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Abstract. Understanding the subgrid spatial variability of water vapor is important for parameterizing and simulating cloud

processes in General Circulation Models (GCMs). This study maps sub-kilometer spatial structures in total atmospheric column

water vapor with Visible to Shortwave Infrared (VSWIR) imaging spectroscopy. We describe our inversion approach and

validate its accuracy with coincident measurements by airborne imaging spectrometers and the AERONET ground-based

observation network. Next, data from NASA’s AVIRIS-NG spectrometer enables the highest resolution measurement to date5

of water vapor’s spatial variability and scaling properties. We find second order structure function scaling exponents consistent

with prior studies of convective atmospheres. Finally, we conclude by discussing the implications of these measurements and

paths toward future campaigns to build upon these results.
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1 Introduction10

Tropospheric water-vapor is highly variable in space and time. Clouds and precipitation structures are embedded within com-

plex spatial distributions of water vapor that have important consequences for parameterization of moist atmospheric processes

in General Circulation Models (GCMs). The dynamic relationship between water vapor sources, sinks, and atmospheric mixing

leads to highly variable humidity at the sub-grid scale. Understanding this variability, and how it couples to a myriad of cloud

types and multi-scale organization, is key for advancing the parameterization and simulating cloud processes in GCMs. To15

this end, structure functions describe change in the vapor field as a function of distance, quantifying its spatial texture across

scales. They are used to analyze many atmospheric components including temperature, winds, trace gas concentrations, and

water vapor (Nastrom et al., 1986; Cho et al., 1999). Structure functions can indicate the recent history of the air mass. They

can distinguish convective and non-convective systems (Selz et al., 2017), and indicate precipitation rates embedded within a

moist column of air with variable levels of column water vapor (Edwards et al., 2019).20

For a one-dimensional field f(i) indexed by location i, the nth order structure function Sn(r) is defined as:

Sn(r) = E
[
|f(i+ r)− f(i)|n

]
(1)
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where r is a separation distance between pairs of points, and E is the expectation over locations. More generally, Sn(r) can

represent variability along one direction of a multidimensional field. At least one study of water vapor data has found minor

differences in satellite cross-track and along-track directions (Pressel and Collins, 2012), but in general water vapor variability

is considered horizontally isotropic. Sn(r) is estimated using the mean of observed water vapor values at different spatial25

offsets. Over a restricted range of distances, structure functions can be described with a power law:

Sn(r)∝ rζn (2)

where ζn is the scaling exponent of order n. The scaling exponent of order two is related to the commonly-used Fourier power

spectrum exponent β:

β =−(ζ2 + 1) (3)

These values can diagnose specific atmospheric transport processes. Following Kolmogorov theory, a passive tracer in turbu-

lence has a theoretical second-order scaling exponent ζ2 of 2/3, or equivalently, a Fourier power spectrum exponent β of -5/330

(Pope, 2001).

Previous studies have used a range of instruments to measure water vapor structure functions. In situ aircraft sensors measure

a one-dimensional time series along the aircraft flight track. Nastrom et al. (1986) measured separation distances from 150 to

1500 km using this technique. They found ζ2 ranging from the theoretical value of 2/3 to unity. Later Cho et al. (1999) found

ζ2 consistent with 2/3 over distances of multiple kilometers. These surveys have recently been augmented by airborne LiDAR35

measurements, which provide vertical profiles along the flight track. A series of LiDAR observations by Fischer et al. (2012,

2013) measured airmasses at scales down to 2 km. They reported ζ2 = 0.6−0.75 in convective airmasses, and ζ2 = 1.0−1.2 in

non-convective airmasses. Convective environments had shallower scaling indicating higher spatial variability at small scales.

They hypothesized that this flatter power spectrum slope, which was also common in boundary layer airmasses, was related to

the small-scale injection of water vapor anomalies by convective eddies. However, their study did not conclusively identify the40

cause. More recently, Selz et al. (2017) compared airborne LiDAR measurements with simulations at scales above 11 km. This

study confirmed that power law exponents were strongly related to altitude and the presence or absence of convection. They

showed ζ2 above 1 for nonconvective airmasses in the free troposphere, near 0.6 in the boundary layer, and as low as 0.2 in

convective airmasses.

Contrasting with localized, high resolution aircraft data, orbital data such as the Atmospheric Infrared Sounder (AIRS) on45

EOS Aqua have provided more comprehensive power law exponents across the mesoscale and synoptic scales, but without

resolving features smaller than typical GCM grids of 100 km. Kahn and Teixeira (2009) developed a global climatology of

scaling properties between 150-1200 km based on vertically-resolved temperature (T) and specific humidity (q) observations by

AIRS. Kahn et al. (2011) extended these results and compared them to climate GCMs, MERRA reanalysis, and VOCALS-REx

in situ observations of vertically-resolved T and q within and above shallow cumulus off of the coast of Peru. They found strong50

evidence of ζ2 = 2/3 scaling in the boundary layer and tropopause at all latitudes, with steeper scaling in the mid-troposphere

and at low latitudes. This was consistent with the view of water vapor as a passive scalar in turbulent flow, and implied more
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small-scale variability than was predicted by contemporaneous GCMs. This increased scaling of the tropical free troposphere

was also consistent with theoretical predictions of steeper scaling of column water vapor within and near strongly precipitating

convection (Edwards et al., 2019). Interestingly, their analysis of aircraft data from the VOCALS-REx experiment suggested a55

steepening of the curve at the smallest scales below 10 km (Kahn et al., 2011). This result suggested a possible change in the

scaling properties at the finest resolutions.

These studies contribute to a growing body of literature on water vapor scaling. However, important gaps remain. High

spatial resolution data are sparse, and most studies explore spatial scales above 1 km. To our knowledge no study has yet

corroborated the Kahn et al. (2011) steepening phenomenon at scales less than 10 km, or probed the structure functions at60

scales less than 2 km. Most aircraft data consist of one dimensional time series, rather than the two-dimensional maps available

from instruments like AIRS. Thus, at the finest scales, small sample sizes can increase uncertainty in the derived exponents

(Selz et al., 2017; Guillaume et al., 2018).

A new generation of orbital instrumentation may shed new light on fine-scale water vapor. Visible to Shortwave Infrared

(VSWIR) imaging spectrometers, such as NASA’s upcoming EMIT mission (Green et al., 2019) or the expected Surface65

Biology and Geology (SBG) investigation (National Academies of Sciences and Medicine, 2018), are highly sensitive to the

water vapor column absorption (Shivers et al., 2019). They typically have a spectral resolution of 5-10 nm and span the

380 - 2500 nm interval, a range which overlaps significant water absorption features. A typical pushbroom instrument could

have as many as 1200 cross-track measurements with ground sampling distances of 30-60 m. Most such investigations target

surface properties. However, a byproduct of this analysis will be accurate column-averaged water vapor measurements at70

high spatial resolution over wide areas. The spatial resolution and accuracy of the derived water vapor column measurements

will be unprecedented, providing opportunities to probe the horizontal variability of water vapor on global scales. Before

these missions launch, archives of airborne precursor data provide an opportunity to validate the technique and begin the

investigation.

This manuscript demonstrates direct mapping of the sub-kilometer spatial structure in column water vapor using an airborne75

VSWIR imaging spectrometer. We first describe our model for vapor absorption features in the near- to shortwave infrared. We

estimate clear-sky vapor concentrations by inverting a combined model of the atmosphere and surface reflectance after filtering

out cloud-affected footprints. We validate the approach with NASA’s “Classic” Airborne Visible Infrared Imaging Spectrome-

ter, AVIRIS-C (Green et al., 1998), evaluating overflights of the AERONET observation network (Holben et al., 1998). Finally,

we analyze imaging spectroscopy data acquired during the “Next Generation” Airborne Visible Infrared Imaging Spectrometer80

(AVIRIS-NG) India campaign of 2018. This campaign includes several scenes with highly favorable solar geometry, provid-

ing a uniquely high resolution measurement of the H2O vapor column. This enables estimation of the H2O spatial structure

functions at sub-kilometer scales. We find confirming evidence of ζ2 = 2/3 scaling in some but not all atmospheres, with Kahn

et al. (2011) curve steepening that continues down to at least 100 m. We conclude by discussing the implications of these

measurements and paths toward future campaigns that could build upon the results.85
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2 Methods

2.1 Atmospheric Model

Our technique estimates water vapor independently for each spatial location by inverting an atmospheric radiative transfer

model. We define a state vector x containing all the free parameters in the system. It includes the surface reflectance vector

ρ, the column water vapor concentration qv , and the aerosol optical depth at 550 nm. Aerosol optical properties were derived90

from a canonical sulfate aerosol type and validated in prior studies of the India campaign (Thompson et al., 2019). A forward

model F (x) maps this state onto an observed radiance at the sensor, Lo:

Lo = F (x) + ε (4)

Boldface represents a vector or matrix, e.g.Lo has one element for each spectrometer channel. The random variable ε represents

instrument noise, distributed according to a zero-mean Gaussian with covariance Σe. We can decompose Lo into different

photon paths, with ◦ representing element-wise multiplication:95

Lo = Latm + t ◦Ldn ◦
ρ

1−S ◦ρ + ε (5)

Here Latm represents the path radiance caused by molecular and particle scattering; these photons never reach the surface.

The second term represents all the photons that interact with the surface at least once. Ldn is the downwelling illumination at

the bottom of the atmosphere. ρ is the spectral surface reflectance. t is the atmospheric transmittance from the surface to the

sensor along its line of sight. S is the spherical sky albedo observed from the ground. The relation in Equation 5 holds for a

locally-homogeneous and Lambertian surface, but small departures from these conditions are not catastrophic and in any case100

the assumptions hold sufficiently well for the scenes in this study.

Our atmospheric model calculates the optical coefficients Latm, t, and S using the MODTRAN 6.0 software package (Berk

and Hawes, 2017). Specifically, we use the DISORT code with 8-stream multiple scattering calculations. The absorption model

uses a correlated-k representation with 0.1 cm−1 bins. Vertical profiles are assigned from a 20-layer stratified atmosphere.

For computational efficiency, we do not run the complete RTM for each evaluation of F (x). Instead, we calculate optical105

coefficients in advance to fill a lookup table for each component in the right side of equation 5, and then interpolate within

this table to determine the precise radiance for any given state vector. Figure 1 illustrates the atmospheric transmittance in

the measurement interval from 380-2500 nm, including several prominent absorption features related to H2O rovibrational

overtones. Absorption features at 940 and 1140 nm carry most of the water column information. Stronger features at 1380 and

1880 nm are saturated at atmospheric path lengths, and consequently less useful.110

The remote H2O measurements aim to quantify the integrated mass of water vapor directly above each pixel in the scene.

However, this is not always possible for a solar-reflected signal. Neglecting scattering, which is small in the near infrared, the

remote water vapor observation measures absorption along a two-part optical path from the sun to the ground to the sensor.

The sun is seldom directly overhead, and its downwelling illumination enters the atmosphere at some horizontal offset from

the reflection point (Figure 1, Right). Consequently, a spectrum’s spatial sensitivity can extend far beyond the target pixel115
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Figure 1. Left: Atmospheric transmissivity from 380-2500 nm reveals multiple H2O absorption features, indicated with gray arrows. Right:

The spatial sensitivity of solar-reflected measurements depends on water vapor absorption along the optical path from the sun to the ground

to the sensor. Aircraft image credit: NASA

in the direction of the sun. Projected onto the ground, the vapor absorption path forms a long, thin footprint that extends

tens or hundreds of meters from the target pixel in the sunward direction. To quantify this effect, we define the water vapor

spatial sensitivity as the extinction-weighted distance between downwelling and upwelling beams. We use g(h) to represent the

relative sensitivity to water vapor at h, some horizontal offset distance in the solar direction. For a nadir-pointed observation,

assuming that the vertical profile of water vapor is locally constant, the relationship is:120

g(h) =





∫
z∈[zs,zo]

κ(z) dz if h = 0

κ( h
tanθs

+ zs) 1
cosθs

if h> 0

(6)

where κ(z) is the water vapor number density at altitude z. The variables zs and zo represent the surface elevation and sensor

altitude respectively. The spatial sensitivity is strongly dependent on solar zenith angle (θs). It is also dependent to some extent

on the view angle; if the observation is off-nadir, g(h) includes the sensitivity of both upward and downward paths. We define

the average spatial offset of a measurement, µh, as the mean horizontal position of the water vapor along the two-part optical

path:125

µh =

∫∞
0
h g(h) dh∫∞

0
g(h) dh

(7)

In addition to shifting the center of the spatial response, larger solar zenith angles can coarsen the effective spatial resolution

by stretching the water vapor sensitivity footprint in the sunward direction. We define the effective spatial resolution,Re, as the

symmetric horizontal distance from the center point which encloses 68.2% of the spatial response. This would be equivalent to
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Figure 2. Left: the relative sensitivity to water vapor at 4 km acquisition altitude in a tropical atmosphere as a function of horizontal distance

from nadir, partitioned by solar zenith angle θs. Right: the effective spatial resolution as a function of solar zenith angle θs, at both 4 km

and low earth orbit (LEO) acquisition altitudes. The red line shows a sub-arctic winter atmospheric profile indicating the range of spatial

resolution across two very different atmospheric conditions. In reality the sun never reaches low zenith angles in polar regions of the globe.

the area inside a single standard deviation if the response function were Gaussian.

0.682 =

∫ µh+Re

µh−Re
g(h) dh

∫∞
0
g(h) dh

(8)

Note that the spatial footprint projected on the ground is not radially symmetric; it is long and thin, but retains the native spatial130

resolution along its short axis. The left panel of Figure 2 shows the relative sensitivity to water vapor at different horizontal

offsets for a nadir-viewing measurement of a tropical atmosphere at 4 km acquisition altitude, similar to the observing geometry

of the following experiments. We show the response areas for three solar zenith angles. As the solar angles increase, the

response function extends farther from the target pixel, with increasingly “thick tails” caused by water absorption along the

slanted downwelling path. The right panel of Figure 2 shows the resulting resolutions as a function of solar zenith angle at135

different viewing geometries and atmospheric profiles, at sensor altitudes of 4 km and Low Earth Orbit (LEO). It shows that

the spatial sensitivity is only weakly dependent on the sensor altitude, and somewhat dependent on the viewing angle and

the vertical profile of water vapor in the atmosphere. The solar zenith angle is the dominant influence on spatial resolution,

motivating a careful selection of flightlines for the following experiments.

2.2 Inversion methodology140

To estimate qv , we invert a combined model of surface and atmosphere. We use a Bayesian Maximum A Posteriori formalism

(Rodgers, 2000) that is common among atmospheric sounding missions. Recent work extended this approach to the Visible-
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Shortwave Infrared spectral interval (Thompson et al., 2018b, 2019). The solar-reflected regime is strongly influenced by

variability in surface reflectance. Consequently, we fit atmospheric parameters simultaneously with a flexible surface model. As

described in Section 2.1, our state vector x includes surface reflectance in every channel, the column water vapor concentration145

qv , and the aerosol optical depth at 550 nm. A forward model F (x) transforms this state vector into a simulated radiance at

the sensor following Equation 5.

Our inversion determines the most likely state vector to explain the observation Lo. It includes background knowledge

with a multivariate Gaussian prior over state vector elements, with mean µa and covariance Σa. We fit this distribution as in

(Thompson et al., 2019), with a library of diverse reflectance spectra. Shrinkage regularization (Theiler, 2012) ensures that150

the inversion can represent spectra not spanned by original library subspace. The inversion balances this prior against the

measurement noise in Equation 5, which is determined from a component-wise instrument performance model (Thompson

et al., 2020). The optimal state vector minimizes the following cost function:

χ(x) = (F (x)−Lo)TΣ−1
e (F (x)−Lo) + (x−µa)TΣ−1

a (x−µa) (9)

where Σe is the instrument noise. This cost is proportional to the negative logarithm of the posterior probability, a product of

multivariate Gaussian prior and likelihood terms. We solve it with a trust region gradient descent optimization. In principle,155

any gradient based optimization would suffice with an appropriate starting point. The inversion typically converges in 10-20

iterations.

2.3 Postprocessing and structure functions

Before analyzing the spatial structure of the resulting H2O maps, we perform several postprocessing steps to improve the

map consistency. Even a highly accurate retrieval is likely to suffer some biases due to the influence of the surface type or160

magnitude. For example, very slight errors in atmospheric path radiance estimates are proportionally larger for dark targets,

which can induce a spurious dependence between albedo and water vapor. Surface reflectance features that overlap water

vapor absorptions can also influence retrievals. Finally, minor differences in the radiometric response or linearity of different

cross-track elements can create striping artifacts in derived products. We address all of these issues with a single empirical

correction. We first define a grid of locations i ∈ L where the retrieval is performed. We assert that the retrieved water vapor165

at each location i, written q̂i, is the combination of an underlying “true” water vapor signal qi, zero-mean measurement noise

εq , and non-stochastic interference by surface and systematic instrument effects. We define a feature vector ψi to include

the surface reflectance in each channel, and a sparse position vector p encoding the associated cross-track position on the

Focal Plane Array (FPA) in a stacked binary representation. The position encoding enables the model to represent radiometric

sensitivity of different FPA elements. The column vector ψi thus combines ρi and pi. For simplicity, we assume the surface170

interference is a linear combination of these features, weighted by coefficients φ:

q̂i = qi +φTψi + εq (10)

To estimate φ, we treat the true water vapor component as a random variable. Over large spatial scales, biases due to diverse

content will tend to average out, and the sample mean of retrieved values can be used to approximate the true mean. Rearranging
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algebraically, we define the local vapor anomaly Ai as:

Ai = q̂i−


 1
|L|
∑

j∈L
q̂j


= φTψi + εw (11)

Where εw now incorporates variability due to retrieval noise as well as variability in the true water vapor field. Since εw is175

zero mean, Equation 11 reduces to a straightforward linear regression problem. For a data matrix U with rows made up of all

reflectance spectra, and a vector A of anomaly values, we estimate φ with ordinary least squares regression. We subtract the

predicted error from the original estimate to yield the bias-corrected estimate q
′
i:

q′i = q̂i− φ̂Tψi for φ̂=U(UTU)−1UTA (12)

To apply the bias correction, we segment long flightlines into segments of no longer than 2000 pixels each, and apply the

interference correction to each segment independently.180

A final postprocessing operation smooths each water vapor image with a Gaussian spatial filter. This dramatically reduces

the retrieval noise, making it possible to resolve much finer structures. This noise reduction is also beneficial for estimating

structure functions, which are bounded artificially on the low end by the average squared noise in neighboring pixels. We use

leave one out cross-validation (Shao, 1993) to select an optimal blurring kernel width. To score a candidate width, we compare

every point in the scene to the prediction made by applying the blurring kernel to that location, excluding the point under test185

with appropriate renormalization. The optimal kernel standard deviations range from 4 to 6 in different scenes; we use the

lower value to preserve fine spatial structure at sub-100m scales.

After these postprocessing steps, we calculate empirical structure functions for each pixel shift distance d, computing the

squared differences between image locations shifted in the along-track direction. Recall that the long flightlines are corrected

in parts no longer than 2000 pixels in length, revealing structure functions up to 4 km. To avoid minor offsets in the vapor field190

on each side of a border, we do not permit shifts across multiple segments. We aggregate the statistics of all segments to form

a structure function estimate for each flightline. We manually mask any visible artifacts in water vapor images to exclude them

from the calculation. These artifacts are primarily due to the presence of clouds or their shadows. Clouds can also disrupt their

local light fields with scattered illumination, an effect visible in water vapor maps as obvious halos around clouds and their

shadows. To mitigate this effect, we dilate the masks by 200 m in all directions.195

3 Results: AERONET Overflights

We first assess the absolute accuracy of water vapor absorption measurements using airborne overflights of the AERONET

robotic observation network (Holben et al., 1998). The AERONET sunphotometers view the sun directly, estimating wa-

ter vapor by solar extinction (Pérez-Ramírez et al., 2014). Consequently, they do not measure the same optical path as the

downlooking sensor. Nevertheless, these coincident overflights validate the approach and provide a ceiling for unmodeled un-200

certainties. The airborne instrument is AVIRIS-C (Green et al., 1998). It flew on an ER-2 aircraft at approximately 20 km

altitude. Our dataset spans six years of operations over California, from 2013-2019, during which it overflew active terrestrial
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AERONET sites on over 100 occasions. Our atmospheric model for these observations used an AFGL midlatitude summer

profile (Anderson et al., 1986). Aerosols were light throughout the overflights, so we omitted them from the state vector.

We use several filtering methods to remove uncertain datapoints. Many overflights are contaminated by clouds. Our compar-205

ison excludes obvious clouds recognized by an estimated surface reflectance at 450 nm above 0.2. However, even when opaque

clouds do not directly cover the aeronet location, high-altitude cirrus, cloud shadows or scattered irradiance can contaminate

a retrieval. Additionally, high spatiotemporal variability in water vapor can cause a discrepancy; it would aggravate the differ-

ence in optical paths, as well as the imperfect temporal coincidence between the AERONET acquisitions and the overflight.

Considering the strong influence of θs demonstrated in Figure 2, and that θs during typical flights often reaches 45 degrees or210

greater, the ground-based measurement could see a very different vapor field if humidity were not horizontally homogeneous.

To address these issues, we remove any datapoints where the in-situ standard deviation in H2O is larger than 0.1 g cm−2, esti-

mated by comparing the 10 temporally closest acquisitions. After this filtering step, 64 datapoints remain. Some discrepancy in

the optical paths remain, which becomes larger for column water vapor in free troposphere than the planetary boundary layer.

As neither measurement resolves the detailed vertical profile, it is not possible to distinguish these cases without additional215

information.

Figure 3 compares the AERONET and remote retrievals for all sites. Error bars indicate the variability in water vapor over

the 10 closest timesteps (AERONET) or the 10x10 enclosing rectangle of pixels (AVIRIS-C). Each AERONET timestep is

approximately 5 minutes, so our window provides a measure of variability in the hour around the flight. These overflights

represent a wide range of atmospheric conditions and solar angles. They span column water vapor concentrations from approx-220

imately 0.3 to 2.5. The airborne and uplooking measurements show strong agreement, with a correlation coefficient R of 0.95.

A few AVIRIS-C observations with very high variability are likely clouds or cloud shadows that survived the filtering process.

Nevertheless, the result is broadly consistent with AERONET accuracy of 12–15% for column water vapor, a claim which has

been validated independently by comparison to microwave radiometers (Pérez-Ramírez et al., 2014). This provides confidence

in the accuracy of the water vapor retrieval. There is a small bias between the two datasets. However, even if we attributed it225

entirely to the airborne data such an offset would not influence the structure function measurement.

4 Results: Structure Function Measurement

We apply the H2O retrieval methodology to four flightlines from a 2018 AVIRIS-NG campaign in India. We selected these

flightlines for favorable solar observing geometry and because they represented two distinct conditions observed on different

days. All flightlines were at 4 km altitude over water, providing a uniform, topographically-flat surface for vapor retrievals. On230

May 12, two flightlines encountered scattered low clouds. On May 14, two more flightlines encountered clear skies. The solar

zenith angles were all less than 10 degrees, providing effective spatial resolutions from 80 to 250 m at nadir. In comparison,

the native spatial sampling of AVIRIS-NG at these altitudes was 4 m. In addition to improving spatial resolution, the extreme

solar angles also produced significant sunglint, revealing near infrared water features that would otherwise be masked by

the absorption of the water surface. Information on each flightline appears in Table 1. We applied the standard AVIRIS-NG235
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Figure 3. Coincident AVIRIS-C vs AERONET water vapor measurements, filtering out AERONET instances with high temporal variability

(1σ > 0.1 g cm−2 over 10 temporally closest measurements).

radiance calibration procedure (Chapman et al., 2019), including corrections to the spectral response function (Thompson et al.,

2018a). We then performed water vapor retrievals on all flightlines using a tropical atmospheric profile (Anderson et al., 1986).

AVIRIS-NG had a higher intrinsic Signal to Noise Ratio (SNR) than AVIRIS Classic, and the solar angles provided more signal

than a typical AERONET overflight from the validation experiment. Consequently, we expected a more sensitive retrieval in

the India datasets.240

Label Flightline ID Date θs NadirRe (m) Latitude N Longitude W

A ang20180512t052609 12 May 2018 9.7 250 21.649 87.775

B ang20180512t053942 12 May 2018 6.9 177 21.639 87.789

C ang20180514t055115 14 May 2018 4.1 105 21.524 88.346

D ang20180514t060206 14 May 2018 3.1 79 21.526 88.325
Table 1. Flightlines used for structure function analysis.

Figure 4 shows a typical spectrum fit. The top panel shows the radiance measurement. The converged model matches

the measurement closely, with largest discrepancies in the shortest wavelengths. The middle panel shows the residual error.

Some structure at the sub-2% level is consistent with minor model discrepancies or calibration errors. These mostly affect the

shortest wavelengths outside the dominant water absorption intervals. The reflectance spectrum in the bottom panel shows a
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good quality retrieval of a water surface. There is considerable sunglint, a spectrally-flat additive signal that uniformly elevates245

the spectrum. This raises the near- to shortwave-infrared reflectance, which would normally be zero over liquid water, to values

of 12-13%. Elevated reflectance in the presence of sunglint enables high-accuracy retrievals of qv over open water. This is a

reliable consequence of small solar zenith angles under a wide range of wind conditions.

Figure 5 shows the column water vapor maps for individual segments of the flightlines. In the top panels, dark blue areas

indicate manual masks applied to exclude cloudy regions. After the interference correction, the vapor maps are generally250

free of artifacts except for a minor band at the zero phase angle. This artifact, identified by a white arrow, may be related to

pathological effects from the sun glint bidirectional reflectance distribution or the aircraft shadow. It was excluded from the

statistics. The smallest-scale variability is almost certainly related to noise in the retrieval algorithm. Larger scale coherent

structures show that meaningful differences in water vapor content are resolved at the level of 1-3%, over scales comparable

to the predicted spatial resolutions of 80-250 m. The center and bottom panels show example maps for flightlines C and D on255

May 14, which were entirely free of clouds. In aggregate, the flightlines encountered water vapor values ranging from about

3.23 to 3.42 g cm−2. The smoothing operation dramatically increases the contrast of spatial features (Figure 6).

Figure 7 shows structure functions for the four flightlines with second order scaling exponents for representative intervals.

Grey lines indicate the best-fitting power law exponents over the 500-1000m interval. We also plot the canonical 2/3 slope for

reference. The flightlines’ configurations of vapor and clouds were all unique, but their scaling functions from the common260

flight days show similar profiles. This intra-day similarity demonstrates the repeatability of the measurement in a consistent

airmass. For flightlines A and B, ζ2 is 0.64 and 0.63 respectively. These values are very close to the classic 2/3 value of a

passive scalar in turbulence. The slope continues to scales well under 1 km, with a steepening of the curve below about 500m.

This corroborates the VOCALS-REx data analyzed by Kahn et al. (2011), although those observations were taken in a stable

regime within and above stratocumulus clouds off of the coast of S. America. In this case, the observed steepening continues265

to scales approaching the effective spatial resolution of approximately 250 m. The right panel shows flights C and D on May

14. These flightlines have shallower profiles in the 500-1000 m range, with scaling exponents of 0.41 and 0.29. The curves are

less consistent across the two overflights, which might be due to small sample sizes. Flightlines C and D contained just one

segment of 2000 m, compared with six segments in each of flightlines A and B.

To confirm that the results were robust to slight differences in viewing angles, we recalculated the same result using the270

central half of the flightline data. This excluded all off-nadir view angles greater than approximately 9 degrees. The results

did not change significantly; flightlines A,B,C and D showed ζ2= 0.55, 0.58, 0.41 and 0.29 respectively. These differences

would not be large enough to change our interpretation. In all cases, the maps comprise millions of independent measurements

making it possible to resolve structures of magnitudes smaller than the single-pixel noise. All acquisitions, including the

extreme shallow scaling of flightlines C and D, are in the range of exponents predicted for convective airmasses by Selz et al.275

(2017). This is consistent with the presence of convective clouds in the flightlines.
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Figure 4. Top: Example radiance spectrum. Middle: Model fit residual. Bottom: Estimated reflectance with 95% confidence bounds.
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occurs where the solar phase angle is zero.

13

https://doi.org/10.5194/amt-2020-346
Preprint. Discussion started: 11 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 6. Left: Initial water vapor map from flightine C. Right: Noise reduction after kernel smoothing reveals fine-scale structure at sub-

kilometer scales.
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Figure 7. Structure functions for the maps in Figure 5. Left: Flightlines A and B. Right: Flightlines C and D.
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5 Conclusion

This paper describes an approach for mapping column-average water vapor at sub-kilometer spatial scales with remote VSWIR

imaging spectroscopy. We validate the method by comparison with in-situ AERONET observations. We then map column water

vapor using reflected solar sunglint over ocean surfaces in several flightlines from an airborne campaign where favorable solar280

angles permitted a uniquely high resolution measurement. We find scaling behavior broadly consistent with prior studies,

with high repeatability across different observations of the same airmass. The experiment is limited in some respects; for

example, it provides only a total-column measurement, making it less compatible with height-resolved structure functions

(Kahn et al., 2011). Moreover, stringent requirements on observation geometry limited the dataset to a few representative

flightlines. Nevertheless, it provides a proof of concept that VSWIR imaging spectroscopy, primarily used for measurements285

of surface phenomena, can also provide meaningful, accurate water vapor maps for atmospheric studies.

Future measurement campaigns aiming to observe water vapor with this approach should consider both the solar geometry

and signal to noise level, either of which could limit the resolution achievable. In this study, we limited the influence of solar

geometry by careful selection of observing conditions. When this is not possible, computer techniques might be used to remove

the spatial blurring effect of low solar angles. The effective spatial response function could be calculated and deconvolved from290

the measured vapor field. Regardless of whether such compensation is possible, the next generation of orbital VSWIR imaging

spectrometers should significantly increase the data available for fine-scale mapping of tropospheric water vapor.
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