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Abstract 29 

 30 
Thermodynamic profiles in the planetary boundary layer (PBL) are important observations for a 31 
range of atmospheric research and operational needs.  These profiles can be retrieved from 32 
passively sensed spectral infrared (IR) or microwave (MW) radiance observations, or can be 33 
more directly measured by active remote sensors such as water vapor differential absorption 34 
lidars (DIALs).  This paper explores the synergy of combining ground-based IR, MW, and DIAL 35 
observations using an optimal estimation retrieval framework, quantifying the reduction in the 36 
uncertainty in the retrieved profiles and the increase in information content as additional 37 
observations are added to IR-only and MW-only retrievals.   38 
 39 
This study uses ground-based observations collected during the Perdigao field campaign in 40 
central Portugal in 2017 and during the DIAL demonstration campaign at the Atmospheric 41 
Radiation Measurement Southern Great Plains site in 2017.  The results show that the 42 
information content in both temperature and water vapor is higher for IR instrument relative to 43 
the MW instrument (thereby resulting in smaller uncertainties), and that the combined IR+MW 44 
retrieval is very similar to the IR-only retrieval below 1.5 km.  However, including the partial 45 
profile of water vapor observed by the DIAL increases the information content in the combined 46 
IR+DIAL and MW+DIAL water vapor retrievals substantially, with the exact impact vertically 47 
depending on the characteristics of the DIAL instrument itself.  Furthermore, there is slight 48 
increase in the information content in the retrieved temperature profile using the IR+DIAL 49 
relative to the IR-only; this was not observed in the MW+DIAL retrieval.   50 
  51 



 3 

1. Introduction 52 

High temporal resolution thermodynamic profiles in the planetary boundary layer (PBL) 53 
are needed for a wide range of research and operational weather forecasting needs 54 
(Wulfmeyer et al. 2015).  For example, the vertical distribution of water vapor and temperature 55 
changes markedly over the diurnal cycle, the passage of synoptic features such as frontal 56 
boundaries and dry lines can cause very rapid changes in the thermodynamic structure of the 57 
PBL, and the evolution of convective weather with evaporation-driven cold pools impacts both 58 
the temperature and humidity profiles and feeds back on the storm’s evolution.  Indeed, a large 59 
number of groups have called for improvements in the thermodynamic profiling in the PBL, and 60 
the establishment of ground-based networks to provide these datasets to the atmospheric 61 
science community (e.g., Dabberdt et al. 2005; NRC 2009).   62 

Progress is being made, albeit perhaps slowly.  There are a large number of case studies 63 
using PBL thermodynamic profiling systems to gain insight into how the convective properties 64 
of atmosphere changes (e.g., Feltz et al. 2003; Cimini et al. 2015; Bluestein et al. 2017; Toms et 65 
al. 2017; Mueller et al. 2017), analyses of long-time series to show the capability of these 66 
systems (Löhnert and Maier 2012; Wagner et al. 2008), and utility for improving short-term 67 
nowcasts and forecasts (e.g., Cimini 2011; Caumont et al. 2016; Hu et al. 2019; Coniglio 2019).   68 

In Europe, there are a large number of microwave radiometers that are being 69 
characterized and assimilated (experimentally) into numerical weather prediction models 70 
(Cimini et al. 2018; De Angelis et al. 2017).  Activities in the US have focused primarily on field 71 
campaigns, and the Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) in 72 
particular, which deployed a small network of 6 infrared spectrometers in the central US.  The 73 
PECAN observations are being used to study a range of atmospheric phenomena both 74 
observationally (e.g., Gasmick et al. 2018; Loveless et al. 2019) and via use in numerical weather 75 
prediction models (Johnson et al. 2018; Degelia et al. 2019).   76 

However, these different ground-based remote sensors have generally not been 77 
collocated which makes evaluating the relative differences in the information content of the 78 
observations difficult.  This paper takes advantage of two field campaigns where multiple 79 
ground-based remote sensing systems were collocated to evaluate the relative strengths and 80 
weaknesses of these different observations for thermodynamic profiling in the PBL.  The two 81 
campaigns are Perdigao, which occurred in central Portugal in May-June of 2017 (Fernando et 82 
al. 2019), and a campaign at the ARM Southern Great Plains site (Sisterson et al. 2016) in May-83 
June 2017 to compare a newly developed broadband differential absorption lidar for water 84 
vapor profiling with other instruments (Newsom et al. 2020).  85 

2. Instruments 86 

While there are many different instruments that could be included in this analysis, we 87 
will focus on four instruments that have been demonstrated to run operationally in unattended 88 
modes for weeks or longer, and either already are or will likely soon become commercially 89 
available. Two of these instruments are passive remote sensors (i.e., they do not transmit 90 
electromagnetic energy to the atmosphere) while two are active remote sensors.    91 
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2.1. Microwave radiometer 92 

One type of passive thermodynamic profiler is a microwave radiometer (MWR).  MWRs 93 
used for thermodynamic profiling typically have multiple channels along the high frequency 94 
side of the 22.2 GHz water vapor absorption line (i.e., from 22.2 to 31 GHz) and on the low 95 
frequency side of the 60 GHz oxygen absorption complex (i.e., from 51 to 60 GHz).  Height 96 
dependent pressure broadening of the water vapor line allows the retrieval of a coarsely 97 
resolved water vapor profile, whereas temperature profile information is obtained from the 98 
frequency dependent optical depth.  Generally speaking, the more transparent frequencies 99 
provide information through a deeper portion of the atmosphere and the optically thick 100 
channels provide information closer to the MWR.  Oxygen is well mixed in the atmosphere and 101 
its concentration is known, thus the downwelling radiance observed in the channels that are 102 
primarily sensitive to oxygen can be used to infer the temperature profile.  Water vapor 103 
concentration profiles can be determined from the channels that have sensitivity to water 104 
vapor after the temperature profile is known.  However, there is some level of absorption due 105 
to oxygen in the 22-31 GHz range and water vapor in the 51-60 GHz range, so retrieval methods 106 
need to account for this ‘cross-talk’, and provide some estimate of the correlated errors in the 107 
retrieved profiles. 108 

For this study, we used a 14-channel Humidity and Temperature Profiling (HATPRO) 109 
microwave radiometer (Rose et al. 2005).  This is a fourth-generation system, which is part of 110 
the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS; Wagner et al. 2019). 111 
The instrument specifications are given in Table 1.  The radiometric uncertainty in these 112 
observations were determined via a time-series analysis of the observed brightness 113 
temperatures when the atmosphere could be assumed to be quasi-stationary.  These values are 114 
provided in Table 1.  These radiometric uncertainties are assumed to be uncorrelated between 115 
the different channels. 116 

2.2. AERI 117 

The second passive remote sensor studied here is the Atmospheric Emitted Radiance 118 
Interferometer (AERI).  The AERI is a Fourier transform spectrometer designed to measure 119 
infrared radiation emitted by the atmosphere between 3.3 and 19 µm in wavelength (3000 to 120 
520 cm-1) with a spectral resolution of 0.5 cm-1.  The AERI was designed specifically for the 121 
Department of Energy’s Atmospheric Radiation Measurement (ARM) program (Turner et al. 122 
2016a; Knuteson et al. 2004 a,b).  Its specifications can also be found in Table 1. 123 

The radiometric uncertainty in the AERI observations is derived from the imaginary 124 
component of the AERI’s calibration equation (Revercomb et al. 1988), and thus the noise 125 
spectrum can be derived for each sky observation period.  Turner and Blumberg (2019) have 126 
demonstrated that the radiometric noise in the AERI observations is spectrally uncorrelated. 127 

 128 

2.3. NCAR water vapor DIAL 129 

Water vapor differential absorption lidar (DIAL) work by transmitting pulsed laser energy at 130 
two wavelengths, one of which is selected to have markedly higher water vapor absorption 131 
than the other. These two frequencies are typically referred to as the on-line and off-line 132 
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frequencies. If the two wavelengths are spectrally close to each other (e.g., within a nm in 133 
wavelength), then many of the terms that describe the ratio of the strength of the 134 
backscattered signals cancel out.  The ratio of the on- to off-line return signals is directly related 135 
to the water vapor concentration profile. 136 

The National Center for Atmospheric Research (NCAR) has developed a micropulse water 137 
vapor DIAL.  The approach used by this lidar is the so-called “narrowband DIAL” approach 138 
wherein the laser emits monochromatic pulses of energy.  Thus, because the characteristics of 139 
the absorption line are well known, the method is self-calibrating and no external calibration 140 
source is needed.  Narrowband DIAL systems require extremely high spectral purity in the 141 
outgoing laser, as subtle changes in the wavelength (especially for the on-line channel) even for 142 
a small number of laser pulses in the averaging window can introduce biases in the derived 143 
water vapor profile because the incorrect absorption cross-section is used in the derivation. 144 

The laser in the NCAR DIAL, henceforth called the nDIAL, emits low pulse energies at high 145 
pulse repetition rate (Spuler et al 2015).  The outgoing laser beam is expanded by a portion of 146 
the primary telescope, which makes the lidar system eye-safe.  The nDIAL system has its origins 147 
at Montana State University (MSU), wherein commercially available laser diodes developed for 148 
telecommunications were used as the laser source (Nehrir et al. 2012), and MSU continues to 149 
collaborate with NCAR to advance the nDIAL technology.  A single photon counting detector is 150 
used to detect the backscattered signals in both the on-line and off-line channels.  High 151 
transmission, narrowband interference filters are used to reject energy (e.g., solar background) 152 
outside the desired frequency range of the desired signals.  The technical details of this system 153 
are provided in Table 1. 154 

The signal-to-noise ratio (SNR) in DIAL systems is strongly dependent upon the strength of 155 
the backscattering signal as a function of range.  Aerosol particles provide an efficient scattering 156 
source, and because aerosol concentration decreases markedly above the top of the PBL, the 157 
SNR also drops sharply above this level.  However, the actual range wherein the lidar makes 158 
good water vapor measurements is a function of the pulse energy, the efficiency of the 159 
detector system (e.g., size of the telescope, transmission of the detection optics, sensitivity of 160 
the detector), and the vertical profiles of both the aerosol and water vapor concentrations.  For 161 
this study, the backscattered photon data were coadded for 1-minute before deriving the water 162 
vapor profile. 163 

Virtually all lidar systems have difficulties accurately measuring atmospheric properties 164 
close to the lidar itself.  Ultimately, this is due to a mismatch between the outgoing laser beam 165 
and the detector and leads to a systematic error that varies with height.  This systematic error 166 
reduces to zero at some range, and the region where the error is nonzero is referred to as the 167 
“overlap” region.  For many lidar systems, an empirically determined correction can be applied 168 
to reduce the maximum range of the non-zero overlap error.  For the current version of the 169 
nDIAL, approximately the lowest 500 m suffers from a varying overlap correction (S. Spuler, 170 
personal communication), and thus is not used in this analysis. 171 

The uncertainty in the nDIAL observations is directly calculated by assuming that the 172 
detected backscatter signal follows a Poisson distribution, and propagating the uncertainty in 173 
the backscatter profile through the DIAL equation.  A similar approach was used for the SGP 174 
Raman lidar, and the noise estimate derived from Poisson statistics agrees with that derived 175 
using an autocovariance analysis (Turner et al. 2014). 176 
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The nDIAL has been deployed in a number of different field campaigns.  In particular, the 177 
water vapor profile observed by the nDIAL have been compared to water vapor profiles 178 
measured by radiosondes and independently retrieved from collocated AERI and MWR systems 179 
(Weckwerth et al. 2016). These comparisons demonstrate that the nDIAL agrees well with these 180 
other sensors (e.g., the bias error relative to radiosondes is less than 0.3 g/m3) and has no 181 
significant day vs. night differences in sensitivity (e.g, due to solar background).  In 2018, NCAR 182 
constructed 4 additional units (bringing the total number of nDIAL systems to five), which were 183 
deployed in a network configuration at the Department of Energy’s Atmospheric Radiation 184 
Measurement (ARM) Southern Great Plains site (SGP, Sisterson et al. 2016) from April through 185 
July 2019.   186 
 187 

2.4. Vaisala water vapor DIAL 188 

Vaisala is also developing a micropulse water vapor DIAL (henceforth called the vDIAL).  This 189 
lidar system is based upon the CL51 ceilometer design; this ceilometer is used operationally 190 
around the world.  Unlike the nDIAL, the vDIAL transmits a spectrally broad pulse of laser 191 
energy that encompasses several water vapor absorption lines (“on-line channel”) and in a 192 
nearby spectral window with no absorption lines (“off-line”).  This approach is less technically 193 
demanding on the laser specifications (e.g., the requirement for high spectral purity is much 194 
smaller), but the tradeoff is that the measurement is no longer self-calibrating (Newsom et al. 195 
2020).  For this particular broadband DIAL implementation, the reference measurement is a 196 
well-calibrated surface level in-situ sensor integrated into the DIAL, and measurements from 197 
this sensor are used in an iterative retrieval approach to derive the water vapor profile 198 
(Newsom et al. 2020).     199 

The vDIAL actually consists of two independent broadband DIAL systems integrated 200 
together. The first system has a wide field-of-view, thereby resulting in a very small overlap 201 
region and allowing the lidar to profile water vapor down to 50 m above ground level (AGL).  202 
However, this wide field-of-view results in additional solar background photons and the SNR 203 
decreases very rapidly with range.  The second system has a much narrower field of view, which 204 
results in a deeper overlap region but also enables the lidar to profile water vapor much higher.  205 
Cross-talk between the two independent systems is eliminated by operating one system for 5-s, 206 
and then operating the other for the next 5-s.  The water vapor profiles are derived 207 
independently for the wide and narrow field-of-view systems, and then they are merged 208 
linearly between 300 and 400 m.  Additional details on this system are provided in Newsom et 209 
al. (2020). 210 

The vDIAL system uses analog detection, and thus the uncertainties in the backscatter do 211 
not follow a Poisson distribution like in the nDIAL.  Instead, the uncertainties in the vDIAL water 212 
vapor profile are estimated by deriving water vapor profiles every 2-minutes, and computing 213 
the standard deviation from these data at each height across a 20-minute window to provide 214 
the uncertainty in the standard 20-min average water vapor profile.   215 

The vDIAL system was deployed to the ARM SGP in May-June 2017, where it was compared 216 
against water vapor profiles observed by the ARM Raman lidar (Turner et al. 2016b; Turner and 217 
Goldsmith 1999), radiosondes, and retrieved from the AERI.   218 
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3. Retrieval algorithm 219 

Passive spectral radiometers, such as the MWRs and AERIs, measure radiance, and 220 
thermodynamic profiles must be retrieved from these observations.  However, this is an ill-221 
posed problem, as there could exist multiple solutions (e.g., different thermodynamic profiles) 222 
that would yield the observed radiance.  Thus, the retrieval algorithm must incorporate 223 
additional information to constrain the solution to a potentially valid solution.  Here, we have 224 
elected to use the optimal estimation approach (Rodgers 2000; Maahn et al. 2020), which is a 225 
1-dimensional variational method.  We have modified the AERIoe optimal estimation retrieval 226 
algorithm (Turner and Löhnert 2014) to use AERI and/or MWR data, together with a priori 227 
dataset that specifies how temperature and humidity covary with height, as input.  This 228 
algorithm has already been modified to include additional observations, such as water vapor 229 
lidars (Turner and Blumberg 2019), and thus in these cases the retrieval is finding the 230 
temperature and humidity profiles that satisfies both the observed radiance and the (partial) 231 
profile of water vapor observed by the DIAL simultaneously.   232 

We desire to retrieve the thermodynamic profile 𝑋 (i.e., both the temperature and 233 
humidity profile, so 𝑋 = #$𝑇&, 𝑇(, … , 𝑇*+

,, $𝑞&, 𝑞(, … , 𝑞*+
,
. where 𝑇/  and 𝑞/  are the temperature 234 

and water vapor mixing ratio in the ith vertical bin.  We will refer to 𝑋0 as the state vector on 235 
the nth iteration.  The observations from the AERI, MWR, and DIALs will form the observation 236 
vector 𝑌.  A forward model 𝐹 is used to compute a pseudo observation 𝐹(𝑋), which is then 237 
compared with 𝑌.  If they disagree, then the state vector is modified to provide a new estimate 238 
(𝑋05&) following 239 

𝑋05& = 𝑋6 + (𝛾𝑆6:& + 𝐾0,𝑆<:&𝐾0):&𝐾0,𝑆<:&=𝑌 − 𝐹(𝑋0) + 𝐾0(𝑋0 − 𝑋6)?        (Eq 1) 240 

where 𝐾 is the Jacobian of 𝐹, 𝑋6 is the mean a priori, and 𝑆6 is the covariance matrix of the a 241 
priori dataset (see Section 3.2). 𝑆<  denotes the combined forward model and observation error 242 
covariance matrix. The observation error for the single instruments is considered as described 243 
in the subsection of Section 2 and the forward model uncertainty is discussed in Section 3.1. 244 
The superscripts T and -1 denote matrix transpose and matrix inverse, respectively. Because 𝐹 is 245 
moderately non-linear in 𝑋, optimal estimation is formulated as an iterative method, where the 246 
subscript n indicates the iteration number; for our studies, we typically start with 𝑋@ = 𝑋6.  The 247 
scalar 𝛾 is used to stabilize the retrieval when n is small to improve the convergence rate and 248 
decreases to unity as n increases; the description on how 𝛾 is used is explained in Turner and 249 
Löhnert (2014).  Note that due to the non-linearity of the forward models applied for the 250 
microwave and infrared radiative transfer, the Jacobians are required to be recomputed for 251 
each iteration.  We continue to iterate Eq 1 until  252 

=𝐹(𝑋05&) − 𝐹(𝑋0)?
,
(𝐾0𝑆6𝐾0, + 𝑆<):&=𝐹(𝑋05&) − 𝐹(𝑋0)? ≪ 𝑚	                   (Eq 2) 253 

where m is the dimension of 𝑌.   254 
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3.1. Forward models 255 

As shown by Eq 1, a forward model is needed to transform the current state vector 𝑋0 into 256 
the observational domain so it can then be compared to the observation vector 𝑌.  In this 257 
study, four different forward models are used (one for each instrument). 258 

For the passive radiometers, the forward models are line-by-line radiative transfer models. 259 
The monochromatic MonoRTM radiative transfer model (Clough et al. 2005; Payne et al. 2011) 260 
is used to simulate MWR observations, and the line-by-line radiative transfer model LBLRTM 261 
(Clough et al. 1995; Mlawer and Turner 2016) is used to simulate the AERI.  In the latter, the 262 
monochromatic spectra are convolved with a tophat function in the time domain and then 263 
transformed to the spectral domain via a Fourier transform; this applies the AERI’s lineshape 264 
function to the calculation.  The vertical grid used in these calculations is specified by the a 265 
priori data.  The pressure profile is computed from the temperature and humidity data from the 266 
current state vector using the hypsometric equation.  The spectral regions used in the retrieval 267 
are given in Table 1.  In the infrared, many trace gases have absorption bands, and while the 268 
spectral regions used in the retrieval are primarily sensitive to water vapor and carbon dioxide 269 
(where the latter provides the sensitivity to temperature), there are minor contributions to the 270 
downwelling radiance by other gases.  We utilize the US Standard Atmosphere to provide 271 
profiles of these other trace gases for this study, but our results are insensitive to this choice. 272 

To incorporate the DIAL data into the Eq 1, a forward model is needed for each lidar also.  273 
The purest forward model would simulate the profiles of backscatter energy that would be 274 
observed in both the on- and off-line channels for a given water vapor profile.  We could have 275 
also used the profile of differential optical depth between range bins as our observation.  276 
However, we have elected to use the derived water vapor concentration from each lidar in the 277 
observation vector.  This results in a trivial forward model for each lidar: essentially, the 278 
forward model just converts water vapor mixing ratio to water vapor number concentration for 279 
the nDIAL.  The output of the vDIAL is water vapor mixing ratio, so that forward model is just 280 
the unity function. 281 

3.2. The a priori dataset 282 

There has been only one campaign that had an AERI, HATPRO, and water vapor DIAL 283 
collocated with each other: the Perdigao campaign that was held in Portugal from 1 May to 15 284 
June 2017 (Fernando et al. 2019).  We specified a 48-level vertical grid for the retrievals, 285 
starting at 0 m above ground level (AGL), the next level at 10 m AGL, and each subsequent 286 
height bin is 10% thicker than the previous one. Although ~150 radiosondes were launched 287 
during Perdigao, these are not enough to accurately compute the level-to-level covariance for 288 
the 96-element state vector (i.e., 𝑋 has 48 levels for temperature, and 48 for water vapor).  289 
Therefore, we used 1571 radiosondes launched in the months of April, May, June, and July over 290 
the last decade by the Portuguese weather service at Lisbon to compute 𝑋6 and 𝑆6.  This a 291 
priori information was used in all of the retrievals shown here.  292 

The vDIAL was not part of the Perdigao deployment, so we are using AERI and vDIAL data 293 
collected between 15 May to 12 June 2017 at the SGP site instead.  Both the Perdigao and SGP 294 
datasets used here were collected in the spring, but the SGP climatology is different than that in 295 
Portugal necessitating the use of a different a priori dataset.  We have used over 2000 296 

Deleted: W297 
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radiosondes launched at the SGP during the months of April, May, and June over the past 298 
decade to derive the a priori information for this site. 299 

3.3. Characterizing the information content in the retrieved profile 300 

One advantage of the optimal estimation framework is that the uncertainties in the 301 
retrieval, which includes contributions from both the uncertainties in the observations and a 302 
priori as well as the sensitivity of the forward model, is a direct output of the framework.  If the 303 
“optimal” solution is 𝑋D*, which is the solution after both 𝛾 = 1 and Eq 2 indicates that the 304 
solution has converged after nc iterations, then the covariance of the optimal solution is given 305 
by 306 

𝑆D* = (𝑆6:& + 𝐾0F, 𝑆<:&𝐾0F):&                                                (Eq 3) 307 
We will look at the square root of the diagonal elements of 𝑆D* to quantify how the 1-s 308 
uncertainties of the retrieved profiles change as different instrument combinations are used in 309 
the observation vector.   310 

A second advantage of this method is that the averaging kernel 𝐴 provides a direct estimate 311 
of the sensitivity of the retrieved profile at each height to perturbations at that height.  This 312 
matrix is computed as  313 

𝐴 = 	 (𝑆6:& + 𝐾0F, 𝑆<:&𝐾0F):&𝐾0F, 𝑆<:&𝐾0F = 𝐼 − 𝑆D*𝑆6:&                    (Eq 4) 314 
The diagonal components of 𝐴 provides the degrees of freedom for signal (DFS; Rodgers 2000) 315 
for each height in the retrieved profile.  If the observations had very high information content 316 
at each level of the retrieved profile, then the diagonal elements of 𝑆D* would be small relative 317 
to the diagonal elements of the a priori, and thus the trace of 𝐴 would approach the dimension 318 
of 𝑋.  The total DFS, which is equal to the trace of 𝐴, provides a metric for how many 319 
independent pieces of information exist in the observation.   320 

For this study, we recognize that the matrices 𝐴, 𝑆D*, and 𝑆6	really have four equal sized 321 
quadrants that correspond to  322 

I
(𝑇, 𝑇) (𝑇, 𝑞)
(𝑞, 𝑇) (𝑞, 𝑞)J

 323 

We will look at the portions of 𝐴 and 𝑆D* that correspond to (T,T) and (q,q) independently. 324 
Furthermore, as we will see, the DFS is typically much smaller than unity, so we will look at the 325 
profile of the cumulative DFS (cDFS), as this allows us to quickly determine how many 326 
independent levels are below some specified height, which is advantageous when talking about 327 
where in the vertical the different instruments provide sensitivity to changes in temperature 328 
and water vapor. 329 

We want to highlight that even though lidars make explicitly range resolved measurements, 330 
their information content in the derived water vapor profile is not the same as the number of 331 
range bins.  The actual information content at height z depends strongly on the noise level of 332 
the observation there.  Even direct derivations of water vapor from lidar signals would benefit 333 
from being cast into a retrieval framework like what we’ve specified in Eq 1 because then the a 334 
priori information could be used to constrain the derived water vapor when the instrument’s 335 
SNR decreases (e.g., Sica and Haefele 2016).   336 
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4. Results 337 

Several studies have demonstrated that ground-based thermodynamic retrievals in the PBL 338 
using only AERI observations have 2-4 times larger total DFS in both temperature and water 339 
vapor than retrievals that use only microwave data (Löhnert et al. 2009; Blumberg et al. 2015; 340 
Wulfmeyer et al 2015).  However, what is not known is how the information content changes 341 
when partial profiles of water vapor from a differential absorption lidar (since the DIAL 342 
observations extend only from the top of the region where full overlap is achieved to a height 343 
where its SNR becomes small) are included in a retrieval considering the synergy of AERI, MWR, 344 
and nDIAL or vDIAL.  For example, does including a partial water vapor profile in the retrieval 345 
result in AERI+DIAL and MWR+DIAL having equivalent cDFS for water vapor?  Does including a 346 
partial water vapor profile in a simultaneous retrieval of T(z) and q(z) (as we are doing here in 347 
Eq 1) improve the temperature profile in any way? 348 

In order to answer these questions, we performed eight sets of retrievals using data from 349 
the Perdigao field campaign in Portugal (Table 2): four were using passive-only measurements 350 
(MWRz, MWRzo, AERI, and AERI+MWRz), and four included the nDIAL together with those 351 
passive measurements.  “MWRz” denotes the case when only zenith-pointing MWR brightness 352 
temperature observations were used in the retrieval, whereas “MWRzo” denotes the case were 353 
both zenith and off-zenith (i.e., “oblique” elevation scans) are used.  Crewell and Löhnert (2007) 354 
demonstrated that adding elevation scan observations at frequencies where the atmosphere is 355 
optically thick, and assuming horizontal homogeneity of the PBL, resulted in a marked increase 356 
in the information content and hence accuracy of the retrieved temperature profile.  However, 357 
only observations made at frequencies above 55 GHz are used in these elevation scans. Even at 358 
low elevation angles, frequencies channels below 55 GHz are too transparent and thus the 359 
assumption of horizonal homogeneity fails very frequently (Crewell and Löhnert 2007).   360 

As the vDIAL will soon be the first commercially available DIAL instrument for water vapor 361 
profiling (H. Winston, personal communication), a major objective is to evaluate how including 362 
this lidar dataset with passive observations changes the information content in the retrieved 363 
profiles. In addition, we show the impact of the vDIAL relative to the nDIAL on our retrievals. 364 
However, vDIAL (ARM SGP) and nDIAL (Perdigao) observations are only available at different 365 
locations with different a priori datasets. In order to overcome this issue, the comparisons were 366 
carried out in relation to the AERI instruments, which operated at both sites. The comparison of 367 
the AERI-only from ARM-SGP and Perdigao allows us to characterize the impact of the prior on 368 
the retrievals, since the two AERI instruments deployed in Portugal and at the SGP site have 369 
similar error characteristics (not shown).  Ultimately, we have looked at the differences 370 
between the AERI-only and AERI+xDIAL retrievals (where x is either “v” or “n”) at the two sites. 371 

4.1. Case study example 372 

To illustrate the differences between the various passive-only and passive+active retrievals, 373 
we selected a case during Perdigao on 15 May 2017 at 05:07 UTC.  This is a clear sky event, and 374 
is representative of the retrieval quality during the entire field campaign.  Figure 1 shows the 375 
retrieved temperature (panel A) and water vapor mixing ratio (WVMR, panel B), and the 376 
associated 1-𝜎 uncertainties of each (panels C and D, respectively) derived from the square root 377 
of the diagonal of the retrieval error covariance 𝑆D*.  The black line in panels A and B denote 378 
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the coincident radiosonde, whereas the other colors denote the different passive-only 379 
retrievals.   380 

All three passive-only retrievals (MWRzo, AERI, and AERI+MWRzo) identify the surface-381 
based inversion, although the retrievals that include the AERI capture it more accurately (Fig 382 
1A).  Furthermore, the retrievals that include the AERI are able to better match the radiosonde 383 
temperature observations above 1.5 km, whereas the MWRzo retrieval is showing a bias at 384 
those altitudes. None of the three retrievals are able to capture the small-scale variability in the 385 
vertical observed by the radiosonde due to the relatively coarse vertical resolution of the 386 
retrievals.  The uncertainties in the MWRzo temperature retrievals are about 50% larger (or 387 
more) over the lowest 3 km relative to the AERI retrievals (Fig 1C), which agrees qualitatively 388 
with the differences to the radiosonde seen in Fig 1A. 389 

The water vapor retrievals (Fig 1B) show two basic vertical patterns: the MWRzo retrieval is 390 
markedly drier than the radiosonde below 1 km, whereas the AERI and AERI+MWRzo retrieval 391 
starts dry, then becomes too wet (between 500 and 1000 m), and then becomes drier than the 392 
radiosonde above 1500 m.  Interestingly, the nDIAL water vapor profile is also drier than the 393 
radiosonde below 1500 m, and agrees better with the MWRzo profile.  However, the retrievals 394 
that use the AERI data have markedly smaller uncertainties than the MWRzo below 1.5 km; 395 
above that height, the uncertainty in the MWRzo is smaller than the AERI, although the 396 
AERI+MWRzo retrieval has the smallest uncertainties over the entire lowest 3 km as would be 397 
expected for a variational retrieval method. 398 

Including the nDIAL data above 500 m into the retrieval, and thus finding a solution that 399 
simultaneously fits both the observed radiance and the partial WVMR profile of the DIAL within 400 
their uncertainties, yields the results shown in Fig 2.  The largest impact, not surprisingly, is on 401 
the retrieved water vapor profile (Fig 2B).  The inclusion of the nDIAL data forces the retrievals 402 
that also include the AERI to reduce the amount of water vapor between 500 and 1000 m 403 
(where the AERI-based retrievals were too wet in Fig 1B), which has the impact of increasing 404 
the amount of water vapor in the AERI retrievals below 500 m (Fig 2B), resulting in the 405 
AERI+nDIAL and AERI+MWRzo+nDIAL agreeing much better with the radiosonde.  Between 800 406 
and 1500 m, the MWR+nDIAL retrieved profile is essentially the same as the nDIAL profile, 407 
suggesting that the MWR is not adding any significant information to the DIAL’s observation.  408 
The impact of the nDIAL data on the water vapor uncertainty profiles can clearly be seen in Fig 409 
2D, where all retrievals have the similar uncertainty above about 800 m where the DIAL data 410 
are being used.  Including the DIAL data into the retrievals has a minor impact on the retrieved 411 
temperature profiles, as all three seem to agree a bit better qualitatively with the radiosonde 412 
above 1000 m (comparing Fig 2A with Fig 1A), and the 1-𝜎 uncertainties in temperature are 413 
slightly smaller (Fig 2C with Fig 1C). 414 

4.2. Comparing mean uncertainty profiles 415 

While the case study above may be representative, the quality of a retrieval (i.e., its 416 
uncertainty and information content) is case specific.  To provide a more complete picture of 417 
how the different passive-only and active+passive retrievals compare, we computed the mean 418 
1-𝜎 uncertainty profiles from all of the retrievals performed during Perdigao, as a wide range of 419 
environmental conditions (e.g., the surface temperature ranged from approximately 9 to 33 °C 420 
and the precipitable water vapor from 1.1 to 3.1 cm) were observed during the 5-week 421 
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campaign.  Figure 3 shows these mean uncertainty profiles for temperature (left) and water 422 
vapor (right) for the different passive-only (solid lines) and active+passive (broken lines), and 423 
Table 2 provides the mean values at 3 different heights.   424 

Considering the passive-only retrievals, combining the AERI and MWR together has little 425 
impact on the resulting temperature retrieval in the lowest 3 km or on the water vapor retrieval 426 
below 1.5 km, compared to the AERI-only retrieval.  However, the MWRz and MWRzo 427 
outperform the AERI for water vapor above 2 km. Most strikingly, the benefit of the passive 428 
retrieval synergy can be seen for water vapor above 1.5 km, where the improvement is up to 429 
30% compared to the single sensor retrievals. Adding the elevation scanning data to the MWR 430 
retrieval (i.e., the MWRzo vs MWRz) results in a smaller uncertainty in the temperature profile, 431 
especially below 400 m.   432 

Including the nDIAL data into the retrievals greatly reduces the 1-𝜎 uncertainty in the water 433 
vapor profiles for all active+passive retrievals (relative to the passive-only results), and results 434 
in a slight decrease in the temperature uncertainty also.  The addition of the nDIAL data to 435 
either the MWR- or AERI-based retrievals results in smaller uncertainties in water vapor than 436 
either the lidar by itself (dotted black line) or the passive-only retrievals (Fig 3 right).  The AERI-437 
based retrievals show smaller uncertainties than the MWR-based retrievals, with the exception 438 
in the water vapor retrievals above 2 km where the MWR-based retrieval has a smaller 439 
uncertainty than the AERI retrieval.  The uncertainty in the AERI+nDIAL water vapor retrieval 440 
between 500 m and 2 km, where the nDIAL data are used, is slightly smaller than the 441 
uncertainty in the MWRz+nDIAL retrieval, suggesting that the AERI is adding more information 442 
to the DIAL observations than the MWR. However, above 2 km the combination of all sensors 443 
has distinguishably the best performance, indicating that all instruments are contributing to the 444 
sensor synergy. In quantitative numbers, the WVMR can be retrieved via sensor synergy with 445 
accuracies between 0.4 and 0.6 g kg-1 in the lowest 3 km, which between 1 and 2 km (the region 446 
where DIAL shows its optimal performance), is an uncertainty reduction of up to 50% compared 447 
to the passive retrieval synergy.  448 

 449 

4.3. Comparing bias profiles 450 

Figure 4 shows the bias profiles in temperature and humidity relative to radiosondes 451 
launched during Perdigao.  The radiosondes were launched within 100 m of the remote 452 
sensors, and 169 individual comparisons are included in these bias profiles.   453 

The temperature bias profiles (Fig 4, left) demonstrate that the retrievals that include AERI 454 
data have markedly smaller biases than the retrievals that did not.  The inclusion of the nDIAL 455 
observations with the AERI (i.e., AERI+nDIAL, AERI+MWRz+nDIAL) did not markedly change the 456 
bias relative to the AERI-only and AERI+MWRz.  However, for the retrievals that uses the MWR 457 
data and not the AERI, the inclusion of the nDIAL data did result in smaller temperature biases 458 
above approximately 1 km. 459 

The water vapor mixing ratio bias profiles (Fig 4, right) illustrate the MWRz-only and MWRe-460 
only profiles had markedly larger magnitudes than the retrievals that included AERI data.  461 
Including nDIAL data into these MWR-based retrievals (i.e., the MWRz+nDIAL and 462 
MWRe+nDIAL) resulted in smaller mixing ratio biases above 500 m (recall the nDIAL data below 463 
500 m were not used in this analysis due to known systematic issues), but that the water vapor 464 
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bias below 600 m was largely unchanged.  Similarly, including the nDIAL data into the AERI-465 
based retrievals also reduced the size of the water vapor bias above 1 km, although the impact 466 
of this additional dataset was smaller because the accuracy in the water vapor retrievals above 467 
1 km is better for AERI-only retrievals relative to MWRz-only and MWRe-only retrievals. 468 

 469 

4.4. Comparing mean cDFS profiles 470 

The optimal estimation framework used in this study uses the a priori to help constrain the 471 
ill-posed retrieval, thereby allowing the algorithm to converge to a realistic solution more 472 
frequently.  Looking at the DFS profile, especially when summed with altitude from the surface 473 
(called here the cumulative DFS profile), enables one to understand where the independent 474 
data in the observations are located vertically.  Figure 5 shows the mean cumulative DFS 475 
profiles for the different retrievals; mean values at three specific heights are provided in Table 476 
3.   477 

There are several important features in this figure.  First, adding the elevation scanning data 478 
to the MWR retrieval (i.e., comparing the MWRz-only vs. MWRzo-only) increases the total DFS 479 
for temperature at 3 km by 0.4 (from 2.15 to 2.57), with almost all of this increase in the first 480 
500 m.  [Note, however, that we have only used a single elevation angle to the MWRzo (Table 481 
1), and the inclusions of additional elevation angles would result in a slight increase the cDFS for 482 
temperature.] The AERI-only temperature retrieval has more information (3.87) in the lowest 483 
500 m than the MWRzo-only retrieval has in the lowest 3 km (2.57).  Most of the information in 484 
the temperature retrievals is below 1.5 km, as the cDFS profiles become relatively constant 485 
above that level; this suggests that these passive-only and active+passive temperature 486 
retrievals will have limited ability to retrieve the structure of the temperature profile above 487 
that height. 488 

The passive-only retrievals of water vapor show less total DFS (using the value at 3 km 489 
height) during Perdigao relative to datasets at other field campaigns (e.g., Turner and Löhnert 490 
2014; Blumberg et al. 2015).   This is likely due to the spread in the covariance of the prior, 491 
because if the prior had (hypothetically) negligible spread then the derived information content 492 
from the observations would be vanishingly small.  Nonetheless, we can still use this prior to 493 
demonstrate how the addition of the DIAL data to the retrievals changes the information 494 
content.  The cDFS profiles for the water vapor retrievals clearly show the impact of including 495 
the nDIAL data above 500 m, as the cDFS profiles for the active+passive retrievals are markedly 496 
larger above that height than the passive-only retrievals (i.e., with values between 6 to 7 497 
compared to 2 to 3 at 3 km).  The additional information on water vapor in the AERI below 500 498 
m relative to the MWR is clearly seen.  However, the lidar does not always provide data to the 499 
same altitude and its noise levels can depend on atmospheric conditions (e.g., if there is a cloud 500 
above the lidar or not), and thus the spread in the cumulative DFS profiles was quite large (e.g., 501 
from 2.0 to 9.4 for the MWRz+nDIAL at 3 km height; Table 3).   502 

4.5. Impact of clouds 503 

One of the often-stated advantages of MWR-based retrievals, relative to infrared-based 504 
retrievals, is the ability to profile through clouds because the optical thickness of the cloud is 505 
markedly smaller in the microwave relative to the infrared for a given liquid water path (LWP).  506 
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Figure 6 shows cDFS profiles from the MWRz-only and AERI-only temperature and water vapor 508 
retrievals during a 2h period when the sky transitioned from virtually clear sky to overcast.  509 
Three profiles with different LWP amounts (2, 10, and 60 g m-2, where the infrared is essentially 510 
opaque for the last – Turner 2007) are shown.  The cloud base was at 1100 m and was assumed 511 
to be 100 m thick (there was no way to determine cloud top from other observations at the 512 
site).  First, notice that as the cloud becomes optically thicker, the retrievals have more 513 
information about the temperature at cloud base.  Second, the cloud becomes opaque in the 514 
infrared quickly, hence the cumulative DFS profile becomes essentially constant (especially for 515 
water vapor) above the cloud as the LWP values approach 60 g m-2.  Meanwhile, the cloud is 516 
semi-transparent in the microwave for all LWP values, which is seen by the increasing cDFS 517 
profile (especially for water vapor) above the cloud.  However, there is still only a small amount 518 
of information in the observations at heights above 1 km in the MWR (see left-hand panel of Fig 519 
5), and thus the increase in the information content in the MWR retrieval above the cloud is 520 
relatively limited.   521 

The accurate understanding of where the information exists vertically is useful in order to 522 
properly assimilate these profiles into a numerical weather prediction model.  There is often 523 
significant level-to-level correlation in the uncertainties of profiles retrieved from passive 524 
remote sensors (e.g., see Figure 10 of Turner and Blumberg 2019), and most data assimilation 525 
systems are not yet configured to handle correlated error in the observations.  Coniglio et al. 526 
(2019) used the cDFS profile to identify the heights that should be assimilated to minimize the 527 
amount of correlated error from the retrieved profiles.  Starting at a specified height (e.g., 50 528 
m), they identified heights where the cDFS had increased by 1 above that height, and this 529 
process continued until they either were unable to identify any other points or had reached the 530 
maximum height that they wanted to assimilate.  This is illustrated by the dots on the profiles in 531 
Fig 6, with the first height taken at 50 m.  For the AERI-retrieved profiles, three levels would be 532 
assimilated below the cloud with an additional level at cloud base or just above; the height of 533 
all of the temperature levels is pretty consistent for these three profiles.  For the MWR, only 534 
two levels would be assimilated due to the lower information content in the microwave 535 
observations, with the height of the second point changing dramatically due to how the cloud 536 
influences the vertical distribution of the DFS profile.  Again, we remind the reader that the 537 
total DFS seen in this example is lower than that seen using this same retrieval framework in 538 
other field campaigns; we attribute this to the lack of spread in the a priori dataset used at 539 
Perdigao. 540 

4.6. Sensitivity to the nDIAL vs. vDIAL 541 

The impact of adding any new observation depends partially on its error covariance matrix, 542 
as observations with larger uncertainties will add less information to the retrieved profile than 543 
observations with smaller uncertainties.  For many lidars, coadding photon counting data in 544 
either time or altitude reduces the random errors, and thus would increase the information 545 
content and impact of using these lidar data in retrievals such as these.  However, other 546 
features of the observations are also important.  For example, during Perdigao, the lowest 547 
range gate that was considered useful from the nDIAL was at 500 m; data below that level 548 
suffered from systematic errors associated with the overlap function of the lidar (S. Spuler, 549 
personal communication).  However, the vDIAL was designed to make good measurements at 550 
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50 m above the surface, although generally speaking its maximum range is much less (order 1 554 
km; Newsom et al. 2020) than the nDIAL system (which frequently makes good water vapor 555 
measurements to altitudes well above 2 km).  A natural question is how would the results 556 
already shown change if the vDIAL system was used instead of the nDIAL? 557 

Unfortunately, this isn’t straight-forward to answer as the vDIAL was not collocated with the 558 
other Perdigao instruments.  Instead, we use the 6-week deployment of the vDIAL at the ARM 559 
SGP site (Newsom et al. 2020), which has an AERI with similar noise characteristics as the AERI 560 
deployed at Perdigao, as a surrogate.  However, different a priori datasets were used for the 561 
retrievals at the two sites, which impacts the retrievals and hence the analysis.  To help adjust 562 
for the contribution of the two priors, we performed AERI-only retrievals and AERI+vDIAL 563 
retrievals at the SGP so that we could look at the difference between the two, and compare 564 
that to the difference between the AERI-only and AERI+nDIAL retrievals at Perdigao (Figure 7). 565 

The impact of the vDIAL data on the water vapor retrieval is most significant between 300 566 
and 1500 m and reaches relative values of up to 50% uncertainty reduction compared to the 567 
AERI-only retrieval.  Above 1500 m, the AERI+vDIAL WVMR uncertainties increase quickly with 568 
height and approach the AERI-only uncertainties at 3 km.  The AERI+nDIAL uncertainties are 569 
very similar to the AERI-only below 500 m (because the nDIAL data is not available at those 570 
levels), but are approximately 2x smaller than the AERI-only for all height between 500 m and 3 571 
km. Further, the change in the cDFS between 500 m and 3 km is larger for the nDIAL system 572 
relative to the vDIAL (Table 3). Thus, the ability of the nDIAL to see deeper into the troposphere 573 
than the vDIAL is clearly shown.  Interestingly, the water vapor uncertainty in the AERI+vDIAL is 574 
smaller than the AERI+nDIAL in the 500 to 900 m range; however, this could easily be changed 575 
by adjusting how the DIAL data were coadded in the nDIAL (which had 1-min temporal 576 
resolution relative to the 20-min temporal resolution of the vDIAL – see Table 1). 577 

Perhaps most noteworthy is the relative impact of the two DIALs on the retrieved 578 
temperature profile.  The addition of the vDIAL data has almost no impact on the uncertainty or 579 
the cDFS profile relative to the AERI-only (Fig 7, Tables 2 and 3), whereas the nDIAL has a 580 
marked impact on the retrieved temperature profile in the range from 500 m to 2.5 km with an 581 
reduction of the uncertainty of up to 0.25 K compared to the AERI-only retrieval. Here, the 582 
instrument synergy is obtained through a more exact determination of the water vapor profile 583 
by the nDIAL, which enables the AERI to reach a higher DFS value for temperature. 584 

5. Conclusions 585 

Many applications require profiles of temperature and humidity in the PBL.  However, the 586 
accuracy and information content from different ground-based remote sensing instruments is 587 
not the same.  Previous work (e.g., Löhnert et al. 2009; Blumberg et al. 2015) demonstrated 588 
that there is more information content in both temperature and water vapor from spectral 589 
infrared measurements (such as made by the AERI) than in spectral microwave radiometer 590 
measurements.  These results depend strongly on the characteristics of the instrument systems 591 
being used; for example, if future generation MWRs are improved to have smaller random 592 
errors, then the information content in the observations would increase.  The on-line python 593 
modules provided by Maahn et al. (2020) can be used to explore how the information content 594 
would change for different assumed random error levels in the MWR.  595 
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This study investigated the impact of ground-based sensor synergy for PBL thermodynamic 598 
profiling, and in particular, how the information content and random errors would change if an 599 
active remote sensor such as a water vapor DIAL was included into the retrieval.  An open 600 
question going into this research was whether the inclusion of the water vapor DIAL 601 
observations with MWR radiance observations would have the same information content as 602 
retrievals that used the DIAL with the AERI observations.  An important aspect of this study is 603 
that the same a priori data and retrieval framework were used for all of the different retrievals 604 
shown in this paper, which is crucial to truly quantify the differences as different retrieval 605 
frameworks can result in markedly different retrievals (Maahn et al. 2020).  Furthermore, the 606 
2017 NASA Decadal Survey recommended an increased focus on thermodynamic profiling of 607 
the atmospheric boundary layer from space (National Academies 2018), and coupling passive 608 
microwave and infrared with active DIAL remote sensing is one possible solution.  We have 609 
shown that including the DIAL data increases the water vapor information content and reduces 610 
water vapor errors in both the AERI+DIAL and MWR+DIAL retrievals, relative to the passive-only 611 
retrievals.  However, the AERI+DIAL continues to have more information on water vapor than 612 
the MWR+DIAL.  The best retrieval performance is observed when all three instruments are 613 
combined in one retrieval. Improvements are shown that decrease the uncertainty by 50% 614 
compared to passive-only retrievals between 1 and 2 km.  At Perdigao, the AERI is shown to 615 
dominate retrieval accuracy in the lowest 500 m, from 500 m to 2 km it is the DIAL that 616 
primarily determines the accuracy, and above 2 km the three instruments complement each 617 
other optimally to obtain the best solution.  Furthermore, the addition of the water vapor DIAL 618 
observations (slightly) improves the information content in temperature retrievals from the 619 
AERI+DIAL, but has no impact on the temperature profiles for the MWR+DIAL.   620 

Passive ground-based remote sensors are relatively common, as these technologies are 621 
more mature, have been commercially available for several decades, and have been operated 622 
in networks (e.g., Caumont et al. 2016; Geerts et al. 2017; Yang and Min 2018).  The recent 623 
advances in water vapor DIAL (e.g., Spuler et al. 2015; Newsom et al. 2020) are leading to the 624 
possibility that the two DIALs used in this study could be commercially available in the next 625 
several years, which is why they formed the focus of this study.  There are other 626 
thermodynamic profiling active remote sensors that could be combined with MWRs and AERIs: 627 
for example, Raman lidar and Radio Acoustic Sounding Systems (RASS).  Studies have been 628 
conducted combining Raman lidar with both MWR data (e.g., Barrera-Verdejo et al 2016; Foth 629 
and Pospichal 2017) and AERI data (e.g., Turner and Blumberg 2019); however, these studies 630 
were in different environments using different a priori datasets, which makes quantitatively 631 
comparing their accuracy and information content problematic.  There are currently efforts 632 
underway to evaluate the impact of RASS virtual temperature profile observations on both AERI 633 
and MWR observations.  Developing improved synergistic retrievals and sensor synergy are the 634 
goals of many groups, including the PROfiling of the atmospheric Boundary layer at European 635 
scale (PROBE; Cimini et al. 2020). 636 

Sensor synergy does not have to just involve ground-based sensors.  Ground-based MWR 637 
and AERI observations can also be combined with satellite observations to improve information 638 
content and accuracy, especially in the middle- and upper troposphere.  Feltz et al. (2003) 639 
showed the impact on AERI retrievals and how these improved profiles could be used for 640 
evaluating thermodynamic structure near storms, while Ebell et al. (2013) performed a more 641 

Deleted: s642 



 17 

classical information content study.  Additional efforts (e.g., such as Toprov and Löhnert 2020) 643 
are needed, which show the impact of the high-temporal and high-spectral resolution 644 
geostationary infrared sounders with ground-based remote sensing systems and the impact on 645 
stability indices and other parameters.   646 

It is possible that readers will consider this study as a suggestion about the optimal ground-647 
based solution for thermodynamic profiling, especially for future operational networks.  This 648 
paper provides insights into only one aspect of the cost-benefit solution (i.e., the relative 649 
differences of information content); considerations as to ease of use, durability and hardiness, 650 
calibration stability, and other scientific traits (e.g., does the instrument provide information on 651 
macro- or microphysical cloud properties, aerosol properties, trace gases, etc.) also need to be 652 
considered.   653 
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 858 
Table 1: 859 
Important specifications of the instruments used in this paper 860 

Instrument Specifications 
MWR (HATPRO G4) • 7 frequencies between 22.2 and 31.4 GHz 

• 7 frequencies between 51.2 and 58.0 GHz 
• Off-zenith data collected at elevations of 18° and 162° 
• 1-s sky average, with elevation scans performed every 5 min; 

retrieval used single spectrum (both zenith and off-zenith) at 
desired time (e.g., close to sonde launch time 

• Reference: Rose et al. 2005 
AERI • 324 wavenumbers in these intervals: 612-618, 624-660, 674-713, 

713-722, 538-588, 860.1-864.0, 872.2-877.5, 898.2-905.4 cm-1 
• 15-s sky average every 30-s; retrieval used single spectrum at 

desired time (e.g., close to sonde launch time) 
• Principal component noise filter used to reduce random error 

(Turner et al. 2006) 
• Reference: Knuteson et al. 2004 a,b 

nDIAL • Narrowband DIAL, transmitting at 830 nm 
• Temporal resolution: 1-min  
• Vertical resolution: 75-m  
• Minimum height: 500 m; Maximum height was approx. 3 km 

(typical) 
• Telescope receiver area (far field): 935 cm2 
• Average transmitted pulse power: 5 µJ pulses at 9 kHz (45 mW) 
• Reference: Spuler et al. 2015; Weckwerth et al. 2016 

vDIAL • Broadband DIAL, transmitting at 911 nm 
• Temporal resolution: 20-min  
• Vertical resolution: variable from 100 m at 100 m AGL to 200 m at 1 

km 
• Minimum height: 50 m; Maximum height was approx. 1 km (typical) 
• Telescope receiver area (far field): 615 cm2 
• Average transmitted pulse power: 5.5 µJ pulses at 8 kHz (44 mW) 
• Reference: Newsom et al. 2020 
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 864 
Table 2: Average uncertainty values (derived from 𝑆D*) at three levels for temperature and 865 
humidity for the different instrument combinations used in this study.  The passive-only 866 
retrievals are highlighted in gray, whereas the active+passive are in white.  The values in 867 
parentheses at 3 km show the 10th and 90th percentile at that height, thereby providing a 868 
measure of the amount of variability in these statistics for each retrieval.   869 

 Temperature Uncertainty [°C] Water Vapor Uncertainty [g kg-1] 
 500 m 1000 m 3000 m 500 m 1000 m 3000 m 
MWRz-only 1.1 1.6 1.4 (1.3,1.4) 1.1 1.4 0.9 (0.8,0.9) 
MWRzo-only 1.1 1.5 1.4 (1.3,1.4) 1.1 1.3 0.9 (0.8,0.9) 
AERI-only 0.6 0.9 1.0 (0.9,1.2) 0.7 1.0 1.0 (0.8,1.1) 
AERI+MWRz 0.6 0.9 0.9 (0.8,1.3) 0.7 1.0 0.7 (0.6,0.8) 
MWRz+nDIAL 1.0 1.4 1.3 (1.3,1.4) 0.7 0.7 0.7 (0.5,0.9) 
MWRzo+nDIAL 1.0 1.3 1.3 (1.3,1.4) 0.7 0.7 0.7 (0.5,0.8) 
AERI+nDIAL 0.5 0.8 0.9 (0.8,1.2) 0.6 0.6 0.7 (0.5,1.1) 
AERI+MWRz+nDIAL 0.5 0.8 0.9 (0.8,1.2) 0.6 0.6 0.6 (0.4,0.8) 
AERI-only (SGP) 0.4 0.6 1.0 (0.8,1.4) 0.7 1.0 1.8 (0.9,1.5) 
AERI+vDIAL (SGP) 0.4 0.6 1.0 (0.8,1.4) 0.4 0.7 1.1 (0.8,1.4) 
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Table 3: Average cDFS values at three levels for temperature and humidity for the different 876 
instrument combinations used in this study.  The passive-only retrievals are highlighted in gray, 877 
whereas the active+passive are in white. The values in parentheses at 3 km show the 10th and 878 
90th percentile at that height, thereby providing a measure of the amount of variability in these 879 
statistics for each retrieval.   880 

 Temperature cDFS value [unitless] Water vapor cDFS value [unitless] 
 500 m 1000 m 3000 m 500 m 1000 m 3000 m 
MWRz-only 1.5 1.8 2.2 (2.1,2.2) 0.9 1.1 1.9 (1.7,2.0) 
MWRzo-only 1.9 2.2 2.6 (2.6,2.6) 0.9 1.1 1.9 (1.7,2.0) 
AERI-only 3.9 4.6 5.5 (5.0,5.7) 1.5 1.8 2.7 (1.9,3.4) 
AERI+MWRz 3.9 4.6 5.6 (5.2,5.7) 1.5 2.0 3.2 (2.7,3.8) 
MWRz+nDIAL 1.5 1.8 2.2 (2.1,2.2) 1.1 2.6 6.2 (2.0,9.4) 
MWRzo+nDIAL 1.8 2.2 2.6 (2.5,2.6) 1.1 2.6 6.2 (2.0,9.4) 
AERI+nDIAL 3.9 4.5 5.5 (5.3,5.6) 1.7 3.3 7.0 (2.8,10.1) 
AERI+MWRz+nDIAL 3.9 4.5 5.5 (5.3,5.6) 1.7 3.3 7.2 (3.2,10.2) 
AERI-only (SGP) 4.8 5.5 6.6 (5.4,7.2) 1.7 2.1 3.0 (1.9,3.8) 
AERI+vDIAL (SGP) 4.8 5.5 6.6 (5.5,7.1) 2.5 4.2 5.5 (2.4,8.4) 
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Figures: 884 
 885 

 
Fig 1: The retrieved profiles of temperature (A) and water vapor (B), with the uncertainties in 
these profiles (panels C and D, respectively), for the passive-only retrievals with the MWRzo 
only (red), AERI only (green), and AERI+MWRzo (blue) on 05:07 UTC on 15 May 2017 during 
Perdigao.  The collocated radiosonde temperature and water vapor profiles are shown in 
black in (A) and (B), respectively.  The water vapor observed by the DIAL and its uncertainty 
are included in the figure, although it is not used in any of these retrievals.  The dotted black 
lines in A and B are the mean prior profiles.   
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Fig 2: Same as Fig 1, except that the retrievals combine active and passive data with the 
MWRzo+DIAL (red), AERI+DIAL (green), and AERI+MWRzo+DIAL (blue).  The water vapor 
observed by the DIAL and its uncertainty are included in the retrievals.  See text for more 
details. 
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 895 

 
Fig 3: The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for 
passive-only (solid lines) and active+passive (broken lines) retrievals during Perdigao. The 
black dotted line is the mean uncertainty from the nDIAL. 

 896 
 897 
 898 
 899 
 900 
 901 
 902 
 903 

 
Fig 4: The bias in temperature (left) and water vapor mixing ratio (right) for passive-only 
(solid lines) and active+passive (broken lines) retrievals relative to radiosondes during 
Perdigao. 
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Fig 5: The mean cumulative degrees of DFS for temperature (left) and water vapor mixing 
ratio (right) for passive-only (solid lines) and active+passive (broken lines) retrievals during 
Perdigao.  Note that the water vapor cumulative DFS profiles for MWRz and MWRzo 
retrievals are virtually identical (see Table 3) and hence overlap. 
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Fig 6: Profiles of cumulative degrees of freedom of signal from MWRz-only (dashed curves 
with dots) and AERI-only (solid curves with squares) temperature (left) and water vapor 
(right) retrievals for three samples between 03:00 and 05:00 UTC on 27 May 2017 during 
Perdigao.  The different colors correspond to different LWP path values in the overhead 
cloud, whose height is indicated with the horizontal gray bar.  The solid symbols indicate 
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heights that would be assimilated, if the first level started at 50 m AGL and each level was 
separated by a unit of DFS.  See the text for more details. 
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Fig 7: The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for 
AERI-only (solid lines) and AERI+xDIAL (broken lines) retrievals during Perdigao (black) and 
SGP (purple), where the former used nDIAL data and the latter used vDIAL data.  Note that 
different priors were used for the two locations; this impact is seen in the AERI-only retrievals 
as the noise levels of the two AERIs were similar. 

 919 

Deleted: 6920 


