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1 Data selection process

Following reviewer’s recommendation, we will make adequate data selection in the revised manuscript.

Data will be selected as:

1. Only data within the contour line 0.4 will be selected to remove bad data in the outer contour
area. This will roughly correspond to the altitude range 85–95 km.

2. Zenith angle selection will be now within 50◦ (previously it was 60◦ )

All figures, table and numerical values will be updated accordingly, and shown in Appendix A.

2 Derivation in the Appendix

We apologise for few typos (line 513 and 526) in the Appendix. The statement such that the expectation
value of µ

′
, or < µ

′
>6= 0 should be such that the expectation value of µ

′
, or < µ

′
>= 0 (this is from

Carroll and Rupper(1996)). The derivation is repeated below with additional explanation:

1. Motivation:

The GM solution in the normalised coordinate is given by -

βW =

√
sh′√
sd′

= 1 (1)

because sh′ = sh′ = 1 due to the normalisation with Eq. (18) (manuscript). We found out that
this solution is over-estimated, and thus positively biased. Mathematically, this means we can
correct for this bias by multiplying the h

′
with a scaling factor ν, such that ν . 1 (this will

reduce the numerator in the above equation).

In other words, this reweighted normalised variable is now redefined as νh
′

or simply h∗. But
this is just a mathematical treatment, the observed value of h

′
will be the same observed value.

The difference between the variance of our hypothetical variable h∗ and the real observable h
′

is some constant, say sµ′ (where µ
′

is h
′ − h∗ ),

sh∗ = sh′ − sµ′ = 1− sµ′ (2)

2. But Eq. (2) above also implies,

h
′

= h∗ + µ
′

(3)

In the manuscript, we have defined h
′

in line-139 as (but now in normalised coordinate, hence
all with prime subscript, and α = 0),
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h
′
i = βW ξ

′
i + ε

′
i = βW (d

′
i − δ

′
i) + ε

′
i (4)

Substitute (3) in (4) to get,

h∗i + µ
′
i = βadjW ξ

′
i + ε

′
i = βadjW (d

′
i − δ

′
i) + ε

′
i (5)

Note that now we write the normalised slope as βadjW , where βadjW . βW (of course, βW = 1).
Equation (5) above is Eq. (A1) in the manuscript (line-512).

3. Solution: Assume βadjW ≈ βW

Write Eq. (5) as -

h∗i − β
adj
W d

′
i + µ

′
i = −βadjW δ

′
i + ε

′
i (6)

And so,

(µ
′
i)
2 ≈ (ε

′
i − δ

′
i)
2 (7)

Equate the residual function of GM solution (line 251) with its perturbed value as (see Fig. 1
for a bit of visual understanding)-

N∑
i=1

(h∗i − β
adj
W d

′
i)
2

1 + (βadjW )2
≈

N∑
i=1

(h
′
i − βWd

′
i)
2

1 + β2W
(8)

Substitute Eq. (6) and Eq.(7) in Eq. (8), and with βadjW ≈ βW = 1, the left-hand side of Eq.(8)

N∑
i=1

(−δ′i + ε
′
i − µ

′
i)
2

2
≈

N∑
i=1

(−δ′i + ε
′
i)
2 + (µ

′
i)
2

2
≈

N∑
i=1

(µ
′
i)
2 (9)

Or Eq. (8) is now,

N∑
i=1

(µ
′
i)
2 =

N∑
i=1

(h
′
i − d

′
i)
2

2
(10)

Divide by N and write in absolute form because of the ’square’ dependence between LHS and
RHS of Eq. (10)

1

N

N∑
i=1

| µ′i |=
1

N

N∑
i=1

√
(h
′
i − d

′
i)
2

2
(11)

Bienaymé formula1 states that for uncorrelated random variable Yi :

V ar

(
N∑
i=1

Yi

)
=

N∑
i=1

V ar(Yi) (12)

Or,

1https://en.wikipedia.org/wiki/Variance
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V ar (mean(Yi)) = V ar

(
1

N

N∑
i=1

Yi

)
=

1

N2
V ar

(
N∑
i=1

Yi

)
=

1

N
V ar(Yi) (13)

Apply the formula in Eq. (13) to Eq. (11)

V ar

(
1

N

N∑
i=1

| µ′i |

)
= V ar

 1

N

N∑
i=1

√
(h
′
i − d

′
i)
2

2

 (14)

Or,

V ar
(
µ
′
i

)
= V ar

√(h
′
i − d

′
i)
2

2

 (15)

From Eq. (2), we therefore have,

ν2 = sh∗ = 1− V ar

√(h
′
i − d

′
i)
2

2

 (16)

An alternative, and perhaps much straight-forward way to go from Eq. (11) to Eq. (15) is to
utilise the property of half-normal distribution2. This states that if Y follows an ordinary normal
distribution, with mean 0 and variance σ2, then X =| Y | follows a half-normal distribution,
such that the variance of X is given by-

V ar(Xi) = σ2(1− 2

π
) (17)

And their expectation value is related as-

E(X) = σ

√
2

π
(18)

Since µi (left-hand side) and the residuals from GM solution (right-hand side) in Eq. (11) are
assumed to have zero mean and normally distributed, their absolute value follows half-normal
distribution. Applying the formula in Eq. (18) to Eq. (11) directly lead to Eq. (15).

Note:

• How is Eq. (5) related to the statistical model in line-305 of the manuscript?

We have originally defined the normalised variable h
′
i (observable) in terms of hypothetical true

value η
′
i in line 139, for which the normalised slope is βW :

h
′
i = η

′
i + ε

′
i (19)

According to the model with ’equation error’ in line-305, we need to replace η
′
i by η

′
i−µi so that

the variance of observed height h
′
i is reduced to that of h∗.

h∗i = η
′
i − µi + ε

′
i (20)

2https://en.wikipedia.org/wiki/Half-normal distribution
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Following reviewer comment, we have realised that this information above is quite redundant
since Eq. (5) didn’t specifically require this. In the revised manuscript, we will use adequate
data selection and hence such extended discussion on ’natural variation’ or ’equation error’ (Sect.
3.2.2) is no longer necessary. Instead, we will simply refer to sµ as asymmetric error.

• Numerical validation of the equality in Eq. (8) above:

For the date 14 Nov 2015, the RHS of Eq. (8) is -

N∑
i=1

(h
′
i − d

′
i)
2

2
≈ 85.87 (21)

In the current manuscript we have βadjW ≈ 0.75 and ν ≈ 0.87, and so the LHS of Eq. (8) is -

N∑
i=1

(h∗i − β
adj
W d

′
i)
2

1 + (βadjW )2
≈ 75.50 (22)

In the revised manuscript (with adequate bad data removal) we have βadjW ≈ 0.95 and ν ≈ 0.96
(see Fig. A.8), and now the LHS of Eq. (8) is -

N∑
i=1

(h∗i − β
adj
W d

′
i)
2

1 + (βadjW )2
≈ 82.35 (23)

• This manuscript do not make the default assumption that λ = 1 in the normalised coordinate
is indeed the fundamental property of this distribution, and hence the motivation to develop a
solution that allows for small variation in λ from 1. This is because the exact value of λ depends
on the data selection process (and also probably on the instrument, but this study is just with
one radar).

• In the revised manuscript we will state the 3 possible cases:

1. λ = 1. The GM solution is valid.
2. λ & 1. Eq. (37) is valid.
3. λ . 1. Eq. (37) is valid but with h and d interchanged.

3 Specific

3.1 This implies that the core distribution could be a good way to get a better
GM solution although the GM solution do not explicitly show up in Eq. (35)
and Eq. (37)

.
Eq. (35) and Eq. (37) are indeed showing this convergence. Note that these equations are given in

normalised coordinates (d
′
i and h

′
i). Now, if we look closely in Fig. 1b (manuscript) or Fig. A.1b here,

we see that as we approach the core of this distribution, both d
′
i and h

′
i gets smaller and converges to

zero-point. This means both Eq. (35) and Eq. (37) converges to 1 near the peak. This is demonstrated
in Fig. 1 (below) where we have estimated the slope for GM solution and with Eq. (37) using 6 different
data selection criteria. The stability of the solution from Eq. (37) arises due to the correction term ν
which is a constant that depends on the input data via Eq. (16) above (or, Eq. (35) in the manuscript).
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Figure 1: Comparison of the slope estimate of GM solution and with Eq. (37) for the date 14 Nov
2015 with six different data selection criteria. The contours (or Cont in figure above) are from Fig.
1b in the manuscript.

3.2 The authors think that the distribution in these orange areas are affected by
natural variation and should not be rejected in a arbitrary way

.
In line 329 we have specifically stated that ”we therefore no longer stringently distinguish between

different types of error in this data. In other words, the error variances, sδ′ and sε′ , now consist of
both measurement errors and partly the natural geophysical variation.”

The word ’arbitrary ’ in line-290 was referring to the way we have defined these contour lines. In
the revised manuscript we will rephrase the word ’arbitrary’ and perform adequate data selection.

3.3 The dates at the tick marks seem shifted by 15 days in Fig. 2, 3 and 6 axis

The ticks are labelled as first day of month and year (2015 or 2016). We will add X-axis label in the
revised manuscript to clarify this.

3.4 Line 276-277 ”the standard errors in these temperatures, which is on average
19 K”: Is this a value estimated using using season of the CORAL data

No. This value is estimated using Bootstrap analysis as explained in Sect. 3.2.3 (we used the MATLAB
function bootci). This relatively large value of 19K is mainly due to low N with this radar (since
standard error is inversely related to

√
N).

3.5 Line 366-267 ”does this mean that the resampling was made 20000 times for
every 24 hr”

Yes (line 363).
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3.6 Line 342 ”Two of the four ν redundant?”

No (unless, we misunderstood this question ).

3.7 Since it is the decay time that is mostly affected in the lower and upper
distribution rather than height as seen in Fig 1, it seems natural to use a
correction term to decrease the effective variance of di instead that of hi. Is
such an approach possible? I presume it will give an equivalent result.

Looking at Eq. (1) and (2) above, this implies that now it will be something like,

sd∗ = sd′ + sµ′ = 1 + sµ′ (24)

The ’positive’ sign on the right indicates that we want to increase the effective variance of di to
account for the over-estimate in GM solution. Note that Eq. (7) and Eq. (8) above in the the deriva-
tion of sµ′ will be still the same if correction term was applied to di.

On the other hand, if other authors find that for their data the GM solution is under-estimate,
Eq. (37) will be still valid but with h and d interchanged.

In Sect. 3.1 of the manuscript, we have demonstrated a simple way to find out the direction of
asymmetric error effect in this data as follows:

1. First we have performed two OLS fittings with h and d as independent variable and estimated
temperatures. Comparison of this temperature with lidar data resulted in the histograms shown
in Fig. 3b in the manuscript (or, Fig. A.3b below). We see that the blue histogram is located
much farther to right side of origin than the green one. This asymmetric location around the
origin is a clear indication that the overall effect of asymmetry in this data is along the Y-axis.
Likewise, the geometric mean of the green and the blue is the red histogram which is located on
the right-hand side of the origin, thereby indicating that λ > 1.

2. To confirm the observation above, next we have applied SCT calibration (and Eq. (17) and Eq.
(18) in the manuscript) to obtain an experimental estimate of the error variance in this data.
This is reported in line 246-247, where we have stated that ”the mean values of sε′ and sδ′ are
found to be 0.64 ± 0.04 and 0.38 ± 0.06 respectively” (where sε′ and sδ′ are error variances of
normalised height and log10(1/τ)). Because sε′ > sδ′ , the overall direction of asymmetric error
must be along the h data.

3. Finally in Sect. 4, we have demonstrated another method to obtain a numerical estimate of λ.
This was done by equating Eq. (26) with Eq. (37). This method is completely independent
since it didn’t require lidar data, and yet agreed very well with it (Table 1)

How does the analysis discussed above change when we improve the data selection
criteria as mentioned in Sect. 1 above?

After applying an improved data selection criteria, we have repeated the full analysis in the
manuscript. The figures and table are given in appendix A.

In Fig. A.3, we still see that the blue and the green histograms are asymmetrically located around
the origin. This implies that the effect of error in height data in more than that in log10(1/τ)3. The
results from SCT analysis is given in Table A.1, showing that the error variances in normalised height
and log10(1/τ) are unequal, and sε′ > sδ′ . The SCT estimate of the effective value of λ is now 1.24,
and thus λ > 1 with the consequence of over-estimation in GM solution.

3This value has decreased now (Table A) as we got rid of those annoying region as indicated by the reviewer.
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Comparison with lidar data is shown in Fig. A.7. Although the GM solution has improved signif-
icantly, the adjusted GM solution is still a better estimate for the following reason-

There is an additional source of uncertainty in this method that we haven’t discussed explicitly. The
temperature gradient taken from MSIS model values are on average −2.4K/km for this season. The
temperature gradient estimated by other authors with real observation indicates that the temperature
gradient during winter time is on average −1.5K/km. Hence, with a more realistic temperature-
gradient value, the histograms in Fig. A.7a and Fig. A.7c will shift to the right by another 7–10 K.
This will increase the offset in GM temperature, whereas the temperature with adjusted GM solution
will get even better. In fact, the temperature estimated by Eq. (37) will be always better or same
as GM solution, since an exact match of λ = 1 is unlikely. However, whether this offset in GM
temperature is significant or not must be determined by respective investigators depending on their
own science goal.

3.8 A strict mathematical treatment of µi is beyond my understanding. But is
such a practical approach that a constant value of sµ′ represents the while
equation error mathematically acceptable? Or simply practical?

Variable sµ′ is of course plausible, but in that case the system will no longer admit an analytic solution
( line 215-216).

Note that sµ′ is not an arbitrary constant, but rather a constant which depends directly on the
input data.

We understand that this over-emphasize on ’equation error’ and ’natural variation’ in the current
version of the manuscript has unnecessarily complicated the physical meaning of sµ′ . In essence, sµ′

is just a measure of ’bias’ in GM solution as a result of asymmetric error in the data. Remember that
GM solution, by its own definition, make the default assumption that the effect of error in normalised
h and d are exactly equal. In case of unequal value of sε′ and sδ′ , that elliptical scattered plot will
get tilted either in Y direction (if sε′ > sδ′ ) or along the X-direction (if sε′ < sδ′ ). But GM solution
doesn’t see that apparent tilting, and will always try to bisect this data symmetrically, hence either
this solution is over-estimated or under-estimated. The idea of sµ′ is to correct for this tilt in the
statistical sense.

3.9 What are bars over h and d in line 353?

The mean value of original h and d. We will add a line here to mention this.

3.10 Could you explain the more about ”a priori knowledge” in line 358

The EIV slope (in normalised coordinate) is given by (Eq. (25) in the manuscript) -

βW =
sh′ − λsd′ +

√
(sh′ − λsd′ )2 + 4λs2

h′d′

2sh′d′
(25)

The main problem here is that we need to know the exact value of λ, otherwise we run into the
risk of over-parameterization. For this data we have found that λ is of the order of 1. Now, we could
have picked up that value of λ = 1.74 (which we have estimated using OLS+SCT calibration in Sect.
3.1) and directly use it in the equation above to estimate EIV slope (irrespective of data selection
process since, in theory, the parameter λ is suppose to contain all error information anyway). But
this would imply that we would always need lidar or satellite data to estimate these temperatures.
Alternatively, we can stick to λ = 1, and instead introduced a correction term in the statistical model
such that there is a negative sign in Eq. (35) to correct the ’positive bias’ in GM solution. These two
processes are equivalent as stated in line 291-296.

4with the improved data selection in the revised manuscript this value is now 1.24 as presented in Table A.1.

7



4 Summary

We thank the anonymous reviewer for providing interesting insight into this work and recommendation
for further improvement. These will be addressed accordingly in the revised manuscript.
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A Updated figures and table for the revised manuscript
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Figure A.1: (a) Typical scatter plot of log10(1/τ) and height. The lines correspond to best fit models
using different regression methods described in the text. The green and blue line corresponds to
’ordinary least-squares method (OLS)’ with log10(1/τ) and height as independent variable respectively.
The red line correspond to the geometric mean (GM) of βdOLS and βhOLS . The black line is the bias-
corrected slope obtained by using Eq. (37). (b) The bivariate distribution of the data. The measured
height and log10(1/τ) are converted to dimension free coordinates using Eq. (18). The relative density
contours are obtained by counting the number of detections in a radius of 0.5 relative to the density
at the height of peak meteor occurrences at the center. All slopes in (a) are estimated at contour level
0.4.
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Figure A.2: (a) Temperature gradient model derived from MSIS90. (b) Peak meteor heights for the
data used in this work, and (c) the daily meteor detection for zenith angle less than 50◦, velocity in
the range ±100 m/s and at contour level 0.4.
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Figure A.3: (a) Temperature estimated in OLS method using log10(1/τ) (green) and height (blue) as
independent variable. Also, showing (red) the temperatures obtained using the geometric mean (GM)
fitting. (b) The offset between the lidar (Tlidar) temperatures and the estimated MR temperatures
(TMR) using OLS fitting and GM fitting. .
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Figure A.4: Statistical distribution of (a) 4log10(1/τ) and (b) 4height obtained using SCT method
with colocated lidar data. The variance ratios of these parameters in the normalised coordinate system
is shown in (c). The properties of these histograms are presented in Table A.1.
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used in this work.
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Figure A.6: Comparison of the bias-corrected MR temperatures with lidar data for the winter
2015–2016. The solid line corresponds to the temperature estimated using the GM solution described
in Sect. 3.2.1. The dashed line corresponds to the SCT calibrated temperatures using the colocated
lidar measurements. The OLS estimates are obtained with log10(1/τ) as independent variable. The
errors in lidar temperatures are 5–10 K and the standard error (grey shade) of the temperature from
EIV analysis is on average 19 K. The differences between lidar and MR temperatures are presented
in Fig. A.7.

Table A.1: Representative value of the (square root of) error variances and their normalised ratio
for SGO’s meteor radar obtained by SCT method (Fig. A.4) for winter 2015–2016. The estimated
value of the error variances in normalised height and log10(1/τ), sε′ and sδ′ , are given along with the
estimated value of λ from SCT calibration (λOLSeff ) and EIV method (λEIVeff ). The literature values are
from [1](Hocking2004), [2](holdsworth2006), and [3](kim2012).

– Mean STD Literature Values

4(log10(1/τ))/s−1 0.11 0.02 0.141,2

4(height)/km 2.13 0.32 3.251, 1.12, 1.03

sε′ 0.36 – –

sδ′ 0.29 – –

λOLSeff 1.24 – –

λEIVeff 1.39 0.02 –
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Figure A.7: Difference between MR temperatures and lidar data for (a) GM solution and (b) SCT
calibration applied to OLS estimate of βdOLS , and (c) adjusted GM solution . MR temperatures are
shown in Fig. A.6.
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Figure A.8: Two independent estimates of slope using EIV method for the date 14 Nov 2015. The
solid line corresponds to the slope estimated using Eq. (26) with λ as free parameter. βadjW is the slope

estimated from Eq. (37). Comparison of these two methods shows that the value of βadjW = 0.945 is
equivalent to using λ = 1.38 in Eq. (26).
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