- **1** Content of this file
- 2
- 3 Tables
- 4 Table S1. Comparisons of the concentrations of OC and EC between different cities in China and
- 5 around the world.
- Table S2. Statistics on the meteorological factors in four seasons at NUIST site during the study
 period.
- 8
- 9 Figures
- 10 Figure S1. Correlations between the real-time OC, EC and TC concentrations and sampling OC,
- 11 EC and TC concentrations during the corresponding periods.
- 12 Figure S2. dEC/OC variation at different intervals of OC/EC ratios in spring (a), summer (b),
- 13 autumn (c) and winter (d).
- 14 Figure S3. Time variations of OC, EC, dEC, dEC/OC, OC/EC and fire points obtained from the
- 15 Fire Information for Resource Management System (FIRMS) derived from the Moderate
- 16 Resolution Imaging Spectroradiometer (MODIS).
- 17 Figure S4. 48-h back trajectories at 500 m from the study site from 8 June 2015 to 9 June 2015(a),
- 18 11 June 2015 to 12 June 2015 (b), respectively and from 7 February 2016 to 10 February 2016 (c)
- and 26 February 2016 to 27 February 2016 (d), respectively.
- 20
- 21 **Reference for the supplement**

Site	Sampling period	OC	EC	OC/EC	Method	References
Beijing	Mar 2013-Feb 2014	14.0	4.1	3.4	TOT	(Ji et al., 2016)
Shanghai	Oct 2005-Jul 2006	14.7	2.8	5.0	TOT	(Feng et al., 2009)
Chengdu	May 2012-Apr 2013	19.0	4.6	4.3	TOT	(Chen et al., 2014)
Chongqing	May 2012-Apr 2013	15.2	4.0	3.8	TOT	(Chen et al., 2014)
Nanjing	Annual 2014	5.7	3.2	1.8	TOT	(Chen et al., 2017)
Guangzhou	Mar 2012–Feb 2013	6.1	0.8		TOT	(Lai et al., 2016)
Hongkong	Aug 2011-May 2012	3.0	1.9		TOT	(Zhou et al., 2014)
Mount Tai	Mar-Apr 2007	6.1	1.8	5.0	TOT	(Wang et al., 2011)
Mount Tai	Jun-Jul 2007	5.1	1.0	6.2	TOT	(Wang et al., 2011)
Mount Heng	Mar-May 2009	3.0	0.5	5.2	TOT	(Zhou et al., 2012)
Mexico	Mar 2006	6.4	2.1	4.5	TOT	(Yu et al., 2009)
Delhi	Nov 2010-Feb 2011	54.1	10.4	5.2	TOT	(Tiwari et al., 2012)
Philadelphia	Jul 2002-Aug 2002	4.8	0.4	18.7	TOT	(Jeong et al., 2004)
Rochester	Jun 2002	9.2	0.3	23.6	TOT	(Jeong et al., 2004)
Italy	Nov 2011–Mar 2012	9.9	1.3	6.8	TOT	(Costa et al., 2016)
Italy	Oct 2012–Mar 2013	6.9	2.2	3.3	TOT	(Costa et al., 2016)
Spain	Dec 2011	3.6	1.1	4.7	TOT	(Escudero et al., 2015)
Nanjing	Jun 2015-Aug 2016	8.6	2.9	3.6	TOT	This study

Table S1. Comparisons of the concentrations of OC and EC between different cities in China andaround the world.

	Atmospheric Pressure (hPa)	Relative Humidity (%)	Temperature (°C)	Wind Speed (m s ⁻¹)	Total Precipitation (mm)
Spring	1009.9	66.0	16.8	1.9	256.3
Summer	1000.7	72.6	26.7	1.4	586.0
Autumn	1014.6	71.0	19.5	1.7	218.5
Winter	1027.0	63.9	5.7	1.7	82.1

Table S2. Statistics on the meteorological factors in four seasons at NUIST site during the study
 period.

Figure S1. Correlations between the real-time OC, EC and TC concentrations and sampling OC,

30 EC and TC concentrations during the corresponding periods.

31

Figure S2. dEC/OC variation at different intervals of OC/EC ratios in spring (a), summer (b),
autumn (c) and winter (d).

Figure S3. Time variations of OC, EC, dEC, dEC/OC, OC/EC and fire points obtained from the
Fire Information for Resource Management System (FIRMS) derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS).

39

Figure S4. 48-h back trajectories at 500 m from the study site from 8 June 2015 to 9 June 2015(a),
11 June 2015 to 12 June 2015 (b), respectively and from 7 February 2016 to 10 February 2016 (c)

11 June 2015 to 12 June 2015 (b), respectively and from 7 February 2016 to 10 February 2
and 26 February 2016 to 27 February 2016 (d), respectively.

44 **References**

- 45 Chen, D., Cui, H., Zhao, Y., Yin, L., Lu, Y., and Wang, Q.: A two-year study of carbonaceous
- 46 aerosols in ambient PM_{2.5} at a regional background site for western Yangtze River Delta, China,
- 47 Atmos. Res., 183, 351-361, 10.1016/j.atmosres.2016.09.004, 2017.
- 48 Chen, Y., Xie, S., Luo, B., and Zhai, C.: Characteristics and origins of carbonaceous aerosol in the
- 49 Sichuan Basin, China, Atmos. Environ., 94, 215-223, 10.1016/j.atmosenv.2014.05.037, 2014.
- 50 Costa, V., Bacco, D., Castellazzi, S., Ricciardelli, I., Vecchietti, R., Zigola, C., and Pietrogrande,
- 51 M. C.: Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two
- 52 fall/winter field campaigns, Atmos. Res., 167, 100-107, 10.1016/j.atmosres.2015.07.020, 2016.
- 53 Escudero, M., Viana, M., Querol, X., Alastuey, A., Diez Hernandez, P., Garcia Dos Santos, S.,
- and Anzano, J.: Industrial sources of primary and secondary organic aerosols in two urban
- environments in Spain, Environ. Sci. Pollut. Res. Int., 22, 10413-10424, 10.1007/s11356-0154228-x, 2015.
- Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., Sheng, G., and Fu, J.: Characteristics of
 organic and elemental carbon in PM_{2.5} samples in Shanghai, China, Atmos. Res., 92, 434-442,
- 59 10.1016/j.atmosres.2009.01.003, 2009.
- 60 Jeong, C.-H., Lee, D.-W., Kim, E., and Hopke, P. K.: Measurement of real-time PM2.5 mass,
- sulfate, and carbonaceous aerosols at the multiple monitoring sites, Atmos. Environ., 38, 52475256, 10.1016/j.atmosenv.2003.12.046, 2004.
- Ji, D., Zhang, J., He, J., Wang, X., BoPanga, Liua, Z., Wang, L., and Wang, Y.: Characteristics of
- 64 atmospheric organic and elemental carbon aerosols in urban Beijing, China, Atmos. Environ., 293-
- 65 306, 10.1016/j.atmosenv.2015.11.020, 2016.
- 66 Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K. F., Lee, S.-C., and Zhong, L.:
- 67 Characterization of PM_{2.5} and the major chemical components during a 1-year campaign in rural
- 68 Guangzhou, Southern China, Atmos. Res., 167, 208-215, 10.1016/j.atmosres.2015.08.007, 2016.
- 69 Tiwari, S., Srivastava, A. K., Bisht, D. S., Safai, P. D., and Parmita, P.: Assessment of
- 70 carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and
- 71 temporal variability, Nat. Hazards., 65, 1745-1764, 10.1007/s11069-012-0449-1, 2012.
- 72 Wang, Z., Wang, T., Gao, R., Xue, L., Guo, J., Zhou, Y., Nie, W., Wang, X., Xu, P., Gao, J., Zhou,
- 73 X., Wang, W., and Zhang, Q.: Source and variation of carbonaceous aerosols at Mount Tai, North

- 74 China: Results from a semi-continuous instrument, Atmos. Environ., 45, 1655-1667,
 75 10.1016/j.atmosenv.2011.01.006, 2011.
- Yu, X. Y., Cary, R. A., and Laulainen, N. S.: Primary and secondary organic carbon downwind of
- 77 Mexico City, Atmos. Chem. Phys., 9, 6793–6814, 2009.
- 78 Zhou, S., Wang, Z., Gao, R., Xue, L., Yuan, C., Wang, T., Gao, X., Wang, X., Nie, W., Xu, Z.,
- 79 Zhang, Q., and Wang, W.: Formation of secondary organic carbon and long-range transport of
- 80 carbonaceous aerosols at Mount Heng in South China, Atmospheric Environment, 63, 203-212,
- 81 10.1016/j.atmosenv.2012.09.021, 2012.
- 82 Zhou, S., Wang, T., Wang, Z., Li, W., Xu, Z., Wang, X., Yuan, C., Poon, C. N., Louie, P. K. K.,
- 83 Luk, C. W. Y., and Wang, W.: Photochemical evolution of organic aerosols observed in urban
- plumes from Hong Kong and the Pearl River Delta of China, Atmos. Environ., 88, 219-229,
- 85 10.1016/j.atmosenv.2014.01.032, 2014.