne Doppler lidars) as an alternative to the mast based sensors.

Wind lidars acquire wind speed information remotely by probing the atmosphere with laser light. Therefore, contrary to

the cup anemometers, there is no physical contact with the moving air. The inherent nature of lidars is that they can directly

resolve radial velocity or line-of-sight (LOS) wind speed, thus only a projection of the wind vector on the laser beam direction.5

In certain flow conditions, this constraint can be overcome by probing the volume of air in several beam directions (see

for example Browning and Wexler (1968); Strauch et al. (1987); Cariou and Boquet (2011)) and assuming the horizontal

homogeneity of the flow. Wind lidars come either with fixed or with flexible scanning geometry. The first group of lidars

includes so-called vertical profilers (mimic met mast measurements, e.g. Courtney et al. (2008)) and horizontal profilers (i.e.,

nacelle-based lidars, e.g. Borraccino et al. (2016)) while scanning lidars (e.g., Vasiljevic et al. (2016)) correspond to the second10

group.

Detailed studies of single lidars with fixed scanning geometry showed an impressive agreement of the wind speed and

direction (i.e., single-Doppler retrievals) with the wind speed and direction measurements from mast based sensors in flat

terrain and offshore Courtney et al. (2008); Peña et al. (2008); Borraccino et al. (2016). This does not come as a surprise

since the horizontal homogeneity of the flow, an underlying assumption in the retrieval algorithm, is usually satisfied in such15

conditions. For fixed scanning geometry lidars operating in homogeneous flows, there is a well-established body of literature

covering the metrological aspects of wind speed measurements (e.g., Borraccino et al., 2016).

However, once the flow becomes influenced by the terrain morphology or near-by objects, the assumptions of the horizontal

homogeneity of the flow fails, leading to the increased uncertainty of single-Doppler retrievals. This has been investigated

in several studies where vertical profilers were compared with measurements from near-by mast based sensors in complex20

terrain Bingöl et al. (2009); Bradley et al. (2015). The error encountered in complex terrain is usually unacceptably high for

applications in the wind energy domain. In these situations, the best approach is to use multi-lidar instruments, based on two or

three synchronized scanning lidars Vasiljevic et al. (2016). Even though triple Doppler solutions are capable of acquiring a full

3D wind vector (e.g., Simley et al. (2016); Vasiljević et al. (2017))), dual Doppler setups are more commonly used (Hill et al.

(2010); Iungo et al. (2013); Newsom et al. (2015)) for several reasons such as ease of operation and cost reduction. Besides25

tackling high-quality measurements in complex terrain (e.g., Pauscher et al. (2016); Vasiljević et al. (2017)), the multi-lidar

approach is an attractive way of performing measurements of near-shore offshore wind resource from the shore-line Floors

et al. (2016), since it avoids costly offshore lidar installations.

1.2 Multi-lidar metrology

The metrological aspects of multi-lidar measurements have been the topic of several communications. The inter-comparisons30

between multi-lidar setups and in-situ measurements from mast based sensors show excellent agreement in both flat terrain

(dual-Doppler Vasiljevic et al. (2016), triple-Doppler Mann et al. (2009); Berg et al. (2015); Fuertes et al. (2014)) and complex

terrain (dual- and triple- Doppler Pauscher et al. (2016); Vasiljevic et al. (2016). As it was shown earlier in the case of multi-

radars Davies-Jones (1979), the geometry of the multi Doppler setups (i.e., its layout) can have a tremendous impact on the
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uncertainty of the acquired wind speed, since the between-beam angle (i.e., intersecting angle between outgoing beams) can

amplify the total uncertainty. In most of the inter-comparison studies, the geometry of the lidar setups with the respect to the

in-situ measurements was close to ideal (e.g., Mann et al. (2009); Fuertes et al. (2014) the between-beam angle was 90◦). This

significantly reduced the potential amplification of the total uncertainty. Taking into account that the laser beam pointing and

ranging was well configured, the resulting uncertainty in the aforementioned studies was mainly driven by the uncertainty in5

the retrieved LOS speed. For want of a better alternative, the LOS speed uncertainty is obtained through comparisons with

a reference cup anemometer and is therefore limited to the cup’s uncertainty. In case of multi-lidars, the implication of the

geometry was discussed in several publications (e.g., Hill et al. (2010); Stawiarski et al. (2013); Simley et al. (2016); Pauscher

et al. (2016); Debnath et al. (2017); Vasiljević et al. (2017)).

Stawiarski et al. (2013) confirmed the same results regarding the amplification properties of the between-beam angle for10

dual-Doppler setups as those reported in Davies-Jones (1979). The study Pauscher et al. (2016), which included simultaneous

measurements with several multi-lidar setups (i.e., different between-beam angles), showed differences in the comparison of

these setups with in-situ measurements. The same study suggested that the differences are probably caused by the multi-lidar

setup. On the other hand, communications such as Simley et al. (2016) and Debnath et al. (2017) proposed a norm approach

to assess the suitability of the multi-lidar setup before an actual campaign. The actual uncertainty analysis of multi-lidar15

measurements was to a certain extent the topic of Hill et al. (2010), while a deeper overview of different error sources in

multi-lidar measurements was discussed in Stawiarski et al. (2013), whereas Vasiljevic (2014) provided in-depth analysis of

contributions to the pointing uncertainty and attempted to develop a total pointing uncertainty model.

The authors in (Hill et al., 2010) studied the uncertainty of dual-Doppler retrievals of the vertical component and the compo-

nent of the horizontal wind speed aligned with the plane of two overlapping range-height indicator (RHI) scans. The uncertainty20

analysis was limited to the uncertainty contribution originating from the random error in the acquired radial velocity. (Hill et al.,

2010) developed a simple uncertainty model by propagating a random error in the acquired radial velocity through the algo-

rithm (see Newsom et al. (2008)) used to convert the independent radial velocity measurements to the two aforementioned

components of the wind vector. Afterward, the model was tested numerically by polluting real measurements with random

noise. This study qualitatively reported the robustness of the algorithm described in Newsom et al. (2008) with respect to the25

between-beam angle. The study communicated in Stawiarski et al. (2013) provided an extensive catalog of different errors

associated with lidar measurements, showed their individual impact on the measurement uncertainty and, as we stated earlier,

confirmed the previous amplification effects of the between-beam angles.

Despite providing in-depth details of different aspects of the multi-lidar (dual-Doppler) measurement uncertainty, the au-

thors in Stawiarski et al. (2013) did not realize a total uncertainty model, which would entail combining various uncertainty30

contributions altogether, but treated uncertainty contributions individually. Also, the impact that the pointing uncertainty has

on the total measurement uncertainty was analyzed only from the mathematical perspective (i.e., slight differences in the actual

projection of the wind vector on the LOS). Consequently, the above study concluded that this uncertainty contributor has a

negligible impact on the total uncertainty. This is in fact, usually not correct. The most important impact on the overall un-

certainty that the pointing uncertainty introduces arises not from the incorrect wind vector projection (mathematics) but from35
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the uncertainty in height at which the radial velocity is acquired. Due to the vertical shear, the uncertainty in height at which

measurements take place (as we will see later) translates into a significant contribution to the total uncertainty. Furthermore,

the aforementioned study did not include the uncertainty contribution arising from the ranging uncertainty where again, in

combination with wind shear, significant wind speed errors can arise since the ’wrong’ wind speed will be sensed.

In our review of the literature, we find that there is a general inconsistency in the use of metrological terms (e.g., accuracy5

misinterpreted as trueness, precision as accuracy, etc.). Also, we noticed a mixture of approaches to assessing uncertainty.

Therefore, in our opinion, we see a need for a well-rounded community-driven uncertainty model that includes all the important

uncertainty contributors, which is consistent with and communicated following the well-established metrological standards.

This was to a large extent highlighted in the latest communication by IEA Wind Task 32 Clifton et al. (2018). With this paper,

we intend to lay out the basis for the development of a community-based uncertainty model.10

The paper is organized as follows. We start by the analysis of different uncertainty contributions to the lidar measurement

uncertainty. In Section 3 we will model radial velocity uncertainty and the uncertainty of dual-Doppler retrievals of horizontal

wind speed and wind direction. The derived models are demonstrated in Section 4. Section 5 discusses results and our future

work, whereas Section 6 holds our concluding remarks.

2 Uncertainty contributions to lidar measurements15

As stated in GUM Joint Committee for Guides in Metrology (2008) the objective of a measurement is to determine the value

of the measurand, that is, the value of the particular quantity to be measured. Accordingly, any measurement should begin with

an appropriate specification of the measurand, the method of measurement and the measurement procedure.

In our case, the measurand is a horizontal wind speed VH and wind direction Θ , or horizontal components uwind and vwind

of the wind vector V , in one or several points of the interest in the atmosphere. To measure directly the uwind and vwind20

components of the wind vector we need a minimum of two wind lidars which can simultaneously retrieve independent radial

wind speeds (i.e., Vradial1 and Vradial2) at the points of interest. Each lidar acquires the LOS measurement by emitting and

steering the laser light towards the points of the interest and detecting the light which is reflected by the moving aerosols

particles (i.e., backscattered light) from the locations of interest in the atmosphere. With this information we can establish a

simplified mathematical model of dual-Doppler measurements:25

uwind = fuwind
(Vradial1,Vradial2) (1)

vwind = fvwind
(Vradial1,Vradial2) (2)

VH = fVH
(Vradial1,Vradial2) (3)
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Θ = fΘ(Vrad1,Vradial2) (4)

Due to the above-mentioned amplification of uncertainties caused by the Dual-Doppler setup, our procedures rely on opti-

mizing the dual-Doppler setup such that the amplification of the combined uncertainty is acceptable for a given measurement

campaign. However, before we proceed to optimize the measurement setup we need to understand what are the most funda-

mental uncertainties associated with lidar measurements. By analyzing the above-mentioned measurement method essentially5

two questions arise:

– How accurately one can estimate the radial wind speed from the backscattered light?

– How accurately one can determine from which part of the atmosphere the backscattered light is reflected?

These two questions identify three fundamental sources of uncertainties, which are:

1. Uncertainty in estimating radial wind speed from the backscattered light (uest)10

2. Pointing uncertainty expressed in terms of uncertainties on azimuth θ and elevation ϕ angles that constitute the laser

beam direction D (uθ and uϕ)

3. Ranging uncertainty (uR)

Based on the previous, we can establish a single lidar measurement model:

vradial = f(vestimated,θ,ϕ,R) (5)15

where vestimated is LOS speed retrieved by processing the backscattered light and R is the range along a given laser beam

direction expressed through the azimuth and elevation angles.

3 Deriving the uncertainty models

In the following we derive the uncertainty models for wind speed and wind direction.

3.1 Assumptions20

To achieve a simple dual-Doppler uncertainty model we are taking into consideration several assumptions. Specifically we

assume that:

– Lidars are point measurement devices, thus we don’t consider the impact of the probe length on the measurement uncer-

tainty.
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– The uncertainty contributors are uncorrelated.

– Lidars will operate with a shallow elevation angle (e.g., below 5◦) and that the vertical wind speed is low and can

therefore be omitted in the model derivation.

– Wind will only changes with height (horizontal homogeneity) and that it follows a power-law profile.

– Positions of lidar and the desired measurement locations are exactly known.5

3.2 Radial wind speed uncertainty model

Figure 1 depicts a scanning lidar which measures a radial wind speed Vradial in a point M by beaming the laser beam (which

direction is determined by the elevation ϕ and azimuth angle θ) and resolving the backscattered light at a range R along that

beam. Radial wind speed is equal to the projection of the wind vector V wind on the laser beam. We define the wind vector

V wind as the following:10

V wind = (u,v,w) (6)

where u is the zonal velocity (i.e., component of the horizontal wind towards the East); v is the meridional velocity (i.e.,

component of the horizontal wind towards the North); and w is the upward air velocity or simply vertical wind speed.

z
North

East

w
v

u

z

Vwind

Vradial

θ
φ

R

M

Figure 1. Single scanning lidar probing atmosphere: M - probed measurement point, θ - azimuth angle, ϕ - elevation angle, R - range, u -

zonal velocity, v - meridional velocity, w - upward air velocity, V wind - wind vector and Vradial - radial wind speed.

6

https://doi.org/10.5194/amt-2020-321
Preprint. Discussion started: 17 August 2020
c© Author(s) 2020. CC BY 4.0 License.



The relation between the wind vector and radial wind speed can be mathematically described in the following way:

Vradial = n.V wind =




sin(θ)cos(ϕ)

cos(θ)cos(ϕ)

sin(ϕ)


 ·




u

v

w


 (7)

where n is a unit vector which described the laser beam direction. Since we assumed that ϕ is close to zero and that w is

low, we can reduce Equation 7 to:

Vradial =


sin(θ)cos(ϕ)

cos(θ)cos(ϕ)


 ·


u
v


 (8)5

or:

Vradial = usin(θ)cos(ϕ) + v cos(θ)cos(ϕ) (9)

The horizontal components u and v can be expressed in terms of the horizontal wind speed Vh and wind direction Θ as

following:

u=−Vh sin(Θ) (10)10

v =−Vh cos(Θ) (11)

Here we consider the meteorological convention for the wind direction in which the wind direction is expressed in terms of

the direction from which the wind originates (e.g., a northerly wind blows from the north to the south). In the climate forecast

(CF) convention this parameter is denoted as wind from direction instead of wind direction to avoid ambiguity. Accordingly,

due to the applied convention for wind related parameters(i.e., u, v,w and Θ) we have a negative sign in front of Vh in Equation15

10 and 11. These expressions can be introduced in Equation 9, which yields a relation between Vradial, Vh and Θ:

Vradial =−Vh cos(ϕ)(sin(Θ)sin(θ) + cos(Θ)cos(θ)) (12)

Now lets consider that we have wind field which only exhibits a change of the horizontal wind speed amplitude with the

height above ground level, and that this change can be described using the power law wind profile:

Vh(H) = Vhref

(
H

Href

)α
(13)20
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where Vhref
is a reference/known horizontal wind speed at the reference/known height Href , α is a wind shear exponent,

and H is a height at which we are deriving the horizontal wind speed Vh(H). It is important to remember that Href and H are

expressed as the height above ground level.

We intend to probe this wind field with a scanning lidar at a certain point M which is positioned at a certain height above

ground level H (Figure 2). To do this we would need to steer the laser beam towards the point of interest with a certain5

elevation and azimuth angle θ and ϕ and acquire the backscatter signal at a range R along the beam direction. The height

H can be expressed in terms of the height of ground below point M above sea level Hg , height of lidar above sea level Hl,

elevation angle ϕ and range R:

H =Rsin(ϕ) + (Hl−Hg) (14)

Hg

H

M

φ

R

Hl

R
*s
in
(φ
)

Figure 2. Single scanning lidar probing atmosphere: M - probed measurement point, H - height of M above ground level, Hg - height of

ground below point M above sea level, Hl - height of lidar above sea level, ϕ - elevation angle and R - range

Therefore, Equation 13 can be modified such that it indicates scanning lidar parameters:10

Vh(R,ϕ) = Vhref

(
Rsin(ϕ) + (Hl−Hg)

Href

)α
(15)

We can introduce Equation 15 in Equation 12 which yields:

Vradial =−Vhref
cos(ϕ)cos(θ−Θ)

(
Rsin(ϕ) + (Hl−Hg)

Href

)α
(16)

With the last expression, we have all the required relation between Vradial, lidar parameters for probing of the atmosphere

(R, θ, ϕ) and wind field (Vh, Θ, α), which we will use to derive a radial wind speed uncertainty model.15

The uncertainty model of Vradial can be derived by applying the law of the uncertainty propagation while considering that

the uncertainty contributions of Vradial are independent from each other :

u2
Vradial

= u2
est +

(
uϕ
∂Vradial
∂ϕ

)2

+
(
uθ
∂Vradial
∂θ

)2

+
(
uR

∂Vradial
∂R

)2

(17)
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where uVradial
, uest, uθ, uϕ and uR are radial wind speed, LOS estimation, azimuth, elevation and ranging uncertainties.

These uncertainties are derived using dedicated calibration procedures which will be the topic of the follow-up publication. We

relate to these uncertainties as to the intrinsic uncertainties of wind lidars.

Since we established the relation between the probing parameters and probed atmosphere we can derive partial derivatives

from Equation 17:5

∂Vradial
∂ϕ

=− α

Href
Rcos(θ−Θ)cos(ϕ)2Vhref

(
R sin(ϕ) + (Hl−Hg)

Href

)α−1

+ cos(θ−Θ)sin(ϕ)Vhref

(
R sin(ϕ) + (Hl−Hg)

Href

)α

(18)

∂Vradial
∂θ

= sin(θ−Θ)cos(ϕ)Vhref

(
R sin(ϕ) + (Hl−Hg)

Href

)α
(19)

∂Vradial
∂R

=− α

Href
cos(θ−Θ)cos(ϕ)sin(ϕ)Vhref

(
R sin(ϕ) + (Hl−Hg)

Href

)α−1

(20)

Let’s examine the derived relations, especially Equation 18. This partial derivative contains two terms. The first term rep-

resents the translation of the elevation uncertainty to the height uncertainty. The second term represents the uncertainty due10

to the ’wrong’ projection of the wind vector to the LOS. The second term tends to be much smaller than the first term, since

sin(ϕ) is close to zero for low elevation angles, while cos(ϕ) is close to one. Also, as expected the first term grows as the

range becomes higher since in a combination with the elevation angle uncertainty the increase in range leads to the increase

in the height uncertainty. As we can see both terms contain cos(θ−Θ) which means that when the beam is aligned with the

wind direction the partial derivative reaches maximum value. Otherwise, when the beam is perpendicular to the wind this par-15

tial derivative is equal to zero. Since in our wind field model the wind only changes with height the second partial derivative

(Equation 19) reflects the uncertainty due to the ’wrong’ projection of the wind vector to the LOS. It is important to notice

that contrary to the previous partial derivative this partial derivative reaches a maximum value when the beam is perpendicular

to the wind. The rationale behind this is that the projection of the wind vector to LOS is the most sensitive to the uncertainty

when the beam is perpendicular to the wind. As the range uncertainty translates to the height uncertainty, the associated partial20

derivative (Equation 20) tends to maximum when the wind and the beam direction are aligned. However, for the low elevation

angles the range uncertainty translation into the height uncertainty is small (sin(ϕ)R), on the other hand even though sin(ϕ)R

is maximum for 90◦ due to the selected wind field model the projection of the wind to the LOS is zero. Therefore, the partial

derivative in Equation 20) reaches a maximum value when the wind and the beam directions are aligned and when ϕ is 45◦.

Since we produced the partial derivatives we can re-introduce H back in Equation 18 - 20 for the sake of simplicity:25

∂Vradial
∂ϕ

=− α

Href
Rcos(θ−Θ)cos(ϕ)2Vhref

(
H

Href

)α−1

+ cos(θ−Θ)sin(ϕ)Vhref

(
H

Href

)α
(21)

9

https://doi.org/10.5194/amt-2020-321
Preprint. Discussion started: 17 August 2020
c© Author(s) 2020. CC BY 4.0 License.



∂Vradial
∂θ

= sin(θ−Θ)cos(ϕ)Vhref

(
H

Href

)α
(22)

∂Vradial
∂R

=− α

Href
cos(θ−Θ)cos(ϕ)sin(ϕ)Vhref

(
H

Href

)α−1

(23)

To derive the combined radial velocity uncertainty model we only need to introduce expressions for partial derivatives given

in Equation 18 - 20 into Equation 17. We omit displaying the derived model due to required space.

3.3 Dual-Doppler wind speed uncertainty model5

Let’s now consider a dual-Doppler setup in which we have two scanning lidars directing the beams to meet at the same point

M in the atmosphere sensing two independent radial velocities Vradial1 and Vradial2 (Figure 3). Neglecting the vertical wind

speed we can write the following relation between the radial velocities and the probed horizontal wind speed components u

and v:

Vradial1 = usin(θ1)cos(ϕ1) + v cos(θ1)cos(ϕ1) (24)10

Vradial2 = usin(θ2)cos(ϕ2) + v cos(θ2)cos(ϕ2) (25)

where θ1 and ϕ1 are the azimuth and elevation angles of the first lidar, while θ2 and ϕ2 are the azimuth and elevation angles of

the second lidar.

Vwind
Vradia

l1

Vradial2

M

Figure 3. Dual-Doppler system probing atmosphere: M - probed measurement point, Vradial1 - radial wind speed acquired by first lidar,

Vradial2 - radial wind speed acquired by second lidar, and V wind - wind vector.
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Taking into account the above given set of equations we can expressed u and v in terms of Vradial1 and Vradial2 :

u=
Vradial1 cos(θ2)cos(ϕ2)−Vradial2 cos(θ1)cos(ϕ1)

cos(ϕ1)cos(ϕ2)sin(θ1− θ2)
(26)

v =
Vradial2 sin(θ1)cos(ϕ1)−Vradial1 sin(θ2)cos(ϕ2)

cos(ϕ1)cos(ϕ2)sin(θ1− θ2)
(27)

For the sake of calculating the dual-Doppler uncertainty of the retrieved horizontal wind speed components, we will simplify

these expressions by assuming that all the elevation angles are small and that cos(ϕ1) and cos(ϕ2) are approximately equal5

to 1. Note that the effect of elevation (and azimuth) angle uncertainty is still retained in the expression for the radial speed

uncertainty (e.g., Equation 17) that we will later use in the dual-Doppler uncertainty derivation.

Simplifying for the zero elevation gives:

u=
Vradial1 cos(θ2)−Vradial2 cos(θ1)

sin(θ1− θ2)
(28)

v =
Vradial2 sin(θ1)−Vradial1 sin(θ2)

sin(θ1− θ2)
(29)10

Finding the root of the squared sum of u and v yields the horizontal wind speed:

Vh =

√
V 2
radial1

− 2Vradial1Vradial2 cos(θ1− θ2) +V 2
radial2

sin(θ1− θ2)
(30)

The uncertainty of the horizontal wind speed UVh
can be derived by applying the propagation of uncertainty, thus calculating

partial derivatives of Vh for Vradial1 and Vradial2 :

UVh
=

√
(

∂Vh
∂Vradial1

uVradial1
)2 + (

∂Vh
∂Vradial2

uVradial2
)2 (31)15

It must be noted that we don’t perform the partial derivative of Vh for θ and ϕ because the pointing uncertainty is already

included when calculating Uradial1 and Uradial2 .

The partial derivatives in Equation 31 are evaluated as:

∂Vh
∂Vradial1

=
1

sin(θ1− θ2)
Vradial1 −Vradial2 cos(θ1− θ2)√

V 2
radial1

+V 2
radial2

− 2Vradial1Vradial2 cos(θ1− θ2)
(32)

and,20

∂Vh
∂Vradial2

=
1

sin(θ1− θ2)
Vradial2 −Vradial1 cos(θ1− θ2)√

V 2
radial1

+V 2
radial2

− 2Vradial1Vradial2 cos(θ1− θ2)
(33)

11
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Equation 32 and 33 can be simplified taking into account Equation 30:

∂Vh
∂Vradial1

=
Vradial1 −Vradial2 cos(θ1− θ2)

Vh sin(θ1− θ2)2
(34)

and,

∂Vh
∂Vradial2

=
Vradial2 −Vradial1 cos(θ1− θ2)

Vh sin(θ1− θ2)2
(35)

Substituting Equation 34 and 35 in Equation 31 gives the expression for the dual-Doppler uncertainty for the horizontal wind5

speed:

UVh
=

1
Vh sin(θ1− θ2)2

∗
√

(Vradial1 −Vradial2 cos(θ1− θ2))2u2
Vradial1

+ (Vradial2 −Vradial1 cos(θ1− θ2))2u2
Vradial2

(36)

It is important to notice that similar to derivations in Davies-Jones (1979) and Stawiarski et al. (2013) Equation 36 contains

the term 1
Vh sin(θ1−θ2)2 which acts as an amplifier of total uncertainty since as the between-beam angle (θ1− θ2) tends to zero

the whole term tends to infinity.10

3.4 Dual-Doppler wind direction uncertainty model

With the same approach as in case of horizontal wind speed uncertainty we can derive the dual-Doppler uncertainty of the wind

direction. We start first with a mathematical expression for the wind direction:

Θ = arctan
( v
u

)
(37)

The uncertainty of the wind direction Θ is:15

UΘ =

√
(

∂Θ
∂Vradial1

uVradial1
)2 + (

∂Θ
∂Vradial2

uVradial2
)2 (38)

The partial derivatives in Equation 38 are evaluated as:

∂Θ
∂Vradial1

=
−Vradial2 sin(θ1− θ2)

V 2
radial1

− 2Vradial2Vradial1 cos(θ1− θ2) +V 2
radial2

(39)

and

∂Θ
∂Vradial2

=
Vradial1 sin(θ1− θ2)

V 2
radial1

− 2Vradial2Vradial1 cos(θ1− θ2) +V 2
radial2

(40)20

which if we substitute them in Equation 38 yields the uncertainty model:

UΘ =

√√√√ (u2
Vradial1

V 2
radial2

+u2
Vradial2

V 2
radial1

)sin(θ1− θ2)2

(V 2
radial1

− 2Vradial2Vradial1 cos(θ1− θ2) +V 2
radial2

)2
(41)
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This equation can be further simplified:

UΘ =
1

V 2
h |sin(θ1− θ2)|

√
(u2
Vradial1

V 2
radial2

+u2
Vradial2

V 2
radial1

) (42)

Once again the between-beam angle (θ1− θ2) will act as an amplifier of the uncertainty.

3.5 Digitalizing the uncertainty models

The previously described uncertainty models have been digitalized using Python and a set of public Python libraries result-5

ing in a Python package YADDUM (Vasiljevic, 2019). The package has been made public (open source), it is versioned on

Github and persisted using Zenodo (Vasiljevic, 2019). At the time of writing this manuscript, version 0.1.3 has been released.

Using YADDUM end-users can assess the uncertainty of dual-Doppler retrievals of wind speed and wind direction. We will

demonstrate YADDUM in the following section.

4 Demonstration of uncertainty models10

To demonstrate our speed and direction uncertainty models, we perform an uncertainty analysis of the RUNE field campaign

(Floors et al., 2016). The RUNE campaign together with other instrumentation, included a dual-Doppler setup comprising two

long-range WindScanners (Vasiljevic et al., 2016). These two scanning lidars are denoted as koshava and sterenn in Table

1 of Floors et al. (2016). We will assess how accurate this dual-Doppler setup can acquire wind speed and wind direction

over a large area. For the dual-Doppler setup, we will calculate so-called uncertainty maps that graphically depict modeled15

uncertainties. Specifically, we will derive radial wind speed, horizontal wind speed and wind direction uncertainty maps. We

will also derive maps that will show how each intrinsic uncertainty term contributes to the radial uncertainty. To do this we

will use YADDUM, which as mentioned earlier, already implements the speed and direction uncertainty models derived in this

paper.

To simplify demonstration, we will assume that the two lidars are positioned at sea level (i.e., at 0 m asl) and that the20

surrounding area is flat terrain with a height of 0 m above sea level. Accordingly, the positions of koshava and sterenn

in Easting, Northing, and height above sea level are 446080.03 m, 6259660.30 m and 0 m respectively, and 445823.66 m,

6263507.90 m and 0 m respectively.

YADDUM is parametrized with the lidar positions and values of their intrinsic uncertainties, followed by the atmospheric

model (power-law profile) and positions of the measurement points. For measurement points, we will use a horizontal mesh25

at 100 m above sea level (the elevation angle adjusts to give this height at each measurement point) with a resolution of 10 m

extending 5000 m in Easting and Northing from the barycenter between the two lidars. We will perform two runs of YADDUM.

In the first run, the wind direction will be 0◦ (wind coming from the North), in the second run the wind direction will be set to

270◦. The parametrization of YADDUM is provided in Table 1. The uncertainties in the table are standard uncertainties (i.e.,

the coverage factor k is equal to 1) with values we typically find during a lidar calibration. Our results are also all presented as30

standard uncertainties.
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Table 1. YADDUM parametrization

Parameters Value

Mesh extent 5000 m

Mesh resolution 10 m

Wind speed VHref 10 m/s

Reference height Href 100 m agl

Upward air velocity 0 m/s

Shear exponent α 0.2

Wind direction Θ 1st run : 0◦, 2nd run: 270◦

Estimation uncertainty uest 0.1 m/s

Azimuth uncertainty uazimuth 0.1◦

Elevation uncertainty uelevation 0.1◦

Range uncertainty urange 10 m

The results of the two YADDUM runs are shown in Figures 4 - 7. Let’s first inspect the radial velocity uncertainties and

associated uncertainty contributors. Looking at the results of the first run (wind direction equal to 0◦) shown in Figure 4 we

can see that the radial velocity (top row of plots) increases if we go from the lidar position towards North or South (i.e., aligned

with the wind direction). If we go East or West from the lidar the radial uncertainty is constant and equal to uest (∼ 0.1 m/s).

The reason for this is that the elevation uncertainty is the main contributor to the radial uncertainty apart from the estimation5

uncertainty. This is evident from the remaining rows of plots shown in Figure 4 if we look at the range of values each contributor

has (see the color bars). As discussed in Section 4.2 the elevation contribution attains the maximum value when the laser beam

direction is aligned with the wind direction. If we zoom into the area around the lidar (right plot in the second row from top)

we can see that elevation contribution very close to the lidar reaches high value, then tends to zero, switch the sign and keeps

on increasing. If we look at Equation 21 we can see that the two terms have different signs and that the second term will reach10

the maximum value when the elevation angle is 90◦. Opposite to the elevation contribution, the azimuth contribution achieves

the maximum value when the beam is perpendicular to the flow (see Equation 22). In the case of the range contribution (see

Equation 23), the maximum value is achieved when the beam is aligned with the flow and when the elevation angle is 45◦. This

can be seen from the bottom right plot in Figure 4, where the maximum values are located 100 m towards North and South

from the lidar location. Figure 5 shows the results of the second run (wind direction equal to 270◦). Evidently, the results are15

rotated by 90◦ if we compare Figure 4 and Figure 5.

When assessing wind speed and wind direction uncertainties it is important to remember that in addition to the radial wind

speed uncertainty we have the amplification factor due to the between-beam angle. Therefore, as the two beams become

parallel to each other we should expect to see an increase in the wind speed and wind direction uncertainties. By analyzing

Figure 6 and Figure 7 to certain extent we do encounter expected behaviour. However, we can notice that the amplification of20
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Figure 4. Uncertainty maps for koshava for wind direction of 0◦: left plots show entire mesh area while right images show area zoomed

around koshava. Top row plots show radial uncertainty map, plots in second row from top show contribution of elevation uncertainty to the

radial uncertainty, plots in third row from top show contribution of azimuth uncertainty to the radial uncertainty, and plots in bottom row

show contribution of range uncertainty to the radial uncertainty.
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Figure 5. Uncertainty maps for koshava for wind direction of 270◦: left plots show entire mesh area while right images show area zoomed

around koshava. Top row plots show radial uncertainty map, plots in second row from top show contribution of elevation uncertainty to the

radial uncertainty, plots in third row from top show contribution of azimuth uncertainty to the radial uncertainty, and plots in bottom row

show contribution of range uncertainty to the radial uncertainty.
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the uncertainties strongly depends on wind direction and that the wind speed and wind direction uncertainties have somewhat

contrasting behavior to each other. Specifically, when the wind is coming from the North the wind direction uncertainty is more

affected than the wind speed uncertainty in the area of the mesh where the between-beam angle tends to zero. On the other

hand, when the wind is coming from the West it is the wind speed uncertainty which is more affected in the same area.

To better understand these results it is useful to analyze values of the denominators and numerators of Equation 36 and5

Equation 42 which are depicted in the mid and bottom rows of Figure 6 and Figure 7. It is important to remember that the

denominators are independent of the wind direction, thus the mid row plots in Figure 6 are identical to each other, which is the

same situation in Figure 7.

For both the wind speed and wind direction uncertainty, the denominator tends to have values close or equal to zero in the

area around the line which connects the two lidars. This is more obvious for the wind speed uncertainty (the area marked with10

yellow in the mid-row plots in Figure 6) since the denominator in Equation 36 includes sin(θ1− θ2)2, while the denominator

in Equation 42 contains sin(θ1− θ2). Either way, the area around the line which connects the two lidars should experience a

significant amplification of the numerator values. But, the area where the denominator tends to have low values corresponds to

the area where the numerator has also low values.

However, the numerator values are dependent on the wind direction. Considering the wind speed uncertainty, for the North15

wind the overlap between the area where the numerator and denominator have low values is greater than when the wind is

coming from the West (Figure 6). This is the opposite in the case of wind direction uncertainty (Figure 7).

For a designer of dual-Doppler field campaigns, probably more relevant information would be to know a minimum between-

beam angle which will secure accurate wind speed and direction retrievals. Figure 8 shows histograms of wind speed and

wind direction uncertainties for the two wind directions and three different limits for the between-beam angle. Table 2 and20

3 summarize the histogram results. Based on these results maintaining the between-beam angle larger than 30◦ during the

measurements will secure accurate wind speed and direction retrievals. A similar value was suggested by Davies-Jones (1979)

in case of dual-radar systems.

Table 2. Histogram results for wind speed uncertainty

Parameters Θ = 0◦ Θ = 270◦

(θ1− θ2) >

20◦ 30◦ 40◦ 20◦ 30◦ 40◦

Mean [m/s] 0.28 0.23 0.20 0.22 0.17 0.14

Minimum [m/s] 0.09 0.09 0.09 0.01 0.01 0.01

Maximum [m/s] 1.24 0.63 0.33 0.53 0.34 0.22

Standard deviation [m/s] 0.12 0.08 0.05 0.10 0.05 0.03
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Figure 6. Dual-Doppler uncertainty maps for wind speed: left column plots - results for wind direction of 0◦, right column plots - results for

wind direction of 270◦, top row plots - total wind speed uncertainty, mid row plots - Equation 36 denominator values, bottom row plots -

Equation 36 nominator values. The plot areas colored in yellow indicate that the values go below 0.1 m/s.
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Figure 7. Dual-Doppler uncertainty maps for wind direction: left column plots - results for wind direction of 0◦, right column plots - results

for wind direction of 270◦, top row plots - total wind direction uncertainty, mid row plots - Equation 41 denominator values, bottom row

plots - Equation 41 nominator values. The plot areas colored in yellow indicate that the values go below 0.1 (m/s)2
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Figure 8. Histograms of wind speed and wind direction uncertainties: top row plots - results for wind direction of 0◦, bottom row plots -

results for wind direction of 270◦, left column plots - wind speed uncertainty histogram, right column plots - wind direction uncertainty

histogram.

Table 3. Histogram results for wind direction uncertainty

Parameters Θ = 0◦ Θ = 270◦

(θ1− θ2) >

20◦ 30◦ 40◦ 20◦ 30◦ 40◦

Mean [◦] 1.22 0.84 0.68 1.38 1.27 1.13

Minimum [◦] 0.52 0.52 0.52 0.07 0.07 0.07

Maximum [◦] 4.26 2.22 1.51 3.32 2.77 2.35

Standard deviation [◦] 0.83 0.37 0.19 0.64 0.57 0.49
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5 Discussion

5.1 Novelty and value of the model

Our model is unique in including the real-life uncertainties associated with a scanning lidar - LOS speed uncertainty as well as

angular and range uncertainties. To our knowledge other models only consider LOS speed noise and do not correctly include the

effect of elevation angle errors and range errors on the actual measurement height. Here we have a model that for the first time5

can be used, for example in the domain of wind energy, to provide estimates of wind speed and wind direction uncertainties in

both wind resource and power performance validation applications.

A second novelty is the availability of the model in a ready-coded Python package. Hopefully this will foster its use and

also simplify benchmarking with other approaches. The digitisation also lends itself to optimisation exercises so that future

campaigns can benefit from an uncertainty optimised experimental design.10

5.2 Limitations of the model

It is always vitally important to be aware of the limitations that we have built in during the derivation. Let us re-cap and

re-examine our assumptions.

Firstly we assumed that our lidar is a point measurement device - ignoring that the wind speed is actually gathered as a

weighted average over a length of the line of sight - this process usually encapsulated in a probe length parameter. Where there15

are strong local gradients such that a weighted average is no longer a valid representation of the wind speed at the nominal

point, extra uncertainties will be introduced and should then be added to the model. For example measuring in or close to a

wind turbine wake could introduce such errors. Conversely, in many applications the local wind gradients will be small and

will not introduce errors of this type.

Two other important and related assumptions are that elevation angles are low and (therefore) that vertical wind speed20

components can be ignored. Whilst the low elevation angle restriction allows us to ignore vertical components it also of course

restricts us to applications where this is fulfilled. Later in our derivation we also assumed small elevation angles to simplify our

expressions. Thus even in cases with essentially horizontal flow we are not entitled to use our model where the elevation angle

exceeds say 10◦. We are probably more justified in using the model where the elevation angles remain low but where there are

significant vertical components since these will have only very contributions to the radial speeds.25

A power-law wind speed profile was also assumed. Whilst it is recognised that this is an unrealistic model for a full wind

profile it does provide us with a convenient (easy to differentiate) model with a readily recognisable (and single) parameter -

the shear coefficient α. As long as a reasonable value for α is chosen (valid at the measurement height) the model will provide

a reasonable estimate of the uncertainties that arise from incorrect measurement height - an important feature of our model.

Whilst vertical profiles were allowed, we have not included any horizontal gradients. Here the arguments pertaining to point30

versus finite probe length also apply. Only very severe horizontal gradient (significant changes over the probe length) will cause

any meaningful errors.
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Our uncertainty model has also assumed that there are no correlations between any of the uncertainties. With two lidars,

possibly of the same type, this may not be completely true. It is not unreasonable to assume that for example, a line of sight

estimation error is common to both lidars (either through common design or common calibration). Such a correlation would

tend to slightly increase the combined uncertainty for the u component (where the radial speeds add) and reduce it for the v

component (where the radial speeds subtract).5

Whilst we have not explicitly included noise term for the LOS speed estimation uncertainty, such a term can be considered

as implicitly contained in the value. The LOS uncertainty comprises both a random (noise) and a systematic part. Usually the

latter will dominate and is largely determined by the uncertainty of the reference speed used in the calibration (often a cup

anemometer).

Finally, one can argue against the propagation of uncertainties method itself that it easily becomes very complicated when the10

input model is expanded. Instead, for more complicated models a Monte Carlo simulation type approach can be more suitable.

With a Monte Carlo simulation the measurement process is mimicked by calculating the measurement output for a number

of randomly chosen input parameters but with known statistics corresponding to their expectation value and uncertainty. In

this way the simulation can in certain cases automatically include some intricate correlations that can otherwise be difficult

to quantify. The latter is for example true when calculating the horizontal wind speed uncertainty based on the orthogonal15

wind speed components u and v, but is not an issue for our model where the uncertainty is found directly from the radial

velocities and associated uncertainties. Besides being mathematically less complex and simpler to implement, Monte Carlo

simulations furthermore have the advantage of enabling integration of other (perhaps more realistic) flow models (see mocalum

in Vasiljevic, 2020).

6 Conclusions20

Uncertainty models for wind speed and wind direction have been developed for a pair of scanning lidars operating in dual-

Doppler configuration. The models are developed analytically and therefore some assumptions have been necessary to keep

the algebra manageable. Most importantly, the lidars are assumed to operate with low elevation angles and away from areas

of extreme horizontal or vertical shear. A power-law model has been used to model the vertical wind profile and this allows

the important effects of elevation angle and range uncertainty to be reasonably estimated. A digitalization of the models,25

YADDUM, is available as an open source Python package.

The models have been demonstrated using a previous field experiment. It can be seen how the speed and direction uncer-

tainties are combinations of the radial wind speed uncertainties amplified by the dual-Doppler reconstruction algorithm. The

analytical development provides considerable insight into to observed patterns in the uncertainty maps for the demonstration

experiment. Future dual-Doppler measurement campaigns operating within the domain of the discussed limitations, can use the30

YADDUM model and package directly to both optimise the experimental design and estimate the uncertainties on the obtained

results.
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