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This document contains our responses to both reviewer comments, followed a revised version of our manuscript with changes

marked in Green.

Response to RC 1

We thank the reviewer for their feedback and suggestions for additional discussion topics. We have revised the manuscript

accounting for these recommendations. A point by point explanation of our changes follows.5

General Comments

This manuscript presents spatially highly resolved two-dimensional AVIRIS-NG spectrometer measurements of the tropical

water vapor column over the Bay of Bengal. Focus of this case study is to quantify the water vapor variability using second-

order structure functions. The paper is suitable for AMT as it presents an innovative methodical approach to quantify the

variability. I have three general comments.10

First, unfortunately, the presented data set is very small. It only covers four about 9x2km large rectangular domains on two

different days. I understand that these represent the best available high-resolution measurements over water. But still, this is

disappointing. How nice would it be to have a complementing example over land, or over a land-sea interface, or in a different

climate zone, etc., even if the data were a little noisier. Please explain why your data set is so small, or show more.

We agree and would also have preferred a larger dataset. In this case, the limiting factor was not the quantity of imaging15

spectrometer data, but rather the near-zenith solar angles needed for a high spatial resolution measurement. This condition only

happens near or in the tropics, outside the range of most AVIRIS-NG campaigns. Limiting ourselves to solar zeniths less than

10 degrees reduced us to the flight days reported here. Now, having established the technique, we believe that we can apply it in

the future to much larger datasets that will be made available by NASA’s EMIT mission and the anticipated SBG investigation.

Additional work in preparation will demonstrate algorithmic techniques to relieve the solar zenith requirement, which should20

help generalize it to a much larger range of latitudes. We have included new text in the discussion to make this explicit.
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Second, these few data, displayed in Figures 5 to 7, lack more explanation and description. Figures 5 and 6 show irregular

patterns of water vapor column variability that could be related to turbulent processes in the boundary layer or at its top,

but additional data and explanations on the meteorological conditions are lacking. Do we see eddies in the boundary layer,

undulations of its top height, or features above, or a mixture of all? How would you interpret this variability? What are the25

underlying physical processes? For illustration, even already a photo out of the aircraft window could help set the scene a little.

But it would be good to show more useful auxiliary data.

We agree, and have added four new graphics with contextual information based on MERRA-2 reanalysis of the overflight days.

We have also updated the text with our interpretation. The atmospheric conditions were generally similar between the 12th and

14th, with light trade winds and the lack of an obvious inversion to stratify boundary layer processes. There were also some30

differences. Wind velocity changed slightly, but was not obviously tied to any change in atmospheric turbulence. The relative

humidity was generally higher on the 14th. The lapse rate was slightly more variable: 8 K km�1 at 760 hPa as opposed to 7 K

km�1 on the 12th. These changes were consistent with a slightly more turbulent atmosphere and a shallower scaling exponent,

though there was no obvious step change in atmospheric stability.

Third, I am lacking some discussion on possible implications due to the issue that the vertical water vapor distribution may be35

complex. The missing vertical resolution may lead to a superposition in the column between different atmospheric regimes,

such as convective and non-convective, or boundary-layer and free-troposphere, blurring the variability in a particular layer

and making the results in Figure 7 quite questionable. It is clear that most of the column is from the lower troposphere, but

you should be more precise on this issue. How likely is it that variability in the mid- to upper troposphere is superposed to the

lower troposphere patterns? At least, you should use a tropical humidity profile to show how much contribution to the column40

comes from the different layers.

We agree this issue deserves a more nuanced treatment, and have introduced a new discussion section to address the issue

of vertical sensitivity. There we analyze a large dataset of measured atmospheric water vapor profiles from an airborne lidar

campaign. Specifically, we calculate the correlation coefficients between the total column water vapor content and that of the

lowest atmospheric layers. A new figure quantifies the relationship. The strength of the correlation varies slightly for different45

flights. However, in all three cases the lower troposphere dominates the short-lengthscale variability in atmospheric water vapor.

In all cases over 70% of the variance is explained by the lower two kilometers, and over 90% by the lower three kilometers.

This suggests that the total column measurement an informative indicator of lower tropospheric variability. Naturally the

relationship is statistical rather than direct, and we agree with the reviewer that it is important to include this explanation. With

the reviewer’s permission, we will borrow some of their phrasing directly for the new discussion.50

Specific comments
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Line 2: “total atmospheric column wv” but the title says “. . . Lower Tropospheric WV”, better make it more homogeneous.

This issue is related to my third general comment above, that some discussion on the vertical wv distribution is missing.

We agree and have changed the title to the "atmospheric water vapor," reserving the issue of vertical sensitivity for the new

discussion section.55

Line 62, “at the finest scales, small sample sizes can increase uncertainty. . .”: usually, spectra and structure functions provide

lowest uncertainties at the small scales due to high sampling. This sounds like a contradiction. Furthermore, I do not see a

relation with the sentence before on one-dim versus two-dim observations. Please explain.

Thank you for identifying this confusing explanation. Our point is that the structure function measurements fall into two

categories: vast two dimensional maps by AIRS, with millions of datapoints but coarse resolution; and aircraft data, which60

have finer spatial resolution but also smaller sample sizes since they only acquire samples along a flight trajectory. We have

adjusted the text to clarify.

Line 117, “tens or hundreds of meters”: this is much too small, you probably mean “tens or hundreds of km”?

In fact the phrase was written as intended. The left panel of Figure 2 shows that, after accounting for the vertical distribution of

water vapor, observations at low solar zenith angles do have effective spatial resolutions in this range; the coarsest resolution65

indicated on the vertical axis is 1000 m. Since only a small fraction of these have resolutions finer than 100 meters, we have

changed the phrase to “hundreds of meters” to avoid confusion.

Line 130, “the spatial footprint projected on the ground is not radially symmetric; it is long and thin”: this may entail issues

with spatially oriented wv structures, you may want to comment on this?

We have added some additional text here. “For isotropic structure functions, the effective spatial resolution thus constitutes a70

worst case, with the true resolution improving as one calculates structure functions in directions more orthogonal to the sun.”

Future work will investigate this strategy as a method to measure accurate structure functions at larger. solar zenith angles.

Table 1: an extra column giving the length of the flight line in km would be fine.

Done.

Figure 6: make a white box in Fig 5 to show the location of Fig 6.75

Done.

Technical corrections

Line 252, “pathological effects”, better “issues”
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Done.

Caption of Fig 5: “A white arrow in B indicates. . .”80

Done.

Response to RC2

We thank the reviewer for their feedback, which we have duly incorporated. A point by point explanation of our changes

follows.

General Comments85

The authors present a study employing an airborne VSWIR imaging spectrometer to examine very high spatial resolution

(sub-kilometer scale) column water vapor. The technique is presented with sufficient detail and the results argue for similar

structure function scaling exponents that are observed over many decades of scale; a perhaps somewhat surprising result. As a

proof of concept, the manuscript is more than adequate for publication. Perhaps one weakness would be the need to expand the

literature a bit to include some examples of more meteorological/climatological applications focusing on column/precipitable90

water vapor spatial/temporal structure. This would help better motivate the study and draw greater interest for a broader

community. This broader literature review wouldn ´t need to be more than one paragraph

We agree, and have added a new paragraph in the opening that provides context on meteorological and climatological impli-

cations of PWV variability: “The complex spatial distribution of atmospheric water vapor surrounding clouds and precipitation

structures has important consequences for parameterizing moist processes in atmospheric models. At the scale of General95

Circulation Models (GCMs), water vapor plays an important role in tropical moist convection and its associated precipita-

tion (Tompkins et al., 2001; Bretherton et al., 2004). The mean and variability of precipitation rate in the tropics are strongly

dependent on the atmospheric water vapor (Peters et al., 2006; Holloway et al., 2010), a fact which has implications for param-

eterizing convection. Another ubiquitous property of convection is its tendency to aggregate (Bretherton et al., 2005). There

is evidence the degree of aggregation will change as the climate warms, potentially changing the cloud feedback (Wing et al.,100

2019). Models (Muller et al., 2015) and observations (Lebsock et al., 2017) suggest that the tendency of convection to aggregate

depends on the degree of spatial variance in the water vapor field. Over land surfaces with heterogeneous surface conditions

the variability in atmospheric water vapor can be larger and is seen as a critical component of the timing of deep convection

(Stirling et al., 2004; Wulfmeyer et al., 2006). These variations in water vapor over convective continental environments are

primarily driven by variability below 2 km and within the Planetary Boundary Layer (PBL) (Couvreux et al., 2009). Accurate105

water vapor parameterization is also important for Cloud-Resolving or Convection-Permitting models operating at kilometer

scales, and Large Eddy Simulations at sub-kilometer resolution. Across all scales, water vapor variability, and its coupling to

cloud types and multi-scale organization, is key for advancing the parameterization and simulation of cloud processes.”
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One other point to address is to clarify some of the language. It is confusing at times, for example, which spatial scales you

are referring to. See below in my minor comments.110

(addressed below)

Minor comments

Line 13. Water vapor and cloud formation are important for all numerical models of the atmosphere, not just General Cir-

culation Models (GCMs). Even at very high resolutions where deep convection is resolved (i.e. km-scale) such as “Cloud-

Resolving models” or “Convection-Permitting Models” and even for “Large Eddy Simulations” ( 100m-scale), cloud micro-115

physical processes which critically depend on water vapor are still parameterized.

We have added additional text to this effect: "Atmospheric water-vapor is highly variable in space and time. Clouds and

precipitation structures are embedded within complex spatial distributions of water vapor that have important consequences

for parameterization of moist processes in General Circulation Models (GCMs). In global models, the dynamic relationship

between water vapor sources, sinks, and atmospheric mixing leads to highly variable humidity at the sub-grid scale. Accurate120

water vapor parameterization is also important for Cloud-Resolving or Convection-Permitting models operating at kilometer

scales, and Large Eddy Simulations at sub-kilometer resolution. Understanding this variability, and how it couples to a myriad

of cloud types and multi-scale organization, is key for advancing the parameterization and simulating cloud processes at all

scales."

Line 19-20 You should be clear as to what spatial scales you’re referring to. Convective and non- Convective systems would125

typically be 10s of kms to maybe 100km and quasi-geostrophic motions would be 1000km and greater from Edwards et al.,

(2019).

We now state explicitly that prior studies have applied structure functions to atmospheric phenomena at scales from tens to

hundreds of kilometers.

Line 24 “but in general water vapor variability is considered horizontally isotropic.” This idea is a bit unclear, what exactly do130

you mean horizontally isotropic particularly with respect to spatial scales?

Here we simply mean that the scaling does not have any preferential orientation, i.e. the structure function is rotationally

symmetric. We have modified the text to make this clear.

Line 35 “consistent with 2/3 over distances of multiple kilometers.” Do you mean several kilometers here?
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Changed.135

Line 41 "at scales above 11 km" I assume you mean at scales greater than 11km. " Above 11km" sounds as if you are speaking

in the vertical sense.

Changed.

Line 49 Just write "...compared them to GCMs, ...."

Changed.140

Line 58. “These studies contribute to a growing body of literature on water vapor scaling.” I think it would be good to include

a paragraph on some of these studies. Not only techniques for measuring PWV, but theoretical as well as applied studies to

meteorology/climate. Are there modelling studies which have used these scaling arguments as metrics? PWV is certainly a

critical if not “the” critical variable for deep convection in the Tropics. There are numerous studies observational, modeling

and theoretical which focus on this relationship, including temporal and spatial scaling arguments. This would help motivate145

this study a bit more and why it has more “global” importance.

We have provided additional information and references in the introduction, described under main question 1 above.

Line 85 Write “... build upon these results.”

Changed.

Line 105 Write out RTM. I assume you mean Radiative Transfer Model, but just to be clear for the reader.150

Changed.

Line 155 “We solve it with a trust region gradient descent optimization.” You might want to clarify what this is.

We have added a short explanation and a reference to the original text.

Line 183 I think it would be clearer to write “leave-one-out cross-validation”

Changed.155

Line 203 Spell out “AFGL”
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Changed.

Line 213 Write “Some discrepancies in the optical paths remain, which become larger for column water vapor in the free

troposphere than in the planetary boundary layer.”

Changed.160

Line 251 Write “This artifact, indicated by a white arrow, may be related to pathological effects from the sun glint bidirectional

reflectance distribution or the aircraft shadow. Therefore, it was excluded from the statistics.”

Changed, incorporating additional suggestions by reviewer 1.

Line 258 Write “second-order”

Changed.165

Figures

Figure 1. Left: ... with gray arrows. The arrows look red to me.

Changed.

Figure 2. Left: Write “.... In reality, the sun

Changed.170

Figure 6. Left: flightine is mispelled.

Changed.
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Revised Text with Changes in Green
Abstract. The subgrid spatial variability of water vapor is an important geophysical parameter for modeling tropical convention

and cloud processes in atmospheric models. This study maps sub-kilometer spatial structures in total atmospheric column water175

vapor with Visible to Shortwave Infrared (VSWIR) imaging spectroscopy. We describe our inversion approach and validate

its accuracy with coincident measurements by airborne imaging spectrometers and the AERONET ground-based observation

network. Next, data from NASA’s AVIRIS-NG spectrometer enables the highest resolution measurement to date of water

vapor’s spatial variability and scaling properties. We find second order structure function scaling exponents consistent with

prior studies of convective atmospheres. Airborne lidar data show that this total column measurement provides information180

about variability in the lower troposphere. We conclude by discussing the implications of these measurements and paths toward

future campaigns to build upon these results.

Copyright statement. Copyright 2021 California Institute of Technology. Government Support Acknowledged.

1 Introduction

The complex spatial distribution of atmospheric water vapor surrounding clouds and precipitation structures has important185

consequences for parameterizing moist processes in atmospheric models. At the scale of General Circulation Models (GCMs),

water vapor plays an important role in tropical moist convection and its associated precipitation (Tompkins, 2001; Bretherton

et al., 2004). The mean and variability of precipitation rate in the tropics are strongly dependent on the atmospheric water

vapor (Peters and Neelin, 2006; Holloway and Neelin, 2010), a fact which has implications for parameterizing convection.

Another ubiquitous property of convection is its tendency to aggregate (Bretherton et al., 2005). There is evidence the degree190

of aggregation will change as the climate warms, potentially changing the cloud feedback (Wing, 2019). Models (Muller and

Bony, 2015) and observations (Lebsock et al., 2017) suggest that the tendency of convection to aggregate depends on the

degree of spatial variance in the water vapor field. Over land surfaces with heterogeneous surface conditions the variability in

atmospheric water vapor can be larger and is seen as a critical component of the timing of deep convection (Stirling and Petch,

2004; Wulfmeyer et al., 2006). These variations in water vapor over convective continental environments are primarily driven195

by variability below 2 km altitude and within the Planetary Boundary Layer (PBL) (Couvreux et al., 2009). Accurate water

vapor parameterization is also important for Cloud-Resolving or Convection-Permitting models operating at kilometer scales,

and Large Eddy Simulations at sub-kilometer resolution. Across all scales, water vapor variability, and its coupling to cloud

types and multi-scale organization, is key for advancing the parameterization and simulation of cloud processes.

To the end of advancing remote observations of atmospheric water vapor, this paper focuses on a specific measurement200

that is independently useful and also typifies the more general challenge of observing variability. Structure functions measure

the change in the vapor field as a function of distance, quantifying its spatial texture across scales. They are used to analyze
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many atmospheric components including temperature, winds, and trace gas concentrations, at scales from tens to hundreds of

kilometers (Nastrom et al., 1986; Cho et al., 1999). water vapor structure functions can indicate the recent history of the air

mass. They can distinguish convective and non-convective systems (Selz et al., 2017), and indicate precipitation rates embedded205

within a moist column of air with variable levels of column water vapor (Edwards et al., 2019). For a one-dimensional field

f(i) indexed by location i, the nth order structure function Sn(r) is defined as:

Sn(r) = E
�
jf(i+ r)� f(i)jn

�
(1)

where r is a separation distance between pairs of points, and E is the expectation over locations. More generally, Sn(r) can

represent variability along one direction of a multidimensional field. At least one study of water vapor data has found minor

differences in satellite cross-track and along-track directions (Pressel and Collins, 2012). However, it is more typical to assume210

that water vapor scaling has no preferred horiontal orientation, and that the structure function is rotationally symmetric. Sn(r)

is estimated using the mean of observed water vapor values at different spatial offsets. Over a restricted range of distances,

structure functions can be described with a power law:

Sn(r)/ r�n (2)

where �n is the scaling exponent of order n. The scaling exponent of order two is related to the commonly-used Fourier power

spectrum exponent �:215

� =�(�2 + 1) (3)

These values can diagnose specific atmospheric transport processes. Following Kolmogorov theory, a passive tracer in turbu-

lence has a theoretical second-order scaling exponent �2 of 2/3, or equivalently, a Fourier power spectrum exponent � of -5/3

(Pope, 2001).

Previous studies have used a range of instruments to measure water vapor structure functions. In situ aircraft sensors measure

a one-dimensional time series along the aircraft flight track. Nastrom et al. (1986) measured separation distances from 150 to220

1500 km using this technique. They found �2 ranging from the theoretical value of 2/3 to unity. Later Cho et al. (1999) found

�2 consistent with 2/3 over distances of several kilometers. These surveys have recently been augmented by airborne LiDAR

measurements, which provide vertical profiles along the flight track. A series of LiDAR observations by Fischer et al. (2012,

2013) measured airmasses at scales down to 2 km. They reported �2 = 0:6�0:75 in convective airmasses, and �2 = 1:0�1:2 in

non-convective airmasses. Convective environments had shallower scaling indicating higher spatial variability at small scales.225

They hypothesized that this flatter power spectrum slope, which was also common in boundary layer airmasses, was related to

the small-scale injection of water vapor anomalies by convective eddies. However, their study did not conclusively identify the

cause. More recently, Selz et al. (2017) compared airborne LiDAR measurements with simulations at scales greater than 11

km. This study confirmed that power law exponents were strongly related to altitude and the presence or absence of convection.

They showed �2 above 1 for nonconvective airmasses in the free troposphere, near 0.6 in the boundary layer, and as low as 0.2230

in convective airmasses.
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Contrasting with localized, high resolution aircraft data, orbital data such as the Atmospheric Infrared Sounder (AIRS) on

EOS Aqua have provided more comprehensive power law exponents across the mesoscale and synoptic scales, but without

comparing them to GCMs. Kahn and Teixeira (2009) developed a global climatology of scaling properties between 150-1200

km based on vertically-resolved temperature (T) and speci�c humidity (q) observations by AIRS. Kahn et al. (2011) extended235

these results and compared them to climate GCMs, MERRA reanalysis, and VOCALS-REx in situ observations of vertically-

resolved T and q within and above shallow cumulus off of the coast of Peru. They found strong evidence of� 2 = 2=3 scaling

in the boundary layer and tropopause at all latitudes, with steeper scaling in the mid-troposphere and at low latitudes. This

was consistent with the view of water vapor as a passive scalar in turbulent �ow, and implied more small-scale variability than

was predicted by contemporaneous GCMs. This increased scaling of the tropical free troposphere was also consistent with240

theoretical predictions of steeper scaling of column water vapor within and near strongly precipitating convection (Edwards

et al., 2019). Interestingly, their analysis of aircraft data from the VOCALS-REx experiment suggested a steepening of the

curve at the smallest scales below 10 km (Kahn et al., 2011). This result suggested a possible change in the scaling properties

at the �nest resolutions.

These studies contribute to a growing body of literature on water vapor scaling. However, important gaps remain. High245

spatial resolution data are sparse, and most studies explore spatial scales above 1 km. To our knowledge no study has yet

corroborated the Kahn et al. (2011) steepening phenomenon at scales less than 10 km, or probed the structure functions at

scales less than 2 km. Most aircraft data consist of one dimensional time series, rather than the two-dimensional maps available

from instruments like AIRS. Such measurements con�ned to the �ight trajectory provide fewer samples, increasing uncertainty

in the derived exponents (Selz et al., 2017; Guillaume et al., 2018).250

A new generation of orbital instrumentation may shed new light on �ne-scale water vapor. Visible to Shortwave Infrared

(VSWIR) imaging spectrometers, such as NASA's upcoming EMIT mission (Green et al., 2019) or the expected Surface

Biology and Geology (SBG) investigation (National Academies of Sciences and Medicine, 2018), are highly sensitive to the

water vapor column absorption (Shivers et al., 2019). They typically have a spectral resolution of 5-10 nm and span the

380 - 2500 nm interval, a range which overlaps signi�cant water absorption features. A typical pushbroom instrument could255

have as many as 1200 cross-track measurements with ground sampling distances of 30-60 m. Most such investigations target

surface properties. However, a byproduct of this analysis will be accurate column-averaged water vapor measurements at

high spatial resolution over wide areas. The spatial resolution and accuracy of the derived water vapor column measurements

will be unprecedented, providing opportunities to probe the horizontal variability of water vapor on global scales. Before

these missions launch, archives of airborne precursor data provide an opportunity to validate the technique and begin the260

investigation.

This manuscript demonstrates direct mapping of the sub-kilometer spatial structure in column water vapor using an airborne

VSWIR imaging spectrometer. We �rst describe our model for vapor absorption features in the near- to shortwave infrared. We

estimate clear-sky vapor concentrations by inverting a combined model of the atmosphere and surface re�ectance after �ltering

out cloud-affected footprints. We validate the approach with NASA's “Classic” Airborne Visible Infrared Imaging Spectrom-265

eter, AVIRIS-C (Green et al., 1998), evaluating over�ights of the AERONET observation network (Holben et al., 1998). We
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analyze imaging spectroscopy data acquired during the “Next Generation” Airborne Visible Infrared Imaging Spectrometer

(AVIRIS-NG) India campaign of 2018. This campaign includes several scenes with highly favorable solar geometry, provid-

ing a uniquely high resolution measurement of the H2O vapor column. This enables estimation of the H2O spatial structure

functions at sub-kilometer scales. We �nd con�rming evidence of� 2 = 2=3 scaling in some but not all atmospheres, with Kahn270

et al. (2011) curve steepening that continues down to at least 100 m. Finally, we discuss the relationship between the total

column measurement and variability in the lower troposphere. We assess water vapor pro�les from airborne LiDAR campaigns

(Bedka et al., 2020). These data show that lower tropospheric variability consistently dominates the total column, making the

VSWIR measurement informative about lower atmospheric water vapor. We conclude by discussing the implications of these

measurements and future campaigns that build upon the results.275

2 Methods

2.1 Atmospheric Model

Our technique estimates water vapor independently for each spatial location by inverting an atmospheric radiative transfer

model. We de�ne a state vectorx containing all the free parameters in the system. It includes the surface re�ectance vector

� , the column water vapor concentrationqv , and the aerosol optical depth at 550 nm. Aerosol optical properties were derived280

from a canonical sulfate aerosol type and validated in prior studies of the India campaign (Thompson et al., 2019). Aforward

modelF (x ) maps this state onto an observed radiance at the sensor,L o:

L o = F (x ) + � (4)

Boldface represents a vector or matrix, e.g.L o has one element for each spectrometer channel. The random variable� represents

instrument noise, distributed according to a zero-mean Gaussian with covariance� e. We can decomposeL o into different

photon paths, with� representing element-wise multiplication:285

L o = L atm + t � L dn �
�

1 � S � �
+ � (5)

HereL atm represents thepath radiancecaused by molecular and particle scattering; these photons never reach the surface.

The second term represents all the photons that interact with the surface at least once.L dn is the downwelling illumination at

the bottom of the atmosphere.� is the spectral surface re�ectance.t is the atmospheric transmittance from the surface to the

sensor along its line of sight.S is the spherical sky albedo observed from the ground. The relation in Equation 5 holds for a

locally-homogeneous and Lambertian surface, but small departures from these conditions are not catastrophic and in any case290

the assumptions hold suf�ciently well for the scenes in this study.

Our atmospheric model calculates the optical coef�cientsL atm , t , andS using the MODTRAN 6.0 software package (Berk

and Hawes, 2017). Speci�cally, we use the DISORT code with 8-stream multiple scattering calculations. The absorption model

uses a correlated-k representation with 0.1 cm� 1 bins. Vertical pro�les are assigned from a 20-layer strati�ed atmosphere. For

computational ef�ciency, we do not run the complete Radiative Transfer Model (RTM) for each evaluation ofF (x ). Instead,295
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Figure 1. Left: Atmospheric transmissivity from 380-2500 nm reveals multiple H2O absorption features, indicated with red arrows. Right:

The spatial sensitivity of solar-re�ected measurements depends on water vapor absorption along the optical path from the sun to the ground

to the sensor. Aircraft image credit: NASA

we calculate optical coef�cients in advance to �ll a lookup table for each component in the right side of equation 5, and then

interpolate within this table to determine the precise radiance for any given state vector. Figure 1 illustrates the atmospheric

transmittance in the measurement interval from 380-2500 nm, including several prominent absorption features related to H2O

rovibrational overtones. Absorption features at 940 and 1140 nm carry most of the water column information. Stronger features

at 1380 and 1880 nm are saturated at atmospheric path lengths, and consequently less useful.300

The remote H2O measurements aim to quantify the integrated mass of water vapor directly above each pixel in the scene.

However, this is not always possible for a solar-re�ected signal. Neglecting scattering, which is small in the near infrared, the

remote water vapor observation measures absorption along a two-part optical path from the sun to the ground to the sensor.

The sun is seldom directly overhead, and its downwelling illumination enters the atmosphere at some horizontal offset from

the re�ection point (Figure 1, Right). Consequently, a spectrum's spatial sensitivity can extend far beyond the target pixel in305

the direction of the sun. Projected onto the ground, the vapor absorption path forms a long, thin footprint that extends hundreds

of meters from the target pixel in the sunward direction. To quantify this effect, we de�ne the water vapor spatial sensitivity as

the extinction-weighted distance between downwelling and upwelling beams. We useg(h) to represent the relative sensitivity

to water vapor ath, some horizontal offset distance in the solar direction. For a nadir-pointed observation, assuming that the

vertical pro�le of water vapor is locally constant, the relationship is:310

g(h) =

8
>><

>>:

R
z2 [zs ;zo ] � (z) dz if h = 0

� ( h
tan � s

+ zs) 1
cos� s

if h > 0

(6)
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where� (z) is the water vapor number density at altitudez. The variableszs andzo represent the surface elevation and sensor

altitude respectively. The spatial sensitivity is strongly dependent on solar zenith angle (� s). It is also dependent to some extent

on the view angle; if the observation is off-nadir,g(h) includes the sensitivity of both upward and downward paths. We de�ne

the average spatial offset of a measurement,� h , as the mean horizontal position of the water vapor along the two-part optical

path:315

� h =

R1
0 h g(h) dh
R1

0 g(h) dh
(7)

In addition to shifting the center of the spatial response, larger solar zenith angles can coarsen the effective spatial resolution

by stretching the water vapor sensitivity footprint in the sunward direction. We de�ne the effective spatial resolution,Re, as the

symmetric horizontal distance from the center point which encloses 68.2% of the spatial response. This would be equivalent to

the area inside a single standard deviation if the response function were Gaussian.

0:682 =

R� h + R e

� h � R e
g(h) dh

R1
0 g(h) dh

(8)

The left panel of Figure 2 shows the relative sensitivity to water vapor at different horizontal offsets for a nadir-viewing mea-320

surement of a tropical atmosphere at 4 km acquisition altitude, similar to the observing geometry of the following experiments.

We show the response areas for three solar zenith angles. As the solar angles increase, the response function extends farther

from the target pixel, with increasingly “thick tails” caused by water absorption along the slanted downwelling path. The right

panel of Figure 2 shows the resulting resolutions as a function of solar zenith angle at different viewing geometries and atmo-

spheric pro�les, at sensor altitudes of 4 km and Low Earth Orbit (LEO). It shows that the spatial sensitivity is only weakly325

dependent on the sensor altitude, and somewhat dependent on the viewing angle and the vertical pro�le of water vapor in the

atmosphere. The solar zenith angle is the dominant in�uence on spatial resolution, motivating a careful selection of �ightlines

for the following experiments. The spatial footprint projected on the ground is not radially symmetric; it is long and thin, but

retains the native spatial resolution along its short axis. Consequently, for isotropic structure functions the effective spatial

resolution is a worst case, and sensitivity improves as one calculates structure functions in directions orthogonal to the sun.330

2.2 Inversion methodology

To estimateqv , we invert a combined model of surface and atmosphere. We use a Bayesian Maximum A Posteriori formalism

(Rodgers, 2000) that is common among atmospheric sounding missions. Recent work extended this approach to the Visible-

Shortwave Infrared spectral interval (Thompson et al., 2018b, 2019). The solar-re�ected regime is strongly in�uenced by

variability in surface re�ectance. Consequently, we �t atmospheric parameters simultaneously with a �exible surface model. As335

described in Section 2.1, our state vectorx includes surface re�ectance in every channel, the column water vapor concentration

qv , and the aerosol optical depth at 550 nm. A forward modelF (x ) transforms this state vector into a simulated radiance at

the sensor following Equation 5.

Our inversion determines the most likely state vector to explain the observationL o. It includes background knowledge

with a multivariate Gaussian prior over state vector elements, with mean� a and covariance� a . We �t this distribution as in340
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Figure 2. Left: the relative sensitivity to water vapor at 4 km acquisition altitude in a tropical atmosphere as a function of horizontal distance

from nadir, partitioned by solar zenith angle� s . Right: the effective spatial resolution as a function of solar zenith angle� s , at both 4 km

and low earth orbit (LEO) acquisition altitudes. The red line shows a sub-arctic winter atmospheric pro�le indicating the range of spatial

resolution across two very different atmospheric conditions. In reality, the sun never reaches low zenith angles in polar regions of the globe.

(Thompson et al., 2019), with a library of diverse re�ectance spectra. Shrinkage regularization (Theiler, 2012) ensures that

the inversion can represent spectra not spanned by original library subspace. The inversion balances this prior against the

measurement noise in Equation 5, which is determined from a component-wise instrument performance model (Thompson

et al., 2020). The optimal state vector minimizes the following cost function:

� (x ) = ( F (x ) � L o)T � � 1
e (F (x ) � L o) + ( x � � a)T � � 1

a (x � � a) (9)

where� e is the instrument noise. This cost is proportional to the negative logarithm of the posterior probability, a product345

of multivariate Gaussian prior and likelihood terms. We solve it with a trust region gradient descent optimization, a nonlinear

optimization approach that respects positivity constraints on the free parameters (Lenders et al., 2018) In principle, any gradient

based optimization would suf�ce with an appropriate starting point. The inversion typically converges in 10-20 iterations.

2.3 Postprocessing and structure functions

Before analyzing the spatial structure of the resulting H2O maps, we perform several postprocessing steps to improve the350

map consistency. Even a highly accurate retrieval is likely to suffer some biases due to the in�uence of the surface type or

magnitude. For example, very slight errors in atmospheric path radiance estimates are proportionally larger for dark targets,

which can induce a spurious dependence between albedo and water vapor. Surface re�ectance features that overlap water

vapor absorptions can also in�uence retrievals. Finally, minor differences in the radiometric response or linearity of different
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cross-track elements can create striping artifacts in derived products. We address all of these issues with a single empirical355

correction. We �rst de�ne a grid of locationsi 2 L where the retrieval is performed. We assert that the retrieved water vapor

at each locationi , written q̂i , is the combination of an underlying “true” water vapor signalqi , zero-mean measurement noise

� q, and non-stochastic interference by surface and systematic instrument effects. We de�ne a feature vector i to include

the surface re�ectance in each channel, and a sparse position vectorp encoding the associated cross-track position on the

Focal Plane Array (FPA) in a stacked binary representation. The position encoding enables the model to represent radiometric360

sensitivity of different FPA elements. The column vector i thus combines� i andpi . For simplicity, we assume the surface

interference is a linear combination of these features, weighted by coef�cients� :

q̂i = qi + � T  i + � q (10)

To estimate� , we treat the true water vapor component as a random variable. Over large spatial scales, biases due to diverse

content will tend to average out, and the sample mean of retrieved values can be used to approximate the true mean. Rearranging

algebraically, we de�ne the local vapor anomalyA i as:365

A i = q̂i �

2

4 1
jLj

X

j 2L

q̂j

3

5 = � T  i + � w (11)

Where� w now incorporates variability due to retrieval noise as well as variability in the true water vapor �eld. Since� w is

zero mean, Equation 11 reduces to a straightforward linear regression problem. For a data matrixU with rows made up of all

re�ectance spectra, and a vectorA of anomaly values, we estimate� with ordinary least squares regression. We subtract the

predicted error from the original estimate to yield the bias-corrected estimateq
0

i :

q0
i = q̂i � �̂ T  i for �̂ = U (U T U ) � 1U T A (12)

To apply the bias correction, we segment long �ightlines into segments of no longer than 2000 pixels each, and apply the370

interference correction to each segment independently.

A �nal postprocessing operation smooths each water vapor image with a Gaussian spatial �lter. This dramatically reduces

the retrieval noise, making it possible to resolve much �ner structures. This noise reduction is also bene�cial for estimating

structure functions, which are bounded arti�cially on the low end by the average squared noise in neighboring pixels. We use

leave-one-out cross-validation (Shao, 1993) to select an optimal blurring kernel width. To score a candidate width, we compare375

every point in the scene to the prediction made by applying the blurring kernel to that location, excluding the point under test

with appropriate renormalization. The optimal kernel standard deviations range from 4 to 6 in different scenes; we use the

lower value to preserve �ne spatial structure at sub-100m scales.

After these postprocessing steps, we calculate empirical structure functions for each pixel shift distance d, computing the

squared differences between image locations shifted in the along-track direction. Recall that the long �ightlines are corrected380

in parts no longer than 2000 pixels in length, revealing structure functions up to 4 km. To avoid minor offsets in the vapor �eld

on each side of a border, we do not permit shifts across multiple segments. We aggregate the statistics of all segments to form
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a structure function estimate for each �ightline. We manually mask any visible artifacts in water vapor images to exclude them

from the calculation. These artifacts are primarily due to the presence of clouds or their shadows. Clouds can also disrupt their

local light �elds with scattered illumination, an effect visible in water vapor maps as obvious halos around clouds and their385

shadows. To mitigate this effect, we dilate the masks by 200 m in all directions.

3 Results: AERONET Over�ights

We �rst assess the absolute accuracy of water vapor absorption measurements using airborne over�ights of the AERONET

robotic observation network (Holben et al., 1998). The AERONET sunphotometers view the sun directly, estimating water va-

por by solar extinction (Pérez-Ramírez et al., 2014). Consequently, they do not measure the same optical path as the downlook-390

ing sensor. Nevertheless, these coincident over�ights validate the approach and provide a ceiling for unmodeled uncertainties.

The airborne instrument is AVIRIS-C (Green et al., 1998). It �ew on an ER-2 aircraft at approximately 20 km altitude. Our

dataset spans six years of operations over California, from 2013-2019, during which it over�ew active terrestrial AERONET

sites on over 100 occasions. Our atmospheric model for these observations used an Air Force Geophysics Laboratory (AFGL)

midlatitude summer pro�le (Anderson et al., 1986). Aerosols were light throughout the over�ights, so we omitted them from395

the state vector.

We use several �ltering methods to remove uncertain datapoints. Many over�ights are contaminated by clouds. Our com-

parison excludes obvious clouds recognized by an estimated surface re�ectance at 450 nm above 0.2. However, even when

opaque clouds do not directly cover the aeronet location, high-altitude cirrus, cloud shadows or scattered irradiance can con-

taminate a retrieval. Additionally, high spatiotemporal variability in water vapor can cause a discrepancy; it would aggravate400

the difference in optical paths, as well as the imperfect temporal coincidence between the AERONET acquisitions and the

over�ight. Considering the strong in�uence of� s demonstrated in Figure 2, and that� s during typical �ights often reaches

45 degrees or greater, the ground-based measurement could see a very different vapor �eld if humidity were not horizontally

homogeneous. To address these issues, we remove any datapoints where the in-situ standard deviation in H2O is larger than 0.1

g cm� 2, estimated by comparing the 10 temporally closest acquisitions. After this �ltering step, 64 datapoints remain. Some405

discrepancies in the optical paths remain, which become larger for column water vapor in the free troposphere than in the

planetary boundary layer. As neither measurement resolves the detailed vertical pro�le, it is not possible to distinguish these

cases without additional information.

Figure 3 compares the AERONET and remote retrievals for all sites. Error bars indicate the variability in water vapor over

the 10 closest timesteps (AERONET) or the 10x10 enclosing rectangle of pixels (AVIRIS-C). Each AERONET timestep is410

approximately 5 minutes, so our window provides a measure of variability in the hour around the �ight. These over�ights

represent a wide range of atmospheric conditions and solar angles. They span column water vapor concentrations from approx-

imately 0.3 to 2.5. The airborne and uplooking measurements show strong agreement, with a correlation coef�cientR of 0.95.

A few AVIRIS-C observations with very high variability are likely clouds or cloud shadows that survived the �ltering process.

Nevertheless, the result is broadly consistent with AERONET accuracy of 12–15% for column water vapor, a claim which has415
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Figure 3. Coincident AVIRIS-C vs AERONET water vapor measurements, �ltering out AERONET instances with high temporal variability

(1� > 0:1 g cm� 2 over 10 temporally closest measurements).

been validated independently by comparison to microwave radiometers (Pérez-Ramírez et al., 2014). This provides con�dence

in the accuracy of the water vapor retrieval. There is a small bias between the two datasets. However, even if we attributed it

entirely to the airborne data such an offset would not in�uence the structure function measurement.

4 Results: Structure Function Measurement

We apply the H2O retrieval methodology to four �ightlines from a 2018 AVIRIS-NG campaign in India. We selected these420

�ightlines for favorable solar observing geometry and because they represented two distinct conditions observed on different

days. All �ightlines were at 4 km altitude over water, providing a uniform, topographically-�at surface for vapor retrievals.

On May 12, two �ightlines encountered scattered low clouds. On May 14, two more �ightlines encountered clear skies. We

restricted our study to �ights with solar zenith angles less than 10 degrees, a condition which occurred on two �ight days. This

provided effective spatial resolutions from 80 to 250 m at nadir. In comparison, the native spatial sampling of AVIRIS-NG at425

these altitudes was 4 m. In addition to improving spatial resolution, the extreme solar angles also produced signi�cant sunglint,

revealing near infrared water features that would otherwise be masked by the absorption of the water surface. Information on

each �ightline appears in Table 1. We applied the standard AVIRIS-NG radiance calibration procedure (Chapman et al., 2019),
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including corrections to the spectral response function (Thompson et al., 2018a). We then performed water vapor retrievals on

all �ightlines using a tropical atmospheric pro�le (Anderson et al., 1986). AVIRIS-NG had a higher intrinsic Signal to Noise430

Ratio (SNR) than AVIRIS Classic, and the solar angles provided more signal than a typical AERONET over�ight from the

validation experiment. Consequently, we expected a more sensitive retrieval in the India datasets.

To provide context for interpreting the vapor �elds, we analyzed MERRA-2 reanalysis data (Gelaro et al., 2017) for each of

the two days. The atmospheric conditions were generally similar across the over�ights, with light trade winds and the lack of

an obvious inversion to stratify boundary layer processes. There were also some differences between the days. Wind velocity435

changed slightly, but was not obviously tied to any change in atmospheric turbulence. The relative humidity was generally

higher on the 14th. The lapse rate was slightly more variable: 8 K km� 1 at 760 hPa as opposed to 7 K km� 1 on the 12th. These

changes would be consistent with a slightly more turbulent atmosphere and a shallower scaling exponent, though there was

no obvious step change in atmospheric stability. Figure 4 shows the temperature, lapse rate, speci�c and relative humidity for

each day.440

Label Flightline ID Date � s Nadir R e (m) Latitude N Longitude W Length (m)

A ang20180512t052609 12 May 2018 9.7 250 21.649 87.775 24000

B ang20180512t053942 12 May 2018 6.9 177 21.639 87.789 24000

C ang20180514t055115 14 May 2018 4.1 105 21.524 88.346 8000

D ang20180514t060206 14 May 2018 3.1 79 21.526 88.325 8000

Table 1.Flightlines used for structure function analysis.

Figure 5 shows a typical spectrum �t. The top panel shows the radiance measurement. The converged model matches

the measurement closely, with largest discrepancies in the shortest wavelengths. The middle panel shows the residual error.

Some structure at the sub-2% level is consistent with minor model discrepancies or calibration errors. These mostly affect the

shortest wavelengths outside the dominant water absorption intervals. The re�ectance spectrum in the bottom panel shows a

good quality retrieval of a water surface. There is considerable sunglint, a spectrally-�at additive signal that uniformly elevates445

the spectrum. This raises the near- to shortwave-infrared re�ectance, which would normally be zero over liquid water, to values

of 12-13%. Elevated re�ectance in the presence of sunglint enables high-accuracy retrievals ofqv over open water. This is a

reliable consequence of small solar zenith angles under a wide range of wind conditions.

Figure 6 shows the column water vapor maps for individual segments of the �ightlines. In the top panels, dark blue areas

indicate manual masks applied to exclude cloudy regions. After the interference correction, the vapor maps are generally free450

of artifacts except for a minor band at the zero phase angle. This artifact, indicated by a white arrow, may be related to issues

with the sun glint bidirectional re�ectance distribution or the aircraft shadow. Therefore, it was excluded from the statistics.

The smallest-scale variability is almost certainly related to noise in the retrieval algorithm. Larger scale coherent structures

show that meaningful differences in water vapor content are resolved at the level of 1-3%, over scales comparable to the

predicted spatial resolutions of 80-250 m. The center and bottom panels show example maps for �ightlines C and D on May455
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Figure 4.MERRA-2 reanalysis predictions for the two �ight days. Counterclockwise from upper left: temperature, speci�c humidity, relative

humidity, and lapse rate.

14, which were entirely free of clouds. In aggregate, the �ightlines encountered water vapor values ranging from about 3.23 to

3.42 g cm� 2. The smoothing operation dramatically increases the contrast of spatial features (Figure 7).

Figure 8 shows structure functions for the four �ightlines with second-order scaling exponents for representative intervals.

Grey lines indicate the best-�tting power law exponents over the 500-1000m interval. We also plot the canonical2=3 slope for

reference. The �ightlines' con�gurations of vapor and clouds were all unique, but their scaling functions from the common460

�ight days show similar pro�les. This intra-day similarity demonstrates the repeatability of the measurement in a consistent

airmass. For �ightlines A and B,� 2 is 0:64 and0:63 respectively. These values are very close to the classic 2/3 value of a

passive scalar in turbulence. The slope continues to scales well under 1 km, with a steepening of the curve below about 500m.

This corroborates the VOCALS-REx data analyzed by Kahn et al. (2011), although those observations were taken in a stable

regime within and above stratocumulus clouds off of the coast of S. America. In this case, the observed steepening continues465

to scales approaching the effective spatial resolution of approximately 250 m. The right panel shows �ights C and D on May
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14. These �ightlines have shallower pro�les in the 500-1000 m range, with scaling exponents of0:41and0:29. The curves are

less consistent across the two over�ights, which might be due to small sample sizes. Flightlines C and D contained just one

segment of 2000 m, compared with six segments in each of �ightlines A and B.

To con�rm that the results were robust to slight differences in viewing angles, we recalculated the same result using the470

central half of the �ightline data. This excluded all off-nadir view angles greater than approximately 9 degrees. The results

did not change signi�cantly; �ightlines A,B,C and D showed� 2= 0.55, 0.58, 0.41 and 0.29 respectively. These differences

would not be large enough to change our interpretation. In all cases, the maps comprise millions of independent measurements

making it possible to resolve structures of magnitudes smaller than the single-pixel noise. All acquisitions, including the

extreme shallow scaling of �ightlines C and D, are in the range of exponents predicted for convective airmasses by Selz et al.475

(2017). This is consistent with the presence of convective clouds in the �ightlines.

5 Discussion

The airborne experiments demonstrate the ability of VSWIR spectroscopy to measure total column water vapor with high

precision, but cannot directly apportion this observed variability to different vertical layers. The state of the lower troposphere

generally dominates the overall water vapor content, but it does not necessarily follow that the troposphere determines the480

observed variability over short spatial scales. Our derived� 2 coef�cients refer to the horizontal variability of water vapor

integrated along the full solar-re�ected optical path, and variability at different altitudes could contribute to estimated� 2.

For example, one might observe a superposition of different atmospheric regimes at different layers, such as convective and

non-convective, or boundary-layer and free-troposphere, which would blur the variability in the total column. This could be

signi�cant for attributing the variability or for comparing the observations with more localized measurements. Given that this485

study is one of the �rst that explores water vapor variability at such high horizontal resolution, there is a dearth of independent

data against which to interpret vertical sensitivity.

We can gain insight by framing the relationship between full column and strati�ed variability as a statistical question. Other

vertically-resolved measurements give evidence that the derived exponents re�ect structure in the lower troposphere and plane-

tary boundary layer. Preliminary support comes from reprocessed data from the �ve 2019 Cal/Val campaign �ights of the High490

Altitude Lidar Observatory (HALO) over the Eastern Paci�c (Bedka et al., 2020). The HALO's differential absorption lidar

(DIAL) water vapor retrievals were reprocessed for our analysis with 3 km along-track averaging, 0.5 km vertical averaging

for altitudes 4 km or lower, and 1 km vertical averaging for altitudes higher than 4 km. This along-track averaging provided an

optimal balance of spatial resolution and sensitivity. We integrated the column water vapor vertically to obtain partial column

water vapor (PCWV) and calculated the squared Pearson correlation coef�cient (r2) between the PCWV up to different alti-495

tudes, and that up to 7 km, which approximated the Total Column Water Vapor (TCWV). Picking a higher altitude would have

severely restricted the number of valid lidar footprints due to the �ight altitudes, and there was also very little vapor content

above 7 km. To create a dataset which was most similar to the AVIRIS-NG �ight data, we extracted HALO data over ocean in

the least-cloudy parts of each �ight, with valid water vapor retrievals from the lowest bin up to 7 km. Measurements occurred
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Figure 5. Top: Example radiance spectrum. Middle: Model �t residual. Bottom: Estimated re�ectance with 95% con�dence bounds.
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Figure 6. H2O vapor maps. In �ightlines A and B, dark blue areas are masked to avoid clouds. A white arrow in �ightline B indicates an

artifact that occurs where the solar phase angle is zero. A white box in �ightline C indicates the area shown by Figure 7.
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