Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF 5-year value: 3.707
IF 5-year
CiteScore value: 6.3
SNIP value: 1.383
IPP value: 3.75
SJR value: 1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
h5-index value: 49
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  28 Sep 2020

28 Sep 2020

Review status
This preprint is currently under review for the journal AMT.

Determination of black carbon mass concentration from aerosol light absorption using variable mass absorption cross-section

Weilun Zhao1, Wangshu Tan1, Gang Zhao2, Chuanyang Shen1, Yingli Yu1, and Chunsheng Zhao1 Weilun Zhao et al.
  • 1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
  • 2State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Abstract. Atmospheric black carbon (BC) is the strongest visible solar radiative absorber in the atmosphere, exerting significant influences on the earth’s radiation budget. The mass absorption cross-section (MAC) is a crucial parameter for converting light absorption coefficient (bab) to mass equivalent BC concentration (mBC). Traditional filter-based instrument, such as AE33, uses a constant MAC of 7.77 m2/g to derive mBC, which may lead to uncertainty in mBC. In this paper, a new method of converting light absorption coefficient to BC mass concentration is proposed by incorporating the variations of MAC attributed to the influences of aerosol coating state. Mie simulation showed that MAC varied dramatically with different core-shell structures. We compared our new method with traditional method during a field measurement at a site of North China Plain. The results showed that the MAC was smaller (larger) than 7.77 m2/g for particle smaller (larger) than 280 nm, resulting in BC mass size distribution derived from new method was higher (lower) than traditional method for particle smaller (larger) than 280 nm. Size-integrated BC mass concentration derived from new method was 16 % higher than traditional method. Sensitivity analysis indicated that the uncertainty in mBC caused by refractive index (RI) was with in 35 % and the imaginary part of RI had dominant influence on the derived mBC. This study emphasizes the necessity to take variations of MAC into account when deriving mBC from bab and can help constrain the uncertainty in mBC measurements.

Weilun Zhao et al.

Interactive discussion

Status: open (until 23 Nov 2020)
Status: open (until 23 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Weilun Zhao et al.

Weilun Zhao et al.


Total article views: 200 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
149 48 3 200 19 4 5
  • HTML: 149
  • PDF: 48
  • XML: 3
  • Total: 200
  • Supplement: 19
  • BibTeX: 4
  • EndNote: 5
Views and downloads (calculated since 28 Sep 2020)
Cumulative views and downloads (calculated since 28 Sep 2020)

Viewed (geographical distribution)

Total article views: 177 (including HTML, PDF, and XML) Thereof 177 with geography defined and 0 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 28 Oct 2020
Publications Copernicus