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Abstract. The subgrid spatial variability of water vapor is
an important geophysical parameter for modeling tropical
convention and cloud processes in atmospheric models. This
study maps sub-kilometer spatial structures in total atmo-
spheric column water vapor with Visible to Shortwave In-5

frared (VSWIR) imaging spectroscopy. We describe our in-
version approach and validate its accuracy with coincident
measurements by airborne imaging spectrometers and the
AERONET ground-based observation network. Next, data
from NASA’s AVIRIS-NG spectrometer enables the highest10

resolution measurement to date of water vapor’s spatial vari-
ability and scaling properties. We find second order structure
function scaling exponents consistent with prior studies of
convective atmospheres. Airborne lidar data show that this
total column measurement provides information about vari-15

ability in the lower troposphere. We conclude by discussing
the implications of these measurements and paths toward fu-
ture campaigns to build upon these results.
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1 Introduction

The complex spatial distribution of atmospheric water vapor
surrounding clouds and precipitation structures has impor-
tant consequences for parameterizing moist processes in at-
mospheric models. At the scale of General Circulation Mod-25

els (GCMs), water vapor plays an important role in tropical
moist convection and its associated precipitation (Tompkins,
2001; Bretherton et al., 2004). The mean and variability of

precipitation rate in the tropics are strongly dependent on the
atmospheric water vapor (Peters and Neelin, 2006; Holloway 30

and Neelin, 2010), a fact which has implications for parame-
terizing convection. Another ubiquitous property of convec-
tion is its tendency to aggregate (Bretherton et al., 2005).
There is evidence the degree of aggregation will change as
the climate warms, potentially changing the cloud feedback 35

(Wing, 2019). Models (Muller and Bony, 2015) and observa-
tions (Lebsock et al., 2017) suggest that the tendency of con-
vection to aggregate depends on the degree of spatial vari-
ance in the water vapor field. Over land surfaces with het-
erogeneous surface conditions the variability in atmospheric 40

water vapor can be larger and is seen as a critical compo-
nent of the timing of deep convection (Stirling and Petch,
2004; Wulfmeyer et al., 2006). These variations in water
vapor over convective continental environments are primar-
ily driven by variability below 2 km altitude and within the 45

Planetary Boundary Layer (PBL) (Couvreux et al., 2009).
Accurate water vapor parameterization is also important for
Cloud-Resolving or Convection-Permitting models operat-
ing at kilometer scales, and Large Eddy Simulations at sub-
kilometer resolution. Across all scales, water vapor variabil- 50

ity, and its coupling to cloud types and multi-scale organiza-
tion, is key for advancing the parameterization and simula-
tion of cloud processes.

To the end of advancing remote observations of atmo-
spheric water vapor, this paper focuses on a specific mea- 55

surement that is independently useful and also typifies the
more general challenge of observing variability. Structure
functions measure the change in the vapor field as a func-
tion of distance, quantifying its spatial texture across scales.
They are used to analyze atmospheric components including 60

temperature, winds, and trace gas concentrations, at scales
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from tens to hundreds of kilometers (Nastrom et al., 1986;
Cho et al., 1999). Water vapor structure functions can indi-
cate the recent history of the air mass. They can distinguish
convective and non-convective systems (Selz et al., 2017),
and suggest precipitation rates embedded within a moist col-5

umn of air with variable levels of column water vapor (Ed-
wards et al., 2019). For a one-dimensional field f(i) indexed
by location i, the nth order structure function Sn(r) is:

Sn(r) = E
[
|f(i+ r)− f(i)|n

]
(1)

where r is a separation distance between pairs of points, and
E is the expectation over locations. More generally, Sn(r)10

can represent variability along one direction of a multidi-
mensional field. At least one study of water vapor data has
found minor differences in satellite cross-track and along-
track directions (Pressel and Collins, 2012). However, it is
more typical to assume that water vapor scaling has no pre-15

ferred horiontal orientation, and that the structure function is
rotationally symmetric. Sn(r) is estimated using the mean of
observed water vapor values at different spatial offsets. Over
a restricted range of distances, structure functions can be de-
scribed with a power law:20

Sn(r)∝ rζn (2)

where ζn is the scaling exponent of order n. The scaling ex-
ponent of order two is related to the commonly-used Fourier
power spectrum exponent β:

β =−(ζ2 +1) (3)

These values can diagnose specific atmospheric transport
processes. Following Kolmogorov theory, a passive tracer in25

turbulence has a theoretical second-order scaling exponent ζ2
of 2/3, or equivalently, a Fourier power spectrum exponent β
of -5/3 (Pope, 2001).

Previous studies have used a range of instruments to mea-
sure water vapor structure functions. In situ aircraft sen-30

sors measure a one-dimensional time series along the aircraft
flight track. Nastrom et al. (1986) measured separation dis-
tances from 150 to 1500 km using this technique. They found
ζ2 ranging from the theoretical value of 2/3 to unity. Later
Cho et al. (1999) found ζ2 consistent with 2/3 over distances35

of several kilometers. These surveys have recently been aug-
mented by airborne LiDAR measurements, which provide
vertical profiles along the flight track. A series of LiDAR ob-
servations by Fischer et al. (2012, 2013) measured airmasses
at scales down to 2 km. They reported ζ2 = 0.6−0.75 in con-40

vective airmasses, and ζ2 = 1.0− 1.2 in non-convective air-
masses. Convective environments had shallower scaling in-
dicating higher spatial variability at small scales. They hy-
pothesized that this flatter power spectrum slope, which was
also common in boundary layer airmasses, was related to the45

small-scale injection of water vapor anomalies by convec-
tive eddies. However, their study did not conclusively iden-
tify the cause. More recently, Selz et al. (2017) compared

airborne LiDAR measurements with simulations at scales
greater than 11 km. This study confirmed that power law ex- 50

ponents were strongly related to altitude and the presence
or absence of convection. They showed ζ2 above 1 for non-
convective airmasses in the free troposphere, near 0.6 in the
boundary layer, and as low as 0.2 in convective airmasses.

Contrasting with localized, high resolution aircraft data, 55

orbital data such as the Atmospheric Infrared Sounder
(AIRS) on EOS Aqua have provided more comprehensive
power law exponents across the mesoscale and synoptic
scales, but without comparing them to GCMs. Kahn and
Teixeira (2009) developed a global climatology of scal- 60

ing properties between 150-1200 km based on vertically-
resolved temperature (T) and specific humidity (q) observa-
tions by AIRS. Kahn et al. (2011) extended these results and
compared them to climate GCMs, MERRA reanalysis, and
VOCALS-REx in situ observations of vertically-resolved T 65

and q within and above shallow cumulus off of the coast of
Peru. They found strong evidence of ζ2 = 2/3 scaling in the
boundary layer and tropopause at all latitudes, with steeper
scaling in the mid-troposphere and at low latitudes. This was
consistent with the view of water vapor as a passive scalar in 70

turbulent flow, and implied more small-scale variability than
was predicted by contemporaneous GCMs. This increased
scaling of the tropical free troposphere was also consistent
with theoretical predictions of steeper scaling of column wa-
ter vapor within and near strongly precipitating convection 75

(Edwards et al., 2019). Interestingly, their analysis of aircraft
data from the VOCALS-REx experiment suggested a steep-
ening of the curve at the smallest scales below 10 km (Kahn
et al., 2011). This result suggested a possible change in the
scaling properties at the finest resolutions. 80

These studies contribute to a growing body of literature on
water vapor scaling. However, important gaps remain. High
spatial resolution data are sparse, and most studies explore
spatial scales above 1 km. To our knowledge no study has yet
corroborated the Kahn et al. (2011) steepening phenomenon 85

at scales less than 10 km, or probed the structure functions
at scales less than 2 km. Most aircraft data consist of one di-
mensional time series, rather than the two-dimensional maps
available from instruments like AIRS. Measurements con-
fined to the flight trajectory provide fewer samples, increas- 90

ing uncertainty in the derived exponents (Selz et al., 2017;
Guillaume et al., 2018).

A new generation of orbital instrumentation may shed new
light on fine-scale water vapor. Visible to Shortwave Infrared
(VSWIR) imaging spectrometers, such as NASA’s upcoming 95

EMIT mission (Green et al., 2019) or the Surface Biology
and Geology (SBG) investigation (National Academies of
Sciences and Medicine, 2018), are highly sensitive to the
water vapor column absorption (Shivers et al., 2019). They
typically have a spectral resolution of 5-10 nm and span the 100

380 - 2500 nm interval, a range which overlaps significant
water absorption features. A typical pushbroom instrument
could have as many as 1200 cross-track measurements with
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ground sampling distances of 30-60 m. Most such investi-
gations target surface properties. However, a byproduct of
this analysis will be accurate column-averaged water vapor
measurements at high spatial resolution over wide areas. The
spatial resolution and accuracy of the derived water vapor5

column measurements will be unprecedented, providing op-
portunities to probe the horizontal variability of water vapor
on global scales. Before these missions launch, archives of
airborne precursor data provide an opportunity to validate the
technique and begin the investigation.10

This manuscript demonstrates direct mapping of the sub-
kilometer spatial structure in column water vapor using an
airborne VSWIR imaging spectrometer. We first describe our
model for vapor absorption features in the near- to short-
wave infrared. We estimate clear-sky vapor concentrations15

by inverting a combined model of the atmosphere and sur-
face reflectance after filtering out cloud-affected footprints.
We validate the approach with NASA’s “Classic” Airborne
Visible Infrared Imaging Spectrometer, AVIRIS-C (Green
et al., 1998), evaluating overflights of the AERONET ob-20

servation network (Holben et al., 1998). We analyze imag-
ing spectroscopy data acquired during the “Next Generation”
Airborne Visible Infrared Imaging Spectrometer (AVIRIS-
NG) India campaign of 2018. This campaign includes sev-
eral scenes with highly favorable solar geometry, providing25

a uniquely high resolution measurement of the H2O vapor
column. This enables estimation of the H2O spatial structure
functions at sub-kilometer scales. We find confirming evi-
dence of ζ2 = 2/3 scaling in some but not all atmospheres,
with Kahn et al. (2011) curve steepening that continues down30

to at least 100 m. Finally, we discuss the relationship between
the total column measurement and variability in the lower
troposphere. We assess water vapor profiles from airborne
LiDAR campaigns (Bedka et al., 2020). These data show
that lower tropospheric variability consistently dominates the35

total column, making the VSWIR measurement informative
about lower atmospheric water vapor. We conclude by dis-
cussing the implications of these measurements and future
campaigns that build upon the results.

2 Methods40

2.1 Atmospheric Model

Our technique estimates water vapor independently for each
spatial location by inverting an atmospheric radiative trans-
fer model. We define a state vector x containing all the free
parameters in the system. It includes the surface reflectance45

vector ρ, the column water vapor concentration qv , and the
aerosol optical depth at 550 nm. Aerosol optical properties
were derived from a canonical sulfate aerosol type and vali-
dated in prior studies of the India campaign (Thompson et al.,
2019). A forward model F (x) maps this state onto an ob-50

served radiance at the sensor, Lo:

Lo = F (x)+ ε (4)

Boldface represents a vector or matrix, e.g. Lo has one ele-
ment for each spectrometer channel. The random variable ε
represents instrument noise, distributed according to a zero-
mean Gaussian with covariance Σe. We can decompose Lo 55

into different photon paths, with ◦ representing element-wise
multiplication:

Lo = Latm + t ◦Ldn ◦
ρ

1−S ◦ρ
+ ε (5)

HereLatm represents the path radiance caused by molecular
and particle scattering; these photons never reach the surface.
The second term represents all the photons that interact with 60

the surface at least once. Ldn is the downwelling illumina-
tion at the bottom of the atmosphere. ρ is the spectral surface
reflectance. t is the atmospheric transmittance from the sur-
face to the sensor along its line of sight.S is the spherical sky
albedo observed from the ground. The relation in Equation 5 65

holds for a locally-homogeneous and Lambertian surface, but
small departures from these conditions are not catastrophic
and in any case the assumptions hold sufficiently well for the
scenes in this study.

Our atmospheric model calculates the optical coefficients 70

Latm, t, and S using the MODTRAN 6.0 software package
(Berk and Hawes, 2017). Specifically, we use the DISORT
code with 8-stream multiple scattering calculations. The ab-
sorption model uses a correlated-k representation with 0.1
cm−1 bins. Vertical profiles are assigned from a 20-layer 75

stratified atmosphere. For computational efficiency, we do
not run the complete Radiative Transfer Model (RTM) for
each evaluation of F (x). Instead, we calculate optical coeffi-
cients in advance to fill a lookup table for each component in
the right side of equation 5, and then interpolate within this 80

table to determine the precise radiance for any given state
vector. Figure 1 illustrates the atmospheric transmittance in
the measurement interval from 380-2500 nm, including sev-
eral prominent absorption features related to H2O rovibra-
tional overtones. Absorption features at 940 and 1140 nm 85

carry most of the water column information. Stronger fea-
tures at 1380 and 1880 nm are saturated at atmospheric path
lengths, and consequently less useful.

The remote H2O measurements aim to quantify the in-
tegrated mass of water vapor directly above each pixel in 90

the scene. However, this is not always possible for a solar-
reflected signal. Neglecting scattering, which is small in the
near infrared, the remote water vapor observation measures
absorption along a two-part optical path from the sun to the
ground to the sensor. The sun is seldom directly overhead, 95

and its downwelling illumination enters the atmosphere at
some horizontal offset from the reflection point (Figure 2).
Consequently, a spectrum’s spatial sensitivity can extend far
beyond the target pixel in the direction of the sun. Pro-
jected onto the ground, the vapor absorption path forms a 100



4 D. R. Thompson, et al.: Imaging Atmospheric Water Vapor

Figure 1. Atmospheric transmissivity from 380-2500 nm reveals
multiple H2O absorption features, indicated with red arrows.
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z

Figure 2. The spatial sensitivity of solar-reflected measurements
depends on water vapor absorption along the optical path from the
sun to the ground to the sensor. Aircraft image credit: NASA

long, thin footprint that extends hundreds of meters from
the target pixel in the sunward direction. To quantify this
effect, we define the water vapor spatial sensitivity as the
extinction-weighted distance between downwelling and up-
welling beams. We use g(h) to represent the relative sensi-5

tivity to water vapor at h, some horizontal offset distance in
the solar direction. For a nadir-pointed observation, assum-
ing that the vertical profile of water vapor is locally constant,
the relationship is:

g(h) =


∫
z∈[zs,zo]κ(z) dz if h = 0

κ( h
tanθs

+ zs)
1

cosθs
if h> 0

(6)

where κ(z) is the water vapor number density at altitude z.10

The variables zs and zo represent the surface elevation and
sensor altitude respectively. The spatial sensitivity is strongly

dependent on solar zenith angle (θs). It is also dependent to
some extent on the view angle; if the observation is off-nadir,
g(h) includes the sensitivity of both upward and downward 15

paths. We define the average spatial offset of a measurement,
µh, as the mean horizontal position of the water vapor along
the two-part optical path:

µh =

∫∞
0
h g(h) dh∫∞

0
g(h) dh

(7)

In addition to shifting the center of the spatial response,
larger solar zenith angles can coarsen the effective spatial 20

resolution by stretching the water vapor sensitivity footprint
in the sunward direction. We define the effective spatial res-
olution, Re, as the symmetric horizontal distance from the
center point which encloses 68.2% of the spatial response.
This would be equivalent to the area inside a single standard 25

deviation if the response function were Gaussian.

0.682 =

∫ µh+Re

µh−Re
g(h) dh∫∞

0
g(h) dh

(8)

The left panel of Figure 3 shows the relative sensitivity to
water vapor at different horizontal offsets for a nadir-viewing
measurement of a tropical atmosphere at 4 km acquisition al-
titude, similar to the observing geometry of the following ex- 30

periments. We show the response areas for three solar zenith
angles. As the solar angles increase, the response function
extends farther from the target pixel, with increasingly “thick
tails” caused by water absorption along the slanted down-
welling path. Figure 4 shows the resulting resolutions as a 35

function of solar zenith angle at different viewing geome-
tries and atmospheric profiles, at sensor altitudes of 4 km and
Low Earth Orbit (LEO). It shows that the spatial sensitivity is
only weakly dependent on the sensor altitude, and somewhat
dependent on the viewing angle and the vertical profile of 40

water vapor in the atmosphere. The solar zenith angle is the
dominant influence on spatial resolution, motivating a care-
ful selection of flightlines for the following experiments. The
spatial footprint projected on the ground is not radially sym-
metric; it is long and thin, but retains the native spatial resolu- 45

tion along its short axis. Consequently, for isotropic structure
functions the effective spatial resolution is a worst case, and
sensitivity improves as one calculates structure functions in
directions orthogonal to the sun.

2.2 Inversion methodology 50

To estimate qv , we invert a combined model of surface and
atmosphere. We use a Bayesian Maximum A Posteriori for-
malism (Rodgers, 2000) that is common among atmospheric
sounding missions. Recent work extended this approach to
the Visible-Shortwave Infrared spectral interval (Thompson 55

et al., 2018b, 2019). The solar-reflected regime is strongly in-
fluenced by variability in surface reflectance. Consequently,
we fit atmospheric parameters simultaneously with a flexible
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Figure 3. The relative sensitivity to water vapor at 4 km acquisition
altitude in a tropical atmosphere as a function of horizontal distance
from nadir, partitioned by solar zenith angle θs.
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Figure 4. The effective spatial resolution as a function of solar
zenith angle θs, at both 4 km and low earth orbit (LEO) acquisition
altitudes. The red line shows a sub-arctic winter atmospheric profile
indicating the range of spatial resolution across two very different
atmospheric conditions. In reality, the sun never reaches low zenith
angles in polar regions of the globe.

surface model. As described in Section 2.1, our state vector
x includes surface reflectance in every channel, the column
water vapor concentration qv , and the aerosol optical depth at
550 nm. A forward model F (x) transforms this state vector
into a simulated radiance at the sensor following Equation 5.5

Our inversion determines the most likely state vector to
explain the observation Lo. It includes background knowl-
edge with a multivariate Gaussian prior over state vector ele-
ments, with mean µa and covariance Σa. We fit this distribu-

tion as in (Thompson et al., 2019), with a library of diverse 10

reflectance spectra. Shrinkage regularization (Theiler, 2012)
ensures that the inversion can represent spectra not spanned
by original library subspace. The inversion balances this
prior against the measurement noise in Equation 5, which is
determined from a component-wise instrument performance 15

model (Thompson et al., 2020). The optimal state vector min-
imizes the following cost function:

χ(x) = (F (x)−Lo)TΣ−1e (F (x)−Lo)+(x−µa)TΣ−1a (x−µa)
(9)

where Σe is the instrument noise. This cost is proportional to
the negative logarithm of the posterior probability, a product
of multivariate Gaussian prior and likelihood terms. We solve 20

it with a trust region gradient descent optimization, a nonlin-
ear optimization approach that respects positivity constraints
on the free parameters (Lenders et al., 2018) In principle, any
gradient based optimization would suffice with an appropri-
ate starting point. The inversion typically converges in 10-20 25

iterations.

2.3 Postprocessing and structure functions

Before analyzing the spatial structure of the resulting H2O
maps, we perform several postprocessing steps to improve
the map consistency. Even a highly accurate retrieval is likely 30

to suffer some biases due to the influence of the surface type
or magnitude. For example, very slight errors in atmospheric
path radiance estimates are proportionally larger for dark
targets, which can induce a spurious dependence between
albedo and water vapor. Surface reflectance features that 35

overlap water vapor absorptions can also influence retrievals.
Finally, minor differences in the radiometric response or lin-
earity of different cross-track elements can create striping
artifacts in derived products. We address all of these issues
with a single empirical correction. We first define a grid of 40

locations i ∈ L where the retrieval is performed. We assert
that the retrieved water vapor at each location i, written q̂i, is
the combination of an underlying “true” water vapor signal
qi, zero-mean measurement noise εq , and non-stochastic in-
terference by surface and systematic instrument effects. We 45

define a feature vectorψi to include the surface reflectance in
each channel, and a sparse position vector p encoding the as-
sociated cross-track position on the Focal Plane Array (FPA)
in a stacked binary representation. The position encoding en-
ables the model to represent radiometric sensitivity of differ- 50

ent FPA elements. The column vector ψi thus combines ρi
and pi. For simplicity, we assume the surface interference is
a linear combination of these features, weighted by coeffi-
cients φ:

q̂i = qi+φ
Tψi+ εq (10)

To estimate φ, we treat the true water vapor component as 55

a random variable. Over large spatial scales, biases due to
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diverse content will tend to average out, and the sample mean
of retrieved values can be used to approximate the true mean.
Rearranging algebraically, we define the local vapor anomaly
Ai as:

Ai = q̂i−

 1

|L|
∑
j∈L

q̂j

= φTψi+ εw (11)

Where εw now incorporates variability due to retrieval noise5

as well as variability in the true water vapor field. Since εw
is zero mean, Equation 11 reduces to a straightforward lin-
ear regression problem. For a data matrix U with rows made
up of all reflectance spectra, and a vector A of anomaly val-
ues, we estimate φ with ordinary least squares regression.10

We subtract the predicted error from the original estimate to
yield the bias-corrected estimate q

′

i:

q′i = q̂i− φ̂Tψi for φ̂=U(UTU)−1UTA (12)

To apply the bias correction, we segment long flightlines into
segments of no longer than 2000 pixels each, and apply the
interference correction to each segment independently.15

A final postprocessing operation smooths each water va-
por image with a Gaussian spatial filter. This dramatically re-
duces the retrieval noise, making it possible to resolve much
finer structures. This noise reduction is also beneficial for es-
timating structure functions, which are bounded artificially20

on the low end by the average squared noise in neighboring
pixels. We use leave-one-out cross-validation (Shao, 1993) to
select an optimal blurring kernel width. To score a candidate
width, we compare every point in the scene to the predic-
tion made by applying the blurring kernel to that location,25

excluding the point under test with appropriate renormaliza-
tion. The optimal kernel standard deviations range from 4 to
6 in different scenes; we use the lower value to preserve fine
spatial structure at sub-100m scales.

After these postprocessing steps, we calculate empirical30

structure functions for each pixel shift distance d, computing
the squared differences between image locations shifted in
the along-track direction. Recall that the long flightlines are
corrected in parts no longer than 2000 pixels in length, re-
vealing structure functions up to 4 km. To avoid minor offsets35

in the vapor field on each side of a border, we do not permit
shifts across multiple segments. We aggregate the statistics
of all segments to form a structure function estimate for each
flightline. We manually mask any visible artifacts in water
vapor images to exclude them from the calculation. These40

artifacts are primarily due to the presence of clouds or their
shadows. Clouds can also disrupt their local light fields with
scattered illumination, an effect visible in water vapor maps
as obvious halos around clouds and their shadows. To miti-
gate this effect, we dilate the masks by 200 m horizontally.45

3 Results: AERONET Overflights

We first assess the absolute accuracy of water vapor ab-
sorption measurements using airborne overflights of the
AERONET robotic observation network (Holben et al.,
1998). The AERONET sunphotometers view the sun di- 50

rectly, estimating water vapor by solar extinction (Pérez-
Ramírez et al., 2014). Consequently, they do not measure the
same optical path as the downlooking sensor. Nevertheless,
these coincident overflights validate the approach and pro-
vide a ceiling for unmodeled uncertainties. The airborne in- 55

strument is AVIRIS-C (Green et al., 1998). It flew on an ER-
2 aircraft at approximately 20 km altitude. Our dataset spans
six years of operations over California, from 2013-2019, dur-
ing which it overflew active terrestrial AERONET sites on
over 100 occasions. Our atmospheric model for these obser- 60

vations used an Air Force Geophysics Laboratory (AFGL)
midlatitude summer profile (Anderson et al., 1986). Aerosols
were light throughout the overflights, so we omitted them
from the state vector.

We use several filtering methods to remove uncertain dat- 65

apoints. Many overflights are contaminated by clouds. Our
comparison excludes obvious clouds recognized by an es-
timated surface reflectance at 450 nm above 0.2. However,
even when opaque clouds do not directly cover the aeronet
location, high-altitude cirrus, cloud shadows or scattered ir- 70

radiance can contaminate a retrieval. Additionally, high spa-
tiotemporal variability in water vapor can cause a discrep-
ancy; it would aggravate the difference in optical paths,
as well as the imperfect temporal coincidence between the
AERONET acquisitions and the overflight. Considering the 75

strong influence of θs demonstrated in Figure 3, and that θs
during typical flights often reaches 45 degrees or greater, the
ground-based measurement could see a very different vapor
field if humidity were not horizontally homogeneous. To ad-
dress these issues, we remove any datapoints where the in- 80

situ standard deviation in H2O is larger than 0.1 g cm−2, es-
timated by comparing the 10 temporally closest acquisitions.
After this filtering step, 64 datapoints remain. Some discrep-
ancies in the optical paths remain, which become larger for
column water vapor in the free troposphere than in the plan- 85

etary boundary layer. As neither measurement resolves the
detailed vertical profile, it is not possible to distinguish these
cases without additional information.

Figure 5 compares the AERONET and remote retrievals
for all sites. Error bars indicate the variability in water va- 90

por over the 10 closest timesteps (AERONET) or the 10x10
enclosing rectangle of pixels (AVIRIS-C). Each AERONET
timestep is approximately 5 minutes, so our window provides
a measure of variability in the hour around the flight. These
overflights represent a wide range of atmospheric conditions 95

and solar angles. They span column water vapor concentra-
tions from approximately 0.3 to 2.5. The airborne and up-
looking measurements show strong agreement, with a corre-
lation coefficient R of 0.95. A few AVIRIS-C observations
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Figure 5. Coincident AVIRIS-C vs AERONET water vapor mea-
surements, filtering out AERONET instances with high temporal
variability (1σ > 0.1 g cm−2 over 10 temporally closest measure-
ments).

with very high variability are likely clouds or cloud shadows
that survived the filtering process. Nevertheless, the result is
broadly consistent with AERONET accuracy of 12–15% for
column water vapor, a claim which has been validated inde-
pendently by comparison to microwave radiometers (Pérez-5

Ramírez et al., 2014). This provides confidence in the accu-
racy of the water vapor retrieval. There is a small bias be-
tween the two datasets. However, even if we attributed it en-
tirely to the airborne data such an offset would not influence
the structure function measurement.10

4 Results: Structure Function Measurement

We apply the H2O retrieval methodology to four flightlines
from a 2018 AVIRIS-NG campaign in India. We selected
these flightlines for favorable solar observing geometry and
because they represented two distinct conditions observed on15

different days. All flightlines were at 4 km altitude over wa-
ter, providing a uniform, topographically-flat surface for va-
por retrievals. On May 12, two flightlines encountered scat-
tered low clouds. On May 14, two more flightlines encoun-
tered clear skies. We restricted our study to flights with so-20

lar zenith angles less than 10 degrees, a condition which
occurred on two flight days. This provided effective spa-
tial resolutions from 80 to 250 m at nadir. In comparison,
the native spatial sampling of AVIRIS-NG at these altitudes
was 4 m. In addition to improving spatial resolution, the25

extreme solar angles also produced significant sunglint, re-

vealing near infrared water features that would otherwise be
masked by the absorption of the water surface. Information
on each flightline appears in Table 1. We applied the standard
AVIRIS-NG radiance calibration procedure (Chapman et al., 30

2019), including corrections to the spectral response function
(Thompson et al., 2018a). We then performed water vapor re-
trievals on all flightlines using a tropical atmospheric profile
(Anderson et al., 1986). AVIRIS-NG had a higher intrinsic
Signal to Noise Ratio (SNR) than AVIRIS Classic, and the 35

solar angles provided more signal than a typical AERONET
overflight from the validation experiment. Consequently, we
expected a more sensitive retrieval in the India datasets.

To provide context for interpreting the vapor fields, we an-
alyzed MERRA-2 reanalysis data (Gelaro et al., 2017) for 40

each of the two days. The atmospheric conditions were gen-
erally similar across the overflights, with light trade winds
and the lack of an obvious inversion to stratify boundary
layer processes. There were also some differences between
the days. Wind velocity changed slightly, but was not obvi- 45

ously tied to any change in atmospheric turbulence. The rela-
tive humidity was generally higher on the 14th. The lapse rate
was slightly more variable: 8 K km−1 at 760 hPa as opposed
to 7 K km−1 on the 12th. These changes would be consistent
with a slightly more turbulent atmosphere and a shallower 50

scaling exponent, though there was no obvious step change in
atmospheric stability. Figure 6 shows the temperature, lapse
rate, specific and relative humidity for each day.

Figure 7 shows a typical spectrum fit. The top panel shows
the radiance measurement. The converged model matches the 55

measurement closely, with largest discrepancies in the short-
est wavelengths. The middle panel shows the residual error.
Some structure at the sub-2% level is consistent with mi-
nor model discrepancies or calibration errors. These mostly
affect the shortest wavelengths outside the dominant water 60

absorption intervals. The reflectance spectrum in the bot-
tom panel shows a good quality retrieval of a water surface.
There is considerable sunglint, a spectrally-flat additive sig-
nal that uniformly elevates the spectrum. This raises the near-
to shortwave-infrared reflectance, which would normally be 65

zero over liquid water, to values of 12-13%. Elevated re-
flectance in the presence of sunglint enables high-accuracy
retrievals of qv over open water. This is a reliable conse-
quence of small solar zenith angles under a wide range of
wind conditions. 70

Figure 8 shows the column water vapor maps for individ-
ual segments of the flightlines. In the top panels, dark blue
areas indicate manual masks applied to exclude cloudy re-
gions. After the interference correction, the vapor maps are
generally free of artifacts except for a minor band at the zero 75

phase angle. This artifact, indicated by a white arrow, may
be related to issues with the sun glint bidirectional reflectance
distribution or the aircraft shadow. Therefore, it was excluded
from the statistics. The smallest-scale variability is almost
certainly related to noise in the retrieval algorithm. Larger 80

scale coherent structures show that meaningful differences



8 D. R. Thompson, et al.: Imaging Atmospheric Water Vapor

Label Flightline ID Date θs NadirRe (m) Latitude N Longitude W Length (m)
A ang20180512t052609 12 May 2018 9.7 250 21.649 87.775 24000
B ang20180512t053942 12 May 2018 6.9 177 21.639 87.789 24000
C ang20180514t055115 14 May 2018 4.1 105 21.524 88.346 8000
D ang20180514t060206 14 May 2018 3.1 79 21.526 88.325 8000

Table 1. Flightlines used for structure function analysis.

Figure 6. MERRA-2 reanalysis predictions for the two flight days. Counterclockwise from upper left: temperature, specific humidity, lapse
rate, and relative humidity.

in water vapor content are resolved at the level of 1-3%, over
scales comparable to the predicted spatial resolutions of 80-
250 m. The center and bottom panels show example maps for
flightlines C and D on May 14, which were entirely free of
clouds. In aggregate, the flightlines encountered water vapor5

values ranging from about 3.23 to 3.42 g cm−2. The smooth-
ing operation dramatically increases the contrast of spatial
features (Figure 9).

Figure 10 shows structure functions for the four flightlines
with second-order scaling exponents for representative inter-10

vals. Grey lines indicate the best-fitting power law exponents
over the 500-1000m interval. We also plot the canonical 2/3
slope for reference. The flightlines’ configurations of vapor
and clouds were all unique, but their scaling functions from
the common flight days show similar profiles. This intra-day15

similarity demonstrates the repeatability of the measurement
in a consistent airmass. For flightlines A and B, ζ2 is 0.64 and
0.63 respectively. These values are very close to the classic
2/3 value of a passive scalar in turbulence. The slope con-
tinues to scales well under 1 km, with a steepening of the 20

curve below about 500m. This corroborates the VOCALS-
REx data analyzed by Kahn et al. (2011), although those ob-
servations were taken in a stable regime within and above
stratocumulus clouds off of the coast of S. America. In this
case, the observed steepening continues to scales approach- 25

ing the effective spatial resolution of approximately 250 m.
The right panel shows flights C and D on May 14. These
flightlines have shallower profiles in the 500-1000 m range,
with scaling exponents of 0.41 and 0.29. The curves are less
consistent across the two overflights, which might be due to 30
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Figure 7. Top: Example radiance spectrum. Middle: Model fit resid-
ual. Bottom: Estimated reflectance with 95% confidence bounds.

small sample sizes. Flightlines C and D contained just one
segment of 2000 m, compared with six segments in each of
flightlines A and B.

To confirm that the results were robust to slight differences
in viewing angles, we recalculated the same result using the5

central half of the flightline data. This excluded all off-nadir
view angles greater than approximately 9 degrees. The re-
sults did not change significantly; flightlines A,B,C and D
showed ζ2= 0.55, 0.58, 0.41 and 0.29 respectively. These dif-
ferences would not be large enough to change our interpre-10

tation. In all cases, the maps comprise millions of indepen-
dent measurements making it possible to resolve structures
of magnitudes smaller than the single-pixel noise. All acqui-
sitions, including the extreme shallow scaling of flightlines C
and D, are in the range of exponents predicted for convective15

airmasses by Selz et al. (2017). This is consistent with the
presence of convective clouds in the flightlines.

5 Discussion

The airborne experiments demonstrate the ability of
VSWIR spectroscopy to measure total column water vapor20

3.29 g cm-2 3.37 g cm-2 

3.25 g cm-2 3.35 g cm-2 

Column average H2O vapor, flightline A (ang20180514t060206)

Column average H2O vapor, flightline B (ang20180512t053942)

1 km   

1 km   

Column average H2O vapor, flightline C (ang20180514t055115)

Column average H2O vapor, flightline D (ang20180514t060206)

3.33 g cm-2 3.42 g cm-2 1 km   

3.23 g cm-2 3.34 g cm-2 1 km   

Figure 6

Figure 8. H2O vapor maps. In flightlines A and B, dark blue areas
are masked to avoid clouds. A white arrow in flightline B indicates
an artifact that occurs where the solar phase angle is zero. A white
box in flightline C indicates the area shown by Figure 9.

3.33 g cm-2 3.42 g cm-2 1 km

Figure 9. Left: Initial water vapor map from flightline C. Right:
Noise reduction after kernel smoothing reveals fine-scale structure
at sub-kilometer scales.
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Figure 10. Structure functions for the maps in Figure 8. Top: Flight-
lines A and B. Bottom: Flightlines C and D.

with high precision, but cannot directly apportion this ob-
served variability to different vertical layers. The state of the
lower troposphere generally dominates the overall water va-
por content, but it does not necessarily follow that the tropo-
sphere determines the observed variability over short spatial5

scales. Our derived ζ2 coefficients refer to the horizontal vari-
ability of water vapor integrated along the full solar-reflected
optical path, and variability at different altitudes could con-
tribute to estimated ζ2. For example, one might observe a
superposition of different atmospheric regimes at different10

layers, such as convective and non-convective, or boundary-
layer and free-troposphere, which would blur the variability
in the total column. This could be significant for attribut-
ing the variability or for comparing the observations with
more localized measurements. Given that this study is one15

of the first that explores water vapor variability at such high
horizontal resolution, there is a dearth of independent data
against which to interpret vertical sensitivity.

We can gain insight by framing the relationship between
full column and stratified variability as a statistical ques-20

tion. Other vertically-resolved measurements give evidence
that the derived exponents reflect structure in the lower tro-
posphere and planetary boundary layer. Preliminary support

comes from reprocessed data from the five 2019 Cal/Val
campaign flights of the High Altitude Lidar Observatory 25

(HALO) over the Eastern Pacific (Bedka et al., 2020). The
HALO’s differential absorption lidar (DIAL) water vapor re-
trievals were reprocessed for our analysis with 3 km along-
track averaging, 0.5 km vertical averaging for altitudes 4 km
or lower, and 1 km vertical averaging for altitudes higher than 30

4 km. This along-track averaging provided an optimal bal-
ance of spatial resolution and sensitivity. We integrated the
column water vapor vertically to obtain partial column water
vapor (PCWV) and calculated the squared Pearson correla-
tion coefficient (r2) between the PCWV up to different alti- 35

tudes, and that up to 7 km, which approximated the Total Col-
umn Water Vapor (TCWV). Picking a higher altitude would
have severely restricted the number of valid lidar footprints
due to the flight altitudes, and there was also very little vapor
content above 7 km. To create a dataset which was most sim- 40

ilar to the AVIRIS-NG flight data, we extracted HALO data
over ocean in the least-cloudy parts of each flight, with valid
water vapor retrievals from the lowest bin up to 7 km. Mea-
surements occurred approximately every 200 m and were av-
eraged over 3 km. We required at least 90 % of the 200 m 45

footprints to be non-cloudy within a given 3 km along-track
measurement, and then identified “least cloudy” larger areas
by moving a 750 km window along the flight line and requir-
ing >20 % of the 3 km spacing profiles be clear. The resulting
partial column water vapor quantities appear in Figure 11. 50

Figure 12 shows that in every flight, over 70% of the vari-
ance in TCWV is explained by altitudes less than 2 km, and
more than 90% of the variance is explained by variance at
altitudes less than 3 km. While the horizontal resolution and
meteorology of HALO and AVIRIS-NG flights are different, 55

this provides quantitative evidence that the ζ2 values derived
here most likely refer to bulk variability within the PBL.
This adds to mesoscale studies finding that processes in the
PBL largely control the total atmospheric water vapor con-
tent (Couvreux et al., 2009). It also suggests that, as a com- 60

ponent of a larger measurement and assimilation system, the
total column measurement could provide probabilistic con-
straints on PBL water vapor.
6 Conclusion

This paper describes an approach for mapping column aver- 65

age atmospheric water vapor at sub-kilometer spatial scales
with remote VSWIR imaging spectroscopy. We validate the
method by comparison with in-situ AERONET observa-
tions. We then map column water vapor using reflected so-
lar sunglint over ocean surfaces in several flightlines from 70

an airborne campaign where favorable solar angles permit-
ted a uniquely high resolution measurement. We find scal-
ing behavior broadly consistent with prior studies, with high
repeatability across different observations of the same air-
mass. The experiment is limited in some respects; for ex- 75

ample, it provides only a total-column measurement, making
it less compatible with height-resolved structure functions
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Figure 11. Partial column water vapor for five HALO flights calcu-
lated at different capping altitudes.
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Figure 12. Data from HALO flights suggests that the PBL domi-
nates the total column variability. Correlation coefficients between
the lowest atmospheric layer and the total column water vapor for
different capping altitudes.

(Kahn et al., 2011). Moreover, stringent requirements on ob-
servation geometry limited the dataset to a few representa-
tive flightlines. Nevertheless, it provides a proof of concept
that VSWIR imaging spectroscopy, primarily used for mea-
surements of surface phenomena, can also provide accurate5

water vapor maps for atmospheric studies. The key innova-
tion afforded by VSWIR water vapor retrievals will be the
spatial scale, accuracy, and retrieval capability over land sur-
faces - all of which improve on various aspects of MODIS
bi-spectral or passive microwave imaging techniques.10

Future measurement campaigns aiming to observe water
vapor with this approach should consider both the solar ge-
ometry and signal to noise level, either of which could limit
the resolution. In this study, we limited the influence of solar
geometry by careful selection of observing conditions. When15

this is not possible, computer techniques might be used to re-
move the spatial blurring effect of low solar angles. The ef-

fective spatial response function could be calculated and de-
convolved from the measured vapor field. It may also be pos-
sible to reduce the impact of solar zenith angles by measur- 20

ing the structure function orthogonally to the solar direction,
a premise that will be explored in future work. Regardless
of whether such compensation is possible, the next genera-
tion of orbital VSWIR imaging spectrometers should signif-
icantly increase the data available for fine-scale mapping of 25

atmospheric water vapor.
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