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Abstract.

For two decades meteor radars have been routinely used to monitor atmospheric temperature around 90 km altitude. A

common method, based on a temperature-gradient model, is to use the height dependence of meteor decay time to obtain a

height-averaged temperature in the peak meteor region. Traditionally this is done by fitting a linear regression model in the

scattered plot of log10(1/τ) and height, where τ is the half-amplitude decay time of the received signal. However, this method5

was found to be consistently biasing the slope estimate. The consequence of such bias is that it produces a systematic offset

in the estimated temperature, and thus requiring calibration with other colocated measurements. The main reason for such

a biasing effect is thought to be due to the failure of the classical regression model to take into account the measurement

error in τ and the observed height. This is further complicated by the presence of various geophysical effects in the data, as

well as observational limitation in the measuring instruments. To incorporate various error terms in the statistical model, an10

appropriate regression analysis for these data is the Errors-in-Variables model. An initial estimate of the slope parameter is

obtained by assuming symmetric error variances in normalised height and log10(1/τ). This solution is found to be a good

prior estimate for the core of this bivariate distribution. Further improvement is achieved by defining density contours of

this bivariate distribution and restricting the data selection process within higher contour levels. With this solution, meteor

radar temperatures can be obtained independently without needing any external calibration procedure. When compared with15

colocated lidar measurements, the systematic offset in the estimated temperature is shown to have reduced to 5% or better on

average.
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Figure 1. (a) Typical scatter plot of log10(1/τ) and height. The lines correspond to best fit models using different regression methods de-

scribed in the text. The green and blue line corresponds to ’ordinary least-squares method (OLS)’ with log10(1/τ) and height as independent

variable respectively. The red line correspond to the geometric mean (GM) of βdOLS and βhOLS . (b) The bivariate distribution of the data.

The measured height and log10(1/τ) are converted to dimension free coordinates using Eq. (18). The relative density contours are obtained

by counting the number of detections in a circle of unit area relative to the detection density at the height of peak meteor occurrences at the

center.

1 Introduction and background

As meteoroids enter the Earth’s atmosphere, they produce ionized trails which can be detected as back-scattered radio signals20

by interferometric radars. After the trail has been formed, the ionisation begins to dissipate by various processes, such as,

ambipolar diffusion, eddy diffusion, or electron loss due to recombination and attachment depending on the height of ablation.

The rate at which the echo power decreases is also determined by the combined effect of electron line density of the trail,

ambient pressure and temperature.

If the electron line density of the trail is less than 2.4×1014 electrons m−1, the trail is called ’underdense’, meaning each25

electron in the trail scatters independently (e.g., Bronshten, 1983, p 356). The decay of underdense trails is thought to be mainly

due to ambipolar diffusion at a height range of 85–95 km, where the majority of the meteors ablate (Jones, 1975). In the weak

scattering limit the backscattered amplitude of the radio signal from an underdense trail decays with time (t) as

A(t) =A(0)e−16π2Dat/λ
2
r (1)

where λr is the radar wavelength and Da is the ambipolar diffusion coefficient (Kaiser, 1953). This coefficient depends on the30

ambient pressure (P ) and temperature (T ) of the neutral gas (Chilson et al., 1996) and can be estimated from the half-amplitude
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decay time (τ ) as

Da =Kamb
T 2

P
=
λ2r ln2

16π2τ
(2)

Kamb in Eq. (2) is a constant related to the ionic constituent of the plasma in the trail (Hocking et al., 1997). The pressure at a

given height (h) is35

P (h) = P (0)e−
∫ h
0

mg
kT (z)

dz (3)

where m is the mass of a typical atmospheric molecule, g is the acceleration of gravity, k is the Boltzmann constant, z is an

axis along the vertical. Substituting the equation for pressure in Eq. (2), and differentiating provides the height profile of the

decay time:

log10Da(h) = 2log10T (h) + log10e
mg

k

h∫
0

1

T (z)
dz+ Ψ (4)40

d

dh
log10(

1

τ(h)
) = 2 log10e

dT

dh

1

T (h)
+ log10e

mg

k

1

T (h)
(5)

where Ψ is a constant. Equation (5) states that the height profile of decay time is a function of both temperature and temperature

gradient under the assumption of ambipolar diffusion for underdense meteor trails. In practice, most trail echoes are received

at a small altitude range referred to as the region of peak meteor occurrence (Hocking, 1999). Hence a height-averaged tem-

perature gradient near the peak height can be used to estimate the mean temperature (T0) at the peak height by fitting a linear45

function (Hocking, 1999). A linear approximation of Eq. (5) is,

T0 = β (2 <
dT

dh
>+

mg

k
) log10e (6)

where β is the slope of the scattered plot of log10(1/τ) and height, and T0 is the average temperature of the atmosphere at

the height of peak meteor occurrence. A typical scattered plot of height and log10(1/τ) shows significant variation in the

measured data along both abscissa and ordinate (Fig. 1). Traditionally, the slope (β) is estimated using the ordinary least-50

squares (OLS) method with log10(1/τ) as the independent variable. The justification of using log10(1/τ) as independent

variable is that the measurement errors in τ are smaller than those in heights (Hocking et al., 1997). While the pulse length,

angular resolution etc., of the radar introduces intrinsic measurement errors in heights, much of the variation in decay time is

due to various geophysical effects that persist at all altitudes. At higher altitude the collision frequency with neutrals is reduced,

and the diffusion is inhibited in a direction orthogonal to the geomagnetic field (Jones, 1991; Robson, 2001). This anisotropic55

diffusion causes an increase in the duration of meteor radar echoes as compared to ambipolar diffusion. Whereas at lower

altitude decay time tends to decrease due to additional effect of electron loss by recombination and attachment (Younger et al.,

2008). In addition, other geophysical factors, such as meteor fragmentation, turbulence within trail, chemical composition of

the meteors, or the temperature variation due to passage of tides and gravity waves, can contribute to the measurements of

decay time and heights at all altitudes (Hocking, 2004).60

3



Temperature estimation from meteor radar (MR) data requires obtaining the best-fit regression line in the scattered plot of

log10(1/τ) and height. However, the pioneer work done by Hocking (1999) to implement this method using ordinary least-

squares fitting showed a clear systematic offset between the MR temperature and colocated lidar measurements, indicating that

the estimated slope was not determined correctly. To correct for this offset, a common practice is to calibrate the meteor radar

temperatures using temperatures from lidar, OH spectrometer, satellite or rocket climatology. Hocking et al. (2001b) provided65

a statistical comparison technique (SCT) to calibrate the biased slope estimate as,

βdOLS = (1− sδ
sd

)βSCT (7)

Or,

βSCT = (1− sε
sh

)βhOLS (8)

where sδ and sε are the error variances of the (log of) diffusion coefficient (or decay time) and height respectively, sd and sh70

are data variances of log10(1/τ) and of height respectively, βdOLS and βhOLS are slope coefficients when diffusion coefficient or

height is treated as independent variable respectively in the OLS regression analysis. The calibrated slope, βSCT , is traditionally

obtained by arbitrarily choosing sδ or sε that gives the best temperature estimates of MR as compared to optical or satellite

data (e.g., Holdsworth et al., 2006; Hocking et al., 2007; Kim et al., 2012). A severe shortcoming of such calibration procedure

is that the calibration factors (sδ and sε) in the parenthesis of Eq. (7) or Eq. (8) are dependent on the data selection criteria75

(e.g., limiting heights, decay time or zenith angle to a certain range). Moreover, the outcome of any such calibration routine

will depend on the location of the MR and the choice of the calibration instrument. From a pure statistical context, the arbitrary

choice of calibration parameters makes the estimated temperature also an arbitrary quantity thereby making it impossible to

draw any reasonable statistical inferences.

In practice, the ordinary least-squares method will not be valid for MR data since neither the height nor the decay time80

can be predetermined as independent variable, and both variables are subjected to intrinsic measurement errors and various

geophysical effects. The reasons for such bias, and thus needing calibration, is discussed on theoretical and experimental

grounds in Sect. 3.1. In addition, a statistical procedure to estimate sδ and sε using SCT calibration is formulated and presented

in Sect. 3.1. An alternative method that includes measurement errors in the regression model is introduced in Sect. 3.2. This

analysis does not require an absolute knowledge of sδ or sε, but only the relative value is needed. As an alternative to SCT85

calibration, in Sect. 4, an independent slope estimation is obtained using the Errors-in-Variables model. A comparison study of

the estimated MR temperatures with colocated lidar temperatures is discussed to validate the method.

2 Instrumentation and data

The All-Sky Interferometric Meteor Radar (SKiYMET) at Sodankylä Geophysical Observatory (SGO, 67◦22’ N, 26◦38’ E,

Finland) has been routinely monitoring daily meteor-height averaged temperatures and wind velocity since December 200890

(Kozlovsky et al., 2016). The radar operates at a transmission power of 15 kW and frequency of 36.9 MHz, with a transmitting

4



Oct Nov Dec Jan Feb Mar Apr

-4

-2

0

T
em

p.
G

ra
d 

(K
km

-1
)

(a)

Mean
2 Standard Deviation

Oct Nov Dec Jan Feb Mar Apr
80

85

90

95

P
ea

k 
H

ei
gh

t (
km

) (b)

2 Standard Deviation

Oct Nov Dec Jan Feb Mar Apr
Winter (2015-2016)

0

2000

4000

M
et

eo
r/

da
y

(c)

Figure 2. (a) Temperature gradient model derived from MSIS90. (b) Peak meteor heights for the data used in this work, and (c) the daily

meteor detection for zenith angle less than 50◦ and velocity in the range ±100 m/s.

antenna which has a broad radiation pattern designed to illuminate a large expanse of the sky. The meteor trails are detected

within a circle of 300 km diameter around SGO. The phase differences in the five-antennae receiving array allow the determi-

nation of the azimuth, elevation, range, and line-of-sight Doppler velocity of the meteor trails. The 2144 Hz pulse repetition

frequency of MR transmission introduces a range ambiguity of 70 km, and the built-in analysis software therefore assumes95

meteor trails are within the height of 70 to 110 km for unambiguous detections. Uncertainty in the height is ±1 km (or better

for large zenith angle), which is determined by the 2 km range resolution. In addition, the half-time (τ ) of the received signal

is calculated from the width of the autocorrelation function. A detailed description of the algorithm of the SKiYMET signal

processing software is outlined in Hocking et al. (2001a).

SGO is located at the corrected geomagnetic latitude of 64.1◦, which is statistically a region of the auroral oval. Hence100

the radar frequently detects nonmeteor targets during substorms associated with ionospheric plasma waves generated due to

Farley-Buneman instability (Kelley, 2009). The Doppler velocity of such echoes can be more than a few 100 ms−1, which

are mostly detected at low elevation (Lukianova et al., 2018). For the Sodankylä radar, Kozlovsky and Lester (2015) identified

ground echoes modulated by the ionosphere during pulsating auroras. These targets have near-zero Doppler velocities, and are

also observed at low elevation. Furthermore, the SKiYMET system detects both underdense and overdense echoes as valid105

meteors. However, more than 95% of detections are underdense (Hocking et al., 2001b). The percentage of overdense trails

may be larger during some meteor trails such as Geminids or Quadrantids and this leads to underestimation of temperatures

(Kozlovsky et al., 2016). This artefact in temperature was found to be reduced for Sodankylä radar for zenith angle less than

50◦. The initial data selection criteria is kept to bare minimum, such that, all heights and decay times are included as long as they

are unambiguous detections above 40◦ elevation angle with Doppler radial velocity in the range ±100 ms−1. Subsequently, to110
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improve the temperature estimation we used a contour selection process, i.e., the data outside certain contour in the normalized

height - log10(1/τ) distribution were rejected (Fig. 1b).

For temperature estimation we considered daily data for a six month period from October 2015 to March 2016 since simul-

taneous lidar measurements were available during this time. The Compact Rayleigh Autonomous Lidar (CORAL) provided

vertical profiles of the atmospheric temperature at 27–98 km over Sodankylä as part of the GW-LCYCLE-II (Gravity Wave115

Life cycle Experiment) campaign in winter 2015/2016 (Reichert et al., 2019). The median number of daily meteor detections

in this data set is 1652, with a minimum of 410 meteor detections on 04 Oct 2015 and a maximum of 3456 detections during

the Geminids meteor shower on 14 Dec 2015.

The Mass-Spectrometer-Incoherent-Scatter or MSIS90 (Hedin, 1991) model temperatures are used to generate a temperature

gradient model near the peak heights. Model temperatures are computed for each date at intervals of 6 h between 85 km to 95120

km. A third-degree polynomial fit is carried out to obtain the height profiles at 6 UT, 12 UT, 18 UT and 24 UT. For each time

interval, the gradient at the respective meteor peak height, as well as at 1 km above and below from peak height are estimated.

These 12 values are then used to obtain the mean and standard deviation of the temperature gradient for each day near the peak

height, which varies in the range 89±1 km. The daily meteor detections, the peak heights, and the corresponding temperature

gradient model values are shown in Fig. 2. The standard deviation of the MSIS model values correspond to roughly of the order125

of 0.7 Kkm−1.

Our reasons for choosing the MSIS temperature gradient are twofold. Firstly, MSIS data are easily accessible from the online

version, which guarantees reproducibility of this work independent of location. Secondly, even if the temperature gradient term

in Eq. (6) is ignored, the resulting offset in the estimated temperature is on average 10% (Hocking, 1999) or less. Hence

an approximate estimate is sufficient for the main objective of this paper. However, the actual temperature gradient in the130

atmosphere may be slightly different from these model values, which can contribute to the biasing effect in the estimated

temperatures. Any such possibility and its effect on the estimated temperatures is addressed in the subsequent section.

3 Method: Regression analysis

3.1 Estimation of error variances in decay time and height

In the following text we use the notation and formulation in Gillard and Iles (2005). The observables, log10(1/τ) and height,135

are represented as di and hi respectively, and the corresponding unobserved true values as ξi and ηi respectively, where the

index i represents the i’th meteor detection. For consistency we also assume that log10(1/τ) is presented in abscissa and height

is in the ordinate in the respective scattered plot (as shown in Fig. 1). Suppose, we are assuming a linear relation in variables

ξi and ηi as,

ηi = α+β ξi, i= 1,2, .....,N (9)140
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Figure 3. (a) Temperature estimated in OLS method using log10(1/τ) (green) and height (blue) as independent variable. Also, showing

(red) the temperatures obtained using the geometric mean (GM) fitting and the lidar temperatures (in black ). (b) The offset between the lidar

(Tlidar) temperatures and the estimated MR temperatures (TMR) using OLS fitting and GM fitting (without contour selection).

Due to measurement errors and various geophysical processes, the true values ξi and ηi will be subjected to random errors and

hence the observable di and hi will have scatter around the linear model in Eq. (9):

di = ξi + δi (10)

And,

hi = ηi + εi = α+β ξi + εi (11)145

where δi and εi are errors in the measured log10(1/τ) and height respectively, and are assumed to be mutually uncorrelated,

have zero mean and independent of the suffix i. This implies that the measurement error variances, sδ and sε, are constant

with respect to the suffix i. Classical regression analysis or ordinary least-squares (OLS) treats di as an independent variable

without intrinsic errors (or, di = ξi), and then minimises the sum of squared residuals along the ordinate. The slope from the

OLS method can be represented in terms of the covariance (Cov) and variance (V ar) as (e.g., Smith, 2009; Keles, 2018),150

βdOLS =
Cov(di,hi)

V ar(di)
≡ r
√
sh√
sd

(12)

where βdOLS is the OLS slope estimated by considering log10(1/τ) as independent variable, and r is the Pearson product-

moment correlation coefficient between d and h. Likewise, by reversing the arguments above, it’s trivial to show that the

reciprocal value of OLS slope estimate with height as independent variable is (e.g., Smith, 2009),

βhOLS =
V ar(hi)

Cov(di,hi)
≡ 1

r

√
sh√
sd

(13)155
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To see the effect of errors in the independent variable on the OLS slope estimate, e.g., for βdOLS , Eq. (10) and Eq. (11) are used

in Eq. (12),

βdOLS =
Cov(ξi + δi,α+β ξi + εi)

V ar(ξi + δi)
(14)

Since δi, εi and ξi are mutually independent, Eq. (14) simplifies to ,

βdOLS =
β Cov(ξi, ξi)

V ar(ξi + δi)
=

1

1 + V ar(δi)
V ar(ξi)

β = ζ β (15)160

where ζ is known as the attenuation or regression dilution bias. Since variances are always positive by definition, Eq. (15)

shows that in the presence of measurement error in the so-called independent variable (in abscissa), the OLS slope estimate

(βdOLS) will always be smaller than the unbiased slope β. Likewise, βhOLS is greater than β if there is error in the measured

height (specific example presented in Fig. 1a). By substituting di = ξi + δi, we can rearrange Eq. (15) as

βdOLS = (1− V ar(δi)

V ar(di)
)β (16)165

Equation (16) is a well known identity in statistical literature (e.g., Carroll and Ruppert, 1996; Frost and Thompson, 2000),

that was re-derived by Hocking et al. (2001b) in Eq. (7) in the context of SCT correction. Equation (16) reveals that an absolute

knowledge of error variances, sδ ( or sε), is required to obtain the bias-corrected slope (β) if we choose OLS fitting for the

slope estimate. A common practice is to calibrated the biased slope with optical or satellite data by arbitrarily choosing a value

of sδ or sε (e.g., Holdsworth et al., 2006; Hocking et al., 2007; Kim et al., 2012). In the remaining part of this section, we170

demonstrate how to obtain an average value of the error variances in this data following a revised calibration procedure.

For each 24 h of the data set, we performed two OLS fittings to estimate βdOLS and βhOLS by using Eq. (12) and Eq. (13).

The corresponding biased temperatures, T dMR and ThMR respectively, are estimated using Eq. (6). Experimental values of the

parameters sδ and sε can be obtained by comparing these estimated biased temperatures with the colocated lidar temperatures

(Tlidar) as the reference values. Using Eq. (7) and Eq. (8), and noting that the slope is proportional to the estimated temperatures175

from Eq. (6) we obtain:

sδ ≈ (
Tlidar −T dMR

Tlidar
) sd and sε ≈ (

ThMR−Tlidar
ThMR

) sh (17)

where T dMR and ThMR are MR temperatures estimated using OLS fitting with log10(1/τ) and height as independent variable

respectively. Furthermore, if the measurements are normalised with the mean and standard deviation (STD) as

d
′

i =
di−mean(di)√

sd
and h

′

i =
hi−mean(hi)√

sh
(18)180

then, V ar(d
′

i) = V ar(h
′

i) = 1, and the OLS estimate of the ratio of the measurement error variance is (from Eq. (17) and Eq.

(18)):

λOLSeff =
sε′

sδ′
≈ ThMR−Tlidar
Tlidar −T dMR

.
Tlidar
ThMR

(19)
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where the error variances, sε′ and sδ′ , are in the dimension free system defined by Eq. (18). In essence, λOLSeff is a measure of

all sources of errors in the normalised heights and decay times that cause the real data to deviate from the idealized physical185

model of Eq. (6), thereby producing a typical scatter as seen in Fig. 1.

λOLSeff , sδ , and sε were estimated by Eq. (17) and Eq. (19) using 24 h of MR data and colocated lidar temperatures at 88 km,

89 km and 90 km for the dates for which lidar data was available. The biasing effect on the OLS estimate of MR temperatures

with log10(1/τ) and height as independent variable respectively are presented in Fig. 3 (green and blue lines and histogram).

As expected from Eq. (7) or Eq. (8), a mean offset of -75 K and +335 K occurs depending on whether log10(1/τ) or height190

respectively is considered as independent variable. In practice, the magnitude of these biases is related to the total errors in

heights and log10(1/τ) from Eq. (17), which was not taken into account by the OLS regression model in Eq. (12) and Eq. (13).

Furthermore, the relative density contour lines for each data point is obtained by counting the number of detections in a circle

of unit area in the normalised height-log10(1/τ) plane relative to the number of detections in unit area at the peak meteor region

(Fig. 1b). In addition, all the error estimates from SCT method are obtained at contour levels 0, 0.2 and 0.4, and the results are195

presented in Table 1. Several key features of this data are reflected in Table 1. Despite the data transformation via Eq. (18), the

average error variances for the height data are more than those for the log10(1/τ) data in these coordinates. This asymmetry

in the error variances implies that the bivariate distribution is slightly skewed away from a perfectly normal distribution along

the Y-direction. However, this effect of asymmetric error variances is less pronounced near the core of this distribution. This

implies that the parameter λOLSeff is closer to 1 near the core of this distribution and further away from 1 near the tail of200

the distribution. The data near the outer contour area is subjected to larger parameter estimation error due to observational

limitation. For example, the zenith angle dependent error in height can easily skew the distribution in this direction. On the

other hand, natural geophysical variability in these data contributes significantly at all altitudes. As seen in Table 1, the average

error in height for contour levels 0, 0.2 and 0.4 are 5.0 km, 3.0 km and 2.2 km respectively. This error is significantly higher

than what is expected from purely parameter estimation error (for zenith angle less than 50◦, the error in height is 1 km205

or less), indicating that geophysical variability dominates the total error variance in these data at all altitudes. The average

error variances estimated at the contour level 0.2 (Table 1) correlate very well with the values reported in Hocking (2004) and

Holdsworth et al. (2006). Hocking (2004) estimated4(height) = 3.25 km using a numerical model for a pulse length equivalent

to 2 km, and a meteor at an altitude of 90 km and zenith angle 50◦. Likewise, their estimation of4log10(1/τ)=0.14 was based

on simulation studies for meteors below 95 km and confirmed that ’decay-times variability’ arise due to 27% variability in210

Kamb and 8% variability in temperatures over meteor region. The argument for choosing 95 km as the maximum height is

that above this altitude meteor decay rates are substantially affected by processes other than ambipolar diffusion. Holdsworth

et al. (2006, p 5) applied similar data rejection criteria and found out that4log10(1/τ) = 0.14 is required to calibrate the slope

if log10(1/τ) is used as independent variable in the OLS regression model. Likewise, Thorsen et al. (1997) performed the

comparison between the parameter estimation error and the geophysical variability for estimating the mean wind field in the215

middle atmosphere, and found that the geophysical variability dominated at all heights.

It is worth noting that instead of directly using the individual observation between biased MR temperatures and lidar mea-

surements from Eq. (17), we have used the statistical mean of differences for calibration. This is because lidar data is not

9



Table 1. The average value of the (square root of) error variances in height and log10(1/τ), sε′ and sδ′ , are given along with the average

value of λ from SCT calibration (λOLSeff ) at contour levels 0, 0.2 and 0.4 for winter 2015–2016.

Contour: 0 0.2 0.4

4(height)/km 5.0 3.0 2.2

4(log10(1/τ))/s
−1 0.18 0.14 0.11

< sε′ > 0.62 0.44 0.38

< sδ′ > 0.37 0.31 0.30

< λOLSeff > 1.68 1.43 1.25

available for all days during the 6 months of data used in this work. Moreover, both MR and lidar data have their own intrinsic

errors and technical differences in the observation time and volume of sky. MR temperatures are daily averages over 24 h of220

observation, whereas lidar data is just the nightly mean profile. The lidar probes a small volume limited to the diameter of the

lidar beam, while the radar illuminates a large part of the sky. For a single observation, the lidar may see the phase structure of

large-scale gravity waves while the MR averages over the gravity wave structure due to different spatial resolutions. As a result,

the radar averages over gravity waves with horizontal wavelengths smaller than few hundred km. On the other hand, the lidar

may resolve these gravity waves if the run time is shorter than the period of these waves. As gravity wave amplitudes can be225

upto 10–15 K at these altitudes (Reichert et al., 2019), we cannot expect perfect agreement between radar and lidar temperature

due to geophysical variation which shows up differently in the two data sets as a result of the different observational volumes.

While such calibration routine may prevent large offsets in the estimated temperatures, the day-to-day variation in these error

variances due to natural geophysical processes will persistently introduce artefacts in the estimated temperatures. Moreover,

due to the continually changing atmospheric dynamic, these calibration parameters need to be updated at time intervals. This230

in turn requires availability of optical or satellite data throughout the year. In all generality, it is desirable to avoid any kind of

calibration process and instead formulate an independent estimate of temperatures using MR data alone. As an alternative to

the OLS method, Errors-in-Variables (EIV) regression analysis provides a way to incorporate the error variances in both height

and log10(1/τ) data thereby reducing the biasing effect in the estimated slope parameter.

3.2 Errors-in-Variables (EIV) model: GM solution235

For fitting a straight line model, such as,

y(x) = a+ bx (20)

to a set of N data points (xi, yi) measured with errors, the corresponding χ2 merit function is (Press et al., 1992, p 660)

χ2 =

N∑
i=1

(yi− a− bxi)2

σ2
yi + b2σ2

xi

(21)

where σyi and σxi are the standard deviation of the i’th data point, and the weighted sum in the denominator of Eq. (21) can240

be interpreted as the weighted-error of the i’th data point. The regression coefficients, a and b, can be found by minimising
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the merit function with respect to these coefficients following any suitable numerical root-finding routine. However, under

the assumption of symmetric error variances, it is possible to derive an analytic solution for the regression coefficients. This

solution, when the data is appropriately normalised, leads to a slope estimate which is both scale-invariant and symmetric with

respect to the data.245

Application of Eq. (21) to physics data requires that all measured variables are dimensionally consistent so that χ2 is

dimension free. Moreover, the analysis in this section requires that the measurements are presented in an appropriate dimension

free system. This facilitate the direct comparison between different parameters, such as, the measured variables or the associated

error variances. By applying the coordinate transformation introduced in Eq. (18) to Eq. (9), we therefore intend to solve the

simplified bivariate linear system of equations,250

η
′

i = β

√
sd√
sh
ξ
′

i ≡ βW ξ
′

i (22)

where η
′

i, ξ
′

i and βW are dimension free. For the specific choice of normalisation by Eq. (18), the intercept (αW ) is always zero

in the transformed coordinate system. The merit function in Eq. (21) can be further simplified by invoking a homoscedastic

standard weighting model (Macdonald and Thompson, 1992). This error model assumes that the error variances are indepen-

dent of data point, thereby simplifying the merit function as (Macdonald and Thompson, 1992; Lolli and Gasperini, 2012),255

χ2(βW ,αW = 0)≡
N∑
i=1

(h
′

i−βW d
′

i)
2

sδ′ (λ+β2
W )

(23)

where sδ′ and sε′ are constant error variances of the measured log10(1/τ) and heights respectively in the normalised (or,

dimension free) coordinate system, and λ is the ratio

λ=
sε′

sδ′
(24)260

The χ2 minimisation of Eq. (23) with respect to βW leads to the analytic expression (Carroll and Ruppert, 1996; Smith, 2009;

Lolli and Gasperini, 2012) for the EIV slope parameter in terms of the variances (sd′ , sh′ ) and covariances (sh′d′ ) of the

measured variables,

βW =
sh′ −λsd′ +

√
(sh′ −λsd′ )2 + 4λs2

h′d′

2sh′d′
(25)

Or,265

βW ≡
1−λ+

√
(1−λ)2 + 4λs2

h′d′

2sh′d′
(26)

Since sd′ = sh′ = 1 from Eq. (18). And the covariance (sh′d′ ) is computed using the standard definition,

sh′d′ =
1

N

N∑
i=1

(h
′

id
′

i), for largeN (27)
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Equation (26) can be solved if a prior knowledge of λ is available, which in turn requires a precise estimate of all sources

of errors in the measured data. In the more practical case for unknown λ, we need to initiate a good starting estimate. Using270

the calibration procedure described by Eq. (17) and Eq. (18), the mean values of sε′ and sδ′ are found to be 0.62± 0.04 and

0.37± 0.06 respectively (without any contour selection: Table 1). Since the EIV estimate of the slope requires only the ratio

between sε′ and sδ′ , a good choice of this starting value is λ= 1. Furthermore, for λ= sε′ = sδ′ = 1, there exists a simple

geometric interpretation of the merit function in Eq. (23). This solution corresponds to minimising the euclidean or orthogonal

distance between the fitted line and the measured data. The residual function to be minimised with respect to the regression275

coefficients is

χ2 =

N∑
i=1

(h
′

i−βW d
′

i)
2

1 +β2
W

≡
N∑
i=1

(h
′

i− d
′

i)
2

2
(28)

since βW = 1 when λ= 1 from Eq. (26). Following Eq. (22), we therefore have our first estimate of β in the scattered plot of

log10(1/τ) and heights,

β =

√
sh√
sd

(29)280

Equation (29) is commonly referred to as reduced major axis (RMA) solution in statistics literature (Smith, 2009). In practice,

this is just the geometric mean (GM) of the two OLS estimates, βdOLS and βhOLS , as can be seen by combining Eq. (12) and

Eq. (13),

βGM =
√
βdOLS β

h
OLS ≡

√
sh√
sd

(30)

The GM solution in Eq. (30) has the unique feature that this is the only case of EIV estimate which is both scale-invariant285

and symmetric in the variables (e.g., Ricker, 1984; Smith, 2009). While these properties do not necessarily imply that the GM

solution is the correct solution (discussed below), but this first estimate reflects the nature of biasing effect in the estimated

slope in relation to the data selection process. A specific example of GM fitting is presented in Fig. 1a. The standard error in

the OLS and GM slope estimate reported in Fig. 1a follows from Vicente de Julia´n-Ortiz et al. (2010). Due to the relatively

low detections with Sodankylä radar (Fig. 2c), the 2-sigma error in the estimated temperature using GM solution is found to be290

significantly higher (13 K on average at contour level 0). This 13 K of noise level in the temperature can be reduced by a factor

of
√

3 or
√

5 if a 3-day or 5-day running mean of temperature is estimated with this radar. However, to test the robustness of

the proposed method, this paper has estimated the daily averaged temperatures.

The systematic offset between MR temperature and colocated lidar temperature as a result of using Eq. (30) is reflected in

Fig. 3a (red curve) and Fig. 3b (red histogram). Each of these temperatures are then compared with lidar temperatures at 88295

km, 89 km and 90 km for the dates when lidar data are available. The intrinsic noise in the lidar temperature is about 5–10

K (Reichert et al., 2019), which implies no temperature gradient is observed between 88–91 km in these data. Figure 3b (red

histogram) reveals that the MR temperatures are over-estimated by a mean value of +58 K for the case of GM solution .

When compared to the temperature-gradient model derived from optical, satellite and rocket climatology (e.g., Holdsworth

et al., 2006), it can be easily argued that our MSIS-derived gradient model (Fig. 2a) is more negative than expected. If these300
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values are shifted by a constant positive offset of +1 Kkm−1, the absolute value of the estimated temperatures will increase

by 10 K (Singer et al., 2004). This will further increase the offset between lidar and MR temperature, thereby shifting the

histogram (in red) in Fig. 3b further to the right.

On the other hand, lidar temperatures are usually obtained during the night time, which can lead to a systematic offset due to

day-night differences or tidal variations. As discussed by Hocking et al. (2004), the day-night temperature difference at these305

altitudes is of the order of 3–4 K. This is significantly less than the standard errors in these temperatures, which is on average

6 K at contour level 0. Hence we expect the day-night difference in Sodankylä MR temperatures to be insignificant during the

winter period. Moreover, any attempt to estimate MR temperatures using only night-time data has the adverse effect of reducing

the accuracy in the estimated temperatures due to data loss. While no specific studies of tidal variation have been made for this

location, the data from other sites (e.g., Hocking and Hocking, 2002; Stober et al., 2008) show that the temperature variation310

due to tidal activity is typically less than 10 K. We can therefore rule out the possibility of an offset in the MSIS gradient model

or tidal effects as the primary cause for the +58 K offset seen in Fig. 3b (red histogram).

Ricker (1984) emphasised that the biasing in GM solution is conditional upon the value of the correlation coefficient (r)

between the variables, while Kimura (1992) demonstrated that this solution will be an overestimate in the case of low r value.

For the data set used in this work, we found that the correlation between log10(1/τ) and height is typically 0.50± 0.05,315

thereby indicating the presence of significant natural variation in the measurements. Furthermore, Jolicoeur (1990) used error

modelling to conclude that r must be more than 0.6 for the the GM solution to be acceptable. In fact, we have observed that

if we restrict our data selection process by excluding all data beyond the density contour 0.2 (Fig. 1b), this increases the r to

be typically around 0.66± 0.06 with the consequence of reduced biasing in the GM solution. Such contour selection process

essentially removes the erroneous data at higher and lower altitudes from the tail of the distribution, whereby the assumption320

of equal error variances (i.e., sε′ ≈ sδ′ ) is achieved in the normalised coordinates (Table 1). In other words, the validity of GM

solution is conditional upon how close the parameter λ is to 1 for a given data selection process.

4 Results and Discussion

The convergence of λ towards 1 near the core of this bivariate distribution is evident from Table 1. This is demonstrated in

Fig 4a, where we have estimated the GM slope at various contour levels between 0 to 0.7. In addition, Fig 4b reflects the325

asymptotic behaviour of GM solution at higher contour levels in normalised coordinates. For these data, beyond the contour

level 0.4, any change in slope at higher contour level is within the 2-sigma error limit. This error in the slope corresponds to

an average 2–sigma error of 11 K in the estimated temperatures at contour level 0.4. In addition, the estimated temperatures

can be biased due to small variation of λ from 1 on a day-by-day basis. For example, If the true value of λ is 1.25, the GM

slope will be overestimated by 4% (from Eq. (26) for the date 14 Nov 2015. For a typical winter temperature of 200 K at 90330

km, a 4% offset translates to overestimation of temperatures by 8 K. In principle, this bias can be further reduced by selecting

a higher contour level than 0.4 with the consequence of increased noise level in the estimated temperatures. For these data, the
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Figure 4. GM solution at different contour levels in (a) original coordinate and in (b) normalised coordinate. The vertical dashed lines in (a)

correspond to the average value of λ obtained from SCT calibration at contour level 0.2 and 0.4 respectively for the date 14 Nov 2015. The

error bar in (a) corresponds to 2×standard error.

Oct 15 Nov 15 Dec 15 Jan 16 Feb 16 Mar 16 Apr 16
Winter (2015-2016)

100

120

140

160

180

200

220

240

260

280

300

T
em

pe
ra

tu
re

 (
K

)

MR,GM (24 h average)
2 Standard Error

MR, OLS (
OLS
d  ) + SCT calibration

lidar (88 km)
lidar (89 km)
lidar (90 km)
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temperatures are presented in Fig. 6.
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Figure 6. Difference between MR temperatures and lidar data for (a) GM solution at contour level 0.4 and (b) SCT calibration applied to

OLS estimate of βdOLS . MR temperatures are shown in Fig. 5.

contour level 0.4 is found to provide an optimum condition such that a maximum of 25% uncertainty in the parameter λ leads

to 4% bias in temperature which, in turn, is comparable to the standard error in the temperature from regression analysis.

We have applied the GM slope estimate at contour level 0.4 to the MR data from the period October 2015 to March 2016.335

This is presented in Fig. 5, along with the data from colocated lidar observations. The differences between MR temperatures

and lidar are shown in Fig. 6a for altitudes near peak meteor counts. The mean difference between lidar and MR temperatures

is +12 K which is expected due to the variation in the true value of λ from 1. The root-mean-square differences (RMS) is about

21 K . This difference is partly due the intrinsic errors of 5–10 K in lidar temperature and partly due to the statistical noise in

the estimated MR temperatures.340

For direct comparison with the results above, we have also estimated the MR temperatures using the revised SCT calibration

procedure described in Sect. 3.1. For this we have estimated the OLS slope (βdOLS) and used
√
sδ = 0.11 (Table 1) to obtain

the calibrated temperatures from Eq. (16) and Eq. (6). These calibrated temperatures are presented in Fig. 5. The histogram

in Fig. 6b shows the differences between lidar data and the SCT calibrated MR temperatures. The mean difference between

the MR and lidar temperatures is again about -3 K, thereby showing that the biasing effect has been properly corrected by345

this calibration procedure. The RMS difference is 15 K. Although the temperature estimated from the GM solution is slightly

biased as compared to that estimated using SCT calibration, the presence of artefacts in the latter is clearly visible in Fig. 5. As

evident from Fig. 7, the GM solution based on contour selection improves the temperature estimation significantly as compared

to the traditional use of the OLS regression analysis.

The EIV analysis does not distinguish between the measurement error and natural geophysical variability (e.g., Sprent, 1990,350

p 13). In other words, the error variances, sδ′ and sε′ , consist of both measurement errors and the natural geophysical variation.
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The effective value of λ in a normalised coordinate may vary on a day-by-day basis and may be radar dependent. For example,

meteor trails can get modified by wind effects, ion composition, meteor fragmentation, strong ionospheric currents as well as

temperature and pressure fluctuations on various spatial and temporal scales (Hocking, 2004; Younger et al., 2014). Despite the

contour selection process, asymmetric effects of geophysical variation may have increased the effective variance of h
′

i leading355

to overestimate in the GM solution (Gillard and Iles, 2005). Due to the high-latitude location of Sodankylä radar, geomagnetic

effect above 95 km can contribute to the systematic bias. Below 85 km, the decay of meteor radar echoes may deviate slightly

from diffusion-only evolution (Lee et al., 2013) thereby requiring a better physical model that doesn’t assume the linearity

of Eq. 6. Assessing the contribution of geophysical variability at various altitudes would require carefully designed replicates

of observations as well as long term comparison of MR temperatures with other colocated instruments. In other words, the360

case for λ 6= 1 need to be handled with careful modelling of errors by taking into account the dominant effect of geophysical

variability in this data. This remains a subject of future research.

5 Summary

The biasing effect in MR temperature has been a pressing issue for the last two decades. Attempts have been made in the past to

correct the slope in the scattered plot of log10(1/τ) and height, usually either by direct calibration with optical or satellite data365

or by an arbitrary choice of data rejection criteria to exclude parts of measurements. This paper has addressed the underlying

reasons for such biasing effect, which is mainly due to the presence of various error terms. We have reviewed the conventional

calibration procedure (1), and then provided an alternative method (2) for estimating MR temperature that doesn’t require any
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calibration. We have applied both of these methods to the MR data from winter 2015–2016, and assessed the quality of the

estimated MR temperature using colocated lidar measurements. The key points from each of these two aspects of the paper are370

given below.

1. This paper has reviewed the statistical comparison technique (SCT), originally proposed by Hocking et al. (2001b),

within the context of MR temperature calibration. We have extended the theoretical basis of the SCT method to obtain

an estimate of error variances of log10(1/τ) and height using colocated lidar measurements. No significant offset was

seen in the calibrated MR temperature, even without applying any outlier rejection criteria. But artefacts introduced due375

to the difference in measurement techniques between MR and lidar were clearly visible in the estimated temperatures.

2. As an alternative method, we have applied the Errors-in-Variables (EIV) regression analysis to estimate the slope in the

scattered plot of log10(1/τ) and height. The model error in EIV analysis takes into account the total errors variances

in both abscissa and ordinate. It is observed that the geophysical variability dominates at all altitudes as compared

to measurement errors and is the key factor in addressing the biasing effect. Moreover, any asymmetry in the error380

variance is minimal near the meteor peak region. This allows an independent estimate of weighted-averaged atmospheric

temperatures at 90 km using a suitable contour selection procedure. The temperatures estimated using this method show

very good agreement with colocated lidar measurement, and with reduced systematic offset as compared to the traditional

least-square analysis.
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